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a b s t r a c t

A distributed pose localization framework based on direction measurements is proposed for a type
of leader–follower multi-agent system in R3. The novelty of the proposed localization method lies in
the elimination of the need for using distance measurements and relative orientation measurements
for the network pose localization problem. In particular, a network localization scheme is developed
based directly on the measured directions between an agent and its neighboring agents in the network.
The proposed position and orientation localization algorithms are implemented through differential
equations which simultaneously compute poses of all followers by using locally measured directional
vectors and angular velocities, and actual pose knowledge of some leader agents, allowing some
tracking of time-varying orientations. Further, we establish almost global asymptotic convergence of
the estimated positions and orientations of the agents to the actual poses in the stationary case.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Networked cooperative pose localization tackles the determi-
ation of positions and orientations of a networked set of agents
n an underlying three dimensional space thorough various in-
eragent measurements. It may well be done in order to perform
urther coordination control or distributed estimation tasks (Oh,
ark, & Ahn, 2015; Zhao & Zelazo, 2019). Distances and directions
re the two most commonly used measurements that are widely
sed in position localization literature (Aspnes et al., 2006; Mao,
idan, & Anderson, 2007). In a three dimensional ambient space,
irection is characterized by a unit length vector, and this can
ften be obtained by visual imaging, see Ma, Soatto, Kosecka,
nd Sastry (2004). However, in three-dimensional space, addi-
ional relative orientation measurements1 between neighboring
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1 A relative orientation is effectively the rotation matrix linking a local

oordinate frame of one agent to the local coordinate frame of another agent.
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agents are often required for estimating orientations (as opposed
to positions) of the agents in a network, a process which is
called orientation localization (Piovan, Shames, Fidan, Bullo, &
Anderson, 2013; Tron & Vidal, 2014). Nevertheless, there are not
many works that study simultaneous localization of positions
and orientations, a process which is called pose localization, in
a distributed setup. Motivated by these facts, this work attempts
to provide a distributed pose localization framework for a type of
leader–follower networks based on direction measurements and
pose knowledge of some leader agents.

For a two-dimensional (2-D) ambient space, network localiza-
tion laws using angles of arrival between triplets of nodes are
proposed in Zhu, Huang, and Jiang (2008) and an orientation lo-
calization method utilizing orientation knowledge of a few nodes
is presented in Rong and Sitichiu (2006). The authors in Piovan
et al. (2013) further proposed a least-squares optimization prob-
lem to achieve orientation localization by exploiting kinematic
relationships among the orientations of nodes. A least-squares
algorithm for position localization using bearing-only informa-
tion is proposed in Bishop and Shames (2011). In 3-dimensional
space (3-D), it is often required that relative orientation mea-
surements are available for estimating the orientations of the
agents. For example, some necessary and sufficient conditions

It is often estimated by vision-based techniques, e.g. by processing images
(of a common scene) captured by the agents and establishing the feature
correspondences (Tron & Vidal, 2014).
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are provided for orientation localizability of triangular sensing
networks of relative orientation measurements in Piovan et al.
(2013), without providing a distributed orientation localization
law. Network localization schemes using relative poses (relative
orientations and relative positions), which are measured by a
vision-based technique, are investigated in Thunberg, Bernard,
and Gonçalves (2017), Tron and Vidal (2014). The estimation of
relative poses, however, generally requires the agents to have
views of a common scene. By using relative orientation mea-
surements, our recent works in Tran, Ahn, and Anderson (2018)
and Tran, Trinh, Zelazo, Mukherjee, and Ahn (2019) propose
distributed orientation estimation laws which guarantee almost
global convergence of the estimated orientations up to a common
orientation. Zhao and Zelazo (2016) proposes a direction-only po-
sition localization law for bearing rigid networks with two anchor
nodes. However, Zhao and Zelazo (2016) further assumes that the
agents know their actual orientations. There is no framework for
direction-only network localization and formation control in 3-D
when agents lack knowledge of a global frame.

The orientation localization problem is challenging and re-
quires sophisticated estimation algorithms. In 2-D, it is straight-
forward to see how two neighboring agents observing each other
might determine a common view of their relative orientation
(i.e., a scalar angle), within an unknown constant rotation com-
mon to both, see e.g. Oh and Ahn (2014), as is now described.
Each agent maintains a (possibly body-fixed) coordinate frame
and measures the orientation angle of its neighboring agent (as-
suming direction sensing technology). In any common frame, the
measured angles (of the two neighboring agents) must differ by
precisely π radians. Hence a rotation of the coordinate axes of
one agent can be made to ensure that after rotation, the angle
difference is compensated. For an n agent network, one has to put
together in a distributed fashion a collection of such calculations.

How to do something like this in a 3-dimensional ambient
space is less clear. For example, with only a pair of direction
measurements between two neighboring agents i and j (bi

ij, b
j
ji)

∈ R3
× R3 (see Fig. 1(b)), it is insufficient for the agents i and

j to determine their relative orientation, i.e., Rij ≜ R⊤

i Rj ∈ SO(3),
here Ri and Rj ∈ SO(3) are the orientation matrices of agents
and j, respectively, due to the ambiguity of the rotation along
he common direction vector, bij. This difficulty can be overcome
y examining additional direction constraints of each of the two
gents to a third agent k that they both observe. Indeed, as
hown in Tran et al. (2018), by exploiting the triangle sensing
etwork agents i and j can compute Rij. The orientations of all
gents then can be computed up to a common orientation bias
y using a consensus protocol (Tran et al., 2018). This method,
owever, relies on the existence of triangle networks and requires
redefinition of a complicated computation sequence.
This paper proposes a distributed pose localization scheme

or a type of leader–follower network that uses continuous-
ime directional vectors and two or more anchor agents which
now their absolute poses. A distributed orientation localization
rotocol in SO(3) that estimates orientations of all followers is
roposed. Under the proposed orientation localization protocol,
stimated orientations converge to the true orientations of agents
lmost globally and asymptotically. By using the estimates of
rientations and direction measurements, we investigate a po-
ition localization law for the leader–follower network. Under
he proposed position localization law, positions of all followers
re also globally and asymptotically determined. The proposed
etwork pose localization scheme can work exclusively with
nter-agent directional vectors.

The rest of this paper is organized as follows. Section 2
resents some preliminaries and the problem formulation. The
rientation localization problem is studied in Section 3. We pro-
ose a position localization law in Section 4. Finally, Section 5
oncludes this paper.
2. Preliminaries and problem formulation

Notation. The dot product and cross product are denoted by ·

and ×, respectively. The symbol Σ represents a global coordinate
frame and the symbol kΣ with the superscript index k denotes
the kth local coordinate frame. Let 1n ∈ Rn be the vector of all
ones, and I3 the 3 × 3 identity matrix. The trace of a matrix is
denoted by tr(·). The set of rotation matrices in R3 is denoted
by SO(3) = {Q ∈ R3×3

| QQ⊤
= I3, det(Q) = 1}. The set

of real matrices with orthonormal column vectors is O(3). The
orthogonal projection matrix associated with a nonzero vector
x ∈ R3 is defined as

Px = I3 −
x

∥x∥
x⊤

∥x∥ ∈ R3×3. (1)

It can be verified that Px is positive semidefinite and idempotent.
Moreover, Px has the nullspace null(Px) = span{x} and the
eigenvalue set {0, 1, 1} (Zhao & Zelazo, 2019). The space of 3 × 3
skew-symmetric matrices is denoted by so(3) := {A ∈ R3×3

|A⊤
=

−A}. For any ω ∈ R3, the hat map (·)∧ : R3
→ so(3) is defined

such that ω × v = ω∧v, ∀v ∈ R3. The vee map is the inverse of
the hat map and defined as (·)∨ : so(3) → R3 (Bullo & Lewis,
2005). The exponential map exp : so(3) → SO(3) is surjective and
TRSO(3) = {Rη∧

: η∧
∈ so(3)} denotes the tangent space at a

point R ∈ SO(3).

2.1. Directional vector and orientation of agent

Consider a network of n nodes in R3. Each node corresponds
to an agent, and an agent is defined by the position of its centroid
and the orientation of a body-fixed coordinate frame iΣ relative
to a global frame Σ . In the sequel, the position of an agent will
be taken to be the position of its centroid. Let pi and pi

i ∈ R3

be the position of agent i expressed in Σ and iΣ , respectively.
We define the unit directional vector (expressed in Σ) pointing
from agent i toward its neighbor j along the direction of pij :=

pj − pi as bij ≜ pij/∥pij∥. The directional vector with the reverse
direction is bji = −bij. The directional vector bij measured locally
in iΣ is denoted as bi

ij. The orientation of agent i in R3 can be
characterized by a square, orthogonal matrix Ri ∈ SO(3). The pair
(Ri, pi) ∈ SE(3) characterizes the pose of agent i in the global
Cartesian space.

2.2. Graph theory

An interaction graph characterizing an interaction topology of
a multi-agent network is denoted by G = (V, E), where, V =

1, . . . , n} denotes the vertex set and E ⊆ V × V denotes the
set of edges of G. An edge is defined by the ordered pair ek =

(i, j), k = 1, . . . ,m,m = |E|. The graph G is said to be undirected
if (i, j) ∈ E implies (j, i) ∈ E , i.e. if j is a neighbor of i, then i is
also a neighbor of j. If the graph G is directed, (i, j) ∈ E does not
necessarily imply (j, i) ∈ E . The set of neighboring agents of i is
denoted by Ni = {j ∈ V : (i, j) ∈ E}.

2.3. Problem formulation

Consider a leader–follower network in R3 with at least two
non-collocated leader agents 1 and 2 which know their actual
poses (position and orientation in a global coordinate frame).
The leader–follower network studied in this work is defined as
follows (See also Fig. 1(a)).

Definition 1 (Twin-Leader–Follower Network). A twin-leader–
follower network is a directed network in which agents are
ordered such that (a) all leader agents appear first, there are
two (or more) leaders 1 and 2 which know their absolute poses
(R1, p1) and (R2, p2), respectively (b) a follower agent i, 3 ≤ i ≤

n, has at least two neighboring agents j’s in the set {1, . . . , i− 1},
.e., |N | ≥ 2, where N denotes the set of neighboring agents
i i
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Fig. 1. (a) A twin-leader–follower network: leader nodes 1, 2, and 1′ , the first
follower 3. (b) Agent i measures (bi

ij, b
i
ik), j, k ∈ Ni and receives (R̂jb

j
ji, R̂kbk

ki)
from j and k.

of i. Agent i knows the direction bi
ij to the neighbor j, while its

neighbor knows the direction bj
ji.

Note importantly that with only one leader, it is impossi-
le to compute the actual agent poses due to the translational
nd scale ambiguities in networks with direction-only measure-
ents (Trinh, et al., 2019; Zhao & Zelazo, 2019). Further, without
ose knowledge of the two leaders, the two leaders can arbi-
rarily select the translation, rotation, and scale factors of the
ose estimation (Tran, Anderson, & Ahn, 2019, Remark 3). We
emark that the first listed nonleader agent is known as a first
ollower and any leader agents beyond the first two are known as
edundant leaders. To streamline nomenclature, we number the
gents as {1, 2, 1′, 2′, . . . , 3, 4, . . . , n}, where the follower agents
re 3, 4, . . . , n; also Vl = {1, 2, 1′, 2′ . . .}, where 1′, 2′ . . . are
edundant leaders, and Vf = {3, 4, . . . , n} will denote the sets
f leader and follower agents, respectively.
Each agent i ∈ Vf in the network aims to estimate its actual

ose, i.e., (Ri, pi) ∈ SO(3)×R3, based on the direction constraints
o its neighboring agents and the actual poses of the leader
gents. At each time instant t agent i holds an estimate of its pose,
enoted as (R̂i, p̂i) ∈ SO(3) × R3.

ssumption 1. Agent j estimates its orientation at time t by
ˆ j, and transmits the information R̂jb

j
ji to agent i, j ∈ Ni (see

ig. 1(b)).

We assume that the agents in the network do not translate but
hey might rotate according to the kinematics
˙ i = Ri(ωi

i)
∧, for i ∈ V,

here ωi is the angular velocity of agent i measured locally in iΣ .
e assume that ωi

i and its derivative are bounded, i.e., ∥ωi
i∥ ≤ ω̄i,

ω̇i
i∥ ≤ ˙̄ωi, for positive constants ω̄i, ˙̄ωi > 0, and each agent

can measure ωi
i without noise. The angular velocity expressed

n the global coordinates is ωi = Riω
i
i . This kind of system

ight represent a visual sensor network (Tron & Vidal, 2014) or a
ystem of autonomous agents in a desired formation (Tran, Trinh,
elazo, Mukherjee, & Ahn, 2019) where the agents might rotate
o track objects. Moreover, to secure uniqueness of the localized
oses of the agents, we have the following assumption.

ssumption 2. No two agents are collocated and each follower
∈ Vf has at least one pair of neighbors with which it is not
ollinear.

We first address the problem of calculating the orientation R̂i
or all follower agents.

roblem 1. Considering a twin-leader–follower network of n
gents, under Assumptions 1–2, compute R̂i for each follower
∈ Vf based on the directional measurements (bi

ij, b
j
ji), estimated

rientations of its neighbors R̂j, j ∈ Ni, and the knowledge of the
true orientations of the two or more leaders, i.e., Rk ∈ SO(3),
∈ Vl.
Assuming solvability of Problem 1, the second problem inves-
tigated is to determine the locations of agents.

Problem 2. Consider a twin-leader–follower network of n non-
translating but possibly rotating agents with at least two leaders.
Under Assumptions 1–2, for each follower i, determine its ac-
tual position, pi ∈ R3, based on the estimate R̂i, the direction
constraints bi

ij, j ∈ Ni, and absolute positions of some leaders,
i.e., pk ∈ R3, k ∈ Vl.

3. Orientation localization

In this section, we present a differential equation constitut-
ing a continuous-time orientation localization law in SO(3) that
computes time-varying orientations of agents simultaneously us-
ing continuous-time directional vectors to multiple neighboring
agents, angular velocity measurements, and actual orientations
of some leaders. Further, the equilibrium set of the differen-
tial equation is first characterized and almost global asymptotic
convergence of the estimated orientations is established.

3.1. Error function and critical points

Consider an agent i ∈ Vf which senses the local directions,
bi
ij ∈ R3, to its neighboring agents j ∈ Ni. If |Ni| = 2, the third

direction constraint is defined by the normalized cross product of
the first two directions, for positive definiteness of Ki in (3). The
objective is to find an estimate, R̂i ∈ SO(3), of the true orientation,
Ri, that is a minimum of the following error function

Φi(R̂i,Ri) = 1/2
∑
j∈Ni

kij∥R̂ibi
ij − bij∥

2

=

∑
j∈Ni

kij(1 − R̂ibi
ij · bij), (2)

which is sum of squared norms of all direction constraint errors.
We do not assert that Φi can be evaluated from the measure-
ments, but we shall show that it can be minimized from the
measurements. In (2), positive constant gains, kij ∈ R, are used
to impose different weights on error terms in the error function.
The above configuration error function is in the form of Wahba’s
cost function (Wahba, 1965) and used for attitude tracking con-
trol (Lee, 2015) or attitude estimation of a rigid body (Izadi &
Sanyal, 2016; Mahony, Hamel, & Pflimlin, 2008). In the sequel,
we follow techniques similar to those in Bullo and Lewis (2005,
Chap. 11), (Lee, 2015) to design our orientation localization law.

Let Φij := 1 − R̂ibi
ij · bij = 1 − tr(R̂ibi

ijb
⊤

ij ) = 1 − tr(R̂iR⊤

i bijb⊤

ij ),
where we use the relations x⊤y = tr(xy⊤) for x, y ∈ R3, and
bi
ij = R⊤

i bij. Let Q̃i ≜ R̂iR⊤

i and hence Φij = 1 − tr(Q̃ibijb⊤

ij ).
Consider a vector in the tangent space of SO(3) at the point R̂i
(resp. Ri) as δR̂i = R̂iη

∧

i , ηi ∈ R3, (resp. δRi = Riζ
∧

i , ζi ∈ R3) (Bullo
& Lewis, 2005). Then, the following straightforwardly established
lemma can be proved (Tran, Anderson, & Ahn, 2019).

Lemma 1. The derivative of the error function Φ(R̂i,Ri)with respect
to R̂i (resp. Ri) along the direction of R̂iη

∧

i (resp. Riζ
∧

i ) is given by

DR̂i
Φi(R̂i,Ri) · R̂iη

∧

i = η⊤

i

∑
j∈Ni

eij,

(
resp. DRiΦi(R̂i,Ri) · Riζ

∧

i = −ζ⊤

i

∑
j∈Ni

eij
)
,

where eij ≜ kij(R̂⊤

i bij × bi
ij) ∈ R3, j = 1, . . . , |Ni|.

We now study the critical points of Φi(R̂i). To proceed, we
rewrite the error function as
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Φi =

∑
j∈Ni

kij −
∑
j∈Ni

tr(kijR̂iR⊤

i bijb⊤

ij )

=

∑
j∈Ni

kij − tr(Q̃iKi) (3)

where Ki ≜
∑

j∈Ni
kijbij(bij)⊤ ∈ R3×3, which can be shown to have

distinct eigenvalues for almost all positive scalars kij by using
the fact that the zero set of the discriminant of the characteristic
equation of Ki, which is a polynomial of the real entries of Ki, is
a set of measure zero. Since Range

(
kijbij(bij)⊤

)
= span{bij}, it can

be verified that Ki is positive definite if and only if {bij}j∈Ni are
non-coplanar. Thus, Ki can be decomposed as Ki = UGU⊤ where
G = diag{λk(Ki)}, λk(Ki) > 0, k = 1, 2, 3, and U ∈ O(3). Also
note that tr(G) = tr(Ki) = tr(

∑
j∈Ni

kijbijb⊤

ij ) =
∑

j∈Ni
kijb⊤

ij bij =∑
j∈Ni

kij. Consequently, one has Φi = tr(G) − tr(Q̃iUGU⊤) =

tr(G(I3 − U⊤Q̃iU)), whose critical points are given as follows.

Lemma 2 (Bullo & Lewis, 2005, Prop. 11.31). Let G be a diag-
onal matrix with distinct positive entries and U ∈ O(3). Then,
Φi(Q̃i) = tr(G(I3 − U⊤Q̃iU)) has four critical points given by Q̃i ∈

I3,UD1U⊤,UD2U⊤,UD3U⊤
}, where Di = 2[I3]i[I3]⊤i − I3 and [I3]i

is the ith column vector of I3.

Those critical points are clearly isolated in which Q̃i = R̂iR⊤

i =

I3 is the desired point and tr(Q̃i) = −1 for the three undesired
points.

3.2. Orientation localization law

We now propose orientation localization law for each follower
agent i as
˙̂Ri = R̂iΩ

∧

i , (4)

where the control vector Ωi ∈ R3 will be designed later and R̂i(0)
is initialized arbitrarily in SO(3). Let Ω̃i ≜ ωi

i − Ωi; we have the
following lemma, which can be proved using techniques similar
to those in Lee (2015, Prop. 1).

Lemma 3. The vector, ei ≜
∑

j∈Ni
eij, and error function, Φi, in (2)

satisfy the following properties

(i) ∥ėi∥ ≤
∑

j∈Ni
kij∥Ω̃i∥ + ω̄i∥ei∥, where the positive constant

ω̄i > 0 satisfies ∥ωi∥ ≤ ω̄i,
(ii) Φ̇i(R̂i,Ri) = −Ω̃i · ei,
(iii) There exist constants σi, γi > 0 such that σi∥ei∥2

≤ Φi(R̂i,Ri)
≤ γi∥ei∥2, where the upper bound holds when Φi < 2min{λ1
+ λ2, λ1 + λ3, λ2 + λ3}, (λk = λ(Ki), k = 1, 2, 3).

The control vector Ωi = ωi
i − Ω̃i, where Ω̃i ∈ R3 is designed

via
˙̃
Ωi = −kωΩ̃i +

∑
j∈Ni

kij(R̂⊤

i R̂jb
j
ij × bi

ij), (5)

where kω > 0 is a positive constant. The orientation localization
law (4)–(5) is distributed since only directional vectors, i.e., bi

ij,
and information communicated from neighboring agents, i.e., the
estimate of direction in global coordinates, R̂jb

j
ij, are utilized.

Since the right hand side of (5) is linear in Ω̃i and the second
term is bounded, Ω̃i is uniformly continuous in t .

3.3. Stability and convergence analysis

We rewrite (5) as
˙̃
Ωi = −kωΩ̃i +

∑
kij(R̂⊤

i bij × bi
ij
j∈Ni
R

+ R̂⊤

i (R̂j − Rj)b
j
ij × bi

ij)

= −kωΩ̃i + ei + hi(R̂j, t), (6)

where hi(R̂j, t) =
∑

j∈Ni
kij(R̂⊤

i (R̂j − Rj)b
j
ij × bi

ij). Due to the
cascade structure of the leader–follower system we prove the
almost global convergence of the estimated orientations using an
induction argument.

3.3.1. The first follower
For the first follower, i.e., agent 3, we have h3 = 0. Thus,

˙̂R3 = R̂3(ω3
3 − Ω̃3)∧,

˙̃
Ω3 = −kωΩ̃3 + e3. (7)

Theorem 1. Suppose that Assumptions 1–2 hold. Then, under the
orientation localization law (7), we have:

(i) The equilibrium points of (7) are given as {(Q̃3, Ω̃3) | Q̃3 ∈

{I3,UD1U⊤,UD2U⊤,UD3U⊤
}, Ω̃3 = 0}, where Di and U are

defined in Lemma 2.
(ii) The desired equilibrium, (Q̃3 = I3, Ω̃3 = 0) is almost globally

asymptotically stable (aGAS), Q̃3 = I3 is the global minimum
of Φ3(Q̃3) and the three undesired equilibria are unstable.

Proof. Consider the Lyapunov function

V3 = 1/2Ω̃2
3 + Φ3(R̂3,R3) − kV Ω̃3 · e3, (8)

for a constant kV > 0. Following Lemma 3(iii), we can show that

V3 ≥ 1/2z⊤

3

[
1 −kV

−kV 2σ3

]
z3,

where z⊤

3 =
[
∥Ω̃3∥, ∥e3∥

]
. It follows that V3 ≥ 0 if and only if

kV <
√
2σ3. It can be shown that the time derivative of V3 along

he trajectory of (7) is negative definite, i.e., V̇3 ≤ −1/2z⊤

3 M3z3,
or a positive definite matrix M3, if kV is sufficiently small. This
ounds V3(t) ≤ V3(0) and consequently Ω̃3 is bounded. A direct
alculation of V̈3 shows that V̈3 is bounded due to the bounded-
ess of ˙̃

Ω3 and ė3 (Lemma 3(i)). As a result, Ω̃3(t) → 0, e3(t) → 0
s t → ∞ according to Barbalat’s lemma. Consequently, the
quilibrium points of (7) satisfy Ω̃3 = 0 and Q̃3 comprises critical
oints of Φ3(Q̃3) (since Φ̇3(Q̃3) = −Ω̃3 · e3 → 0 by Lemma 2);
ence (i) is proved.
We show (ii) as follows. Note that the Hessian of Φ3(Q̃3) at

the desired equilibrium Q̃3 = I3 is positive definite (Bullo & Lewis,
2005, Prop. 11.31). Consequently, the equilibrium (R̂3 = R3, Ω̃3 =

) is (locally) asymptotically stable. One can also show that the
hree undesired equilibria of (7) are unstable and have Q̃3 that
re either maximum or strict saddle points of Φ3. Consequently,
he desired equilibrium is aGAS except on a set of measure zero
n SO(3) which contains the stable manifolds of the undesired
quilibrium points. □

It follows from the above theorem that R̂3 → R3 almost glob-
ally asymptotically as t → ∞. For induction, we now suppose
that the corresponding result holds for agents k − 1, k − 1 ≥ 3,
.e., R̂k−1 → Rk−1 as t → ∞ almost globally. We show that it is
also true for the agent k as follows.

3.3.2. Follower k
Using (4) and (6), we have

˙̂Rk = R̂k(ωk
k − Ω̃k)∧,

˙̃
Ωk = −kωΩ̃k + ek + hk(t), (9)

where hk(t) =
∑

j∈Nk
kkj(R̂⊤

k (R̂j − Rj)b
j
kj × bk

kj) which is clearly
ounded and converges to zero asymptotically since R̂j → Rj, ∀j
1, . . . , k − 1. Note that hk(t) can be considered as an additive

nput to the nominal system
˙̂ ˆ k ˜ ∧ ˙̃ ˜
k = Rk(ωk − Ωk) , Ωk = −kωΩk + ek. (10)
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p

It is noted that the above system is in a similar form to (7) and
hence the following result follows directly.

Lemma 4. Consider the nominal system (10) under the
Assumptions 1–2, then:

(i) The equilibrium points of (10) are given as {(Q̃k, Ω̃k)|Q̃k ∈

{I3,UD1U⊤,UD2U⊤, UD3U⊤}, Ω̃k = 0}, where Di and U are
defined in Lemma 2.

(ii) The desired equilibrium, (Q̃k = I3, Ω̃k = 0) is aGAS while the
three undesired equilibria are unstable.

The perturbed system (9) is linear in Ω̃k and ek+hk is bounded.
Thus Ω̃k is bounded. Define the set Sk ≜ {Q̃k|Φk(Q̃k) < φk}, where
φk = 2min{λ1 + λ2, λ1 + λ3, λ2 + λ3}, {λi}i=1,2,3 = λ(Kk), or,
i.e., the minimum value of Φk evaluated at the three undesired
critical points.

Lemma 5. Suppose that Assumptions 1–2 hold. The perturbed
system (9) is input-to-state stable (ISS) with respect to hk(t).

Proof. Consider the Lyapunov function Vk = 1/2Ω̃2
k +Φk−kV Ω̃k ·

ek. Then, following from Lemma 3(iii), in Sk one has

1/2z⊤

k Akzk ≤ Vk ≤ 1/2z⊤

k Bkzk, (11)

where z⊤

k =
[
∥Ω̃k∥, ∥ek∥

]
and Ak =

[
1 −kV

−kV 2σk

]
,Bk =

[
1 −kV

−kV 2γk

]
.

It can be shown that the time derivative of Vk along the trajectory
of (9) satisfies V̇k ≤ −1/2z⊤

k Ckzk +d∥hk∥, where d = supt (∥Ω̃k −

kVek∥) and Ck ∈ R2×2 is a positive definite matrix (and so are Ak
and Bk) if kV is sufficiently small. Therefore, it follows from (11)
and the boundedness of ∥Ω̃k∥ we have that

V̇k ≤ −λmin(Ck)/λmax(Bk)Vk + d∥hk∥ (12)

which shows ultimate boundedness of the system (9) and input-
to-state stability of the system (9) w.r.t. hk(t) according to Angeli
and Praly (2011, Prop. 3).

It follows from (12) that V̇k < 0 if

Vk > (λmax(Bk)/λmin(Ck))d∥hk∥ =: ϵ1 (13)

Define the sublevel set Lϵ := {(Q̃k, Ω̃k) ∈ SO(3) × R3
|Vk ≤ ϵ}.

Then, Lϵ1 is a positive invariant set. Since ∥hk(t)∥ tends to zero
as t → ∞, the same is true for Vk. To guarantee that Q̃k ∈

Sk = {Q̃k|Φk(Q̃k) < φk} we consider Vk < φkλmin(Ak)/2γk =: ϵ2.
Then, following Lemma 3(iii) and (11), one has Φk ≤ γk∥ek∥2

≤

γk∥zk∥2
≤ 2γkVk/λmin(Ak) < φk. Consequently, any trajectory

initializes in or enters Lϵ2 will converge to Lϵ1 , and eventually
reach (Q̃k = I3, Ω̃k = 0) as t → ∞. □

Theorem 2. Suppose that Assumptions 1–2 hold. Then, the desired
equilibrium point, (R̂k = Rk, Ω̃k = 0), of the system (9) is almost
globally asymptotically stable.

Proof. First, the desired equilibrium point (R̂k = Rk, Ω̃k = 0) of
the unforced system (10) is aGAS (Lemma 4). The other undesired
equilibria are isolated and unstable. The perturbed system (9)
satisfies ultimate boundedness and is ISS w.r.t. hk (Lemma 5). The
input hk(t) is bounded and vanishes asymptotically as t → ∞.
Consequently, the desired equilibrium point of the system (9) is
aGAS (Angeli, 2004; Angeli & Praly, 2011). □

It follows that R̂k(t) → Rk almost globally asymptotically as
t → ∞. Finally, by invoking mathematical induction, the above
theorem holds for all k = 3, . . . , n.

Corollary 1. Suppose direction measurements include bounded
additive measurement noise. Then for a sufficiently small bound,
(Q̃k, Ω̃k) converges to a neighborhood of the desired equilibrium
(I3, 0) of (9).

Proof. The proof follows from the ISS of the system (9) w.r.t.
input (Lemma 5). In particular, let δ ∈ R3 be the augmented error
vector introduced by the direction measurement errors in (9) i.e.,
˙̂Rk = R̂k(ωk

k − Ω̃k)∧,
˙̃
Ωk = −kωΩ̃k + ek + hk(t) + δ (14)

Following similar arguments in the proof of Lemma 5 we can
show that if ∥δ∥ is sufficiently small the trajectory of (14) con-
verges to a neighborhood of the desired equilibrium point as
t → ∞, i.e., {∥zk∥2

≤ 2λmax(Bk)/(λmin(Ck)λmin(Ak))d∥δ∥}, which
completes the proof. □

4. Position localization

This section investigates position localization using locally
measured directions bi

ij, the estimated orientation R̂i of agent
i and the absolute positions of some leaders. For this, we first
study the uniqueness of the target positions of the followers
and present a distributed localization law for each agent. Under
the proposed position localization law, estimated positions of
all followers converge globally and asymptotically to the true
positions.

4.1. Unique target configuration

The uniqueness of the target configuration (the actual posi-
tions of agents) is a key property of the network that allows us to
localize the network. In the sequel, under the noncollocation and
non-collinearity conditions of the true positions of the agents in
Assumption 2, we show that the target configuration is uniquely
defined using the direction constraints, estimate of orientation of
agent i, and the absolute positions of some leaders. The following
lemma is similar to Trinh, et al. (2019, Lem. 1).

Lemma 6. Consider the twin-leader–follower network with two or
more leaders and locally measured directions {bi

ij}(i,j)∈E . Suppose that
Assumptions 1–2 hold, and the orientation of agent i, Ri ∈ SO(3), is
available to i or otherwise can be estimated, e.g. Problem 1. Then
the actual position of the agent i, (i ≥ 3), i.e., pi ∈ R3 is uniquely
determined from its direction constraints {bi

ij}j∈Ni and the positions
of its neighbors {pj}j∈Ni . Furthermore, pi is uniquely computed as

pi =
(∑
j∈Ni

Pbij
)−1 ∑

j∈Ni

Pbijpj, (15)

where bij = Ribi
ij, and Pbij ∈ R3×3 denotes the projection matrix as

defined in (1).

4.2. Proposed position localization law

Each follower agent i holds an initial estimate of its position
p̂i(0) ∈ R3, and updates the estimate as follows

˙̂pi = −R̂i

∑
j∈Ni

kpijPbiij
R̂⊤

i (p̂i − p̂j), (16)

where, kpij > 0 is a positive gain, the local projection matrix Pbiij
=

I3 −bi
ij(b

i
ij)

⊤
= R⊤

i (I3 −bijb⊤

ij )Ri = R⊤

i PbijRi, and p̂i(0) is initialized
arbitrarily. The localization law (16) is implemented using only
local direction measurements bi

ij, estimate of orientation R̂i, and
estimates of its neighbors’ positions p̂j which are communicated
by agents j ∈ Ni (in the case of leaders, p̂i = pi, ∀i ∈ Vl).
The estimation law (16) is linear in the estimated state p̂(t) :=

[p̂⊤

1 (t), . . . , p̂
⊤
n (t)]

⊤, and so the right side is globally Lipschitz in
ˆ (t).
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4.3. Stability analysis

We rewrite the localization law (16) as follows
˙̂pi = fi(p̂, t) − hi(p̂, R̂),

where fi(p̂, t) := −
∑

j∈Ni
kpijPbij (p̂i − pj) and hi(p̂, R̂) := −(R̂i −

Ri)
∑

j∈Ni
kpijPbiij

R⊤

i (p̂i − p̂j)− R̂i
∑

j∈Ni
kpijPbiij

(R̂⊤

i −R⊤

i )(p̂i − p̂j)−

i
∑

j∈Ni
kpijPbiij

R⊤

i (pj − p̂j). The above dynamics can be written in
more compact form

˙̂ = f(p̂, t) + h(p̂, t), (17)

here the stack vectors f(p̂) = [f⊤1 , f⊤2 , . . . , f⊤n ]
⊤ and h(p̂, t) =

h⊤

1 ,h⊤

2 , . . . ,h⊤
n ]

⊤. Due to the cascade structure of the system
17), we will study (17) using the stability theory for cascade
ystems (Angeli, 2004). Consider h(p̂, t) in (17) as an input to the
ollowing nominal system
˙̂ = f(p̂). (18)

he boundedness of the estimates of positions is provided in the
ollowing lemma.

emma 7. Under Assumptions 1–2, the cascade system (17) satisfies
he ultimate boundedness property. That is, the estimates p̂i (i =

, . . . , n) are bounded for all t > 0.

emma 8. Under Assumptions 1–2, the desired equilibrium p̂ = p
f the nominal system (18) is globally exponentially stable (GES).

roof. For each follower i ∈ Vf , the equilibrium of (18) satisfies
(p̂i) = 0 ⇔

∑
j∈Ni

kpijPbij (p̂i − pj) = 0 ⇔
(∑

j∈Ni
kpijPbij

)
p̂i =

j∈Ni
kpijPbijpj. Since agent i is not collinear with two or more

f its neighbors (Assumption 2), p̂i = pi is the unique solution
o the equation (Lemma 6). Consequently, p̂ = p, is the unique
quilibrium of the nominal system (18).
Consider a Lyapunov function Vi = 1/2(p̂i−pi)2, which is posi-

ive definite, continuously differentiable, and radially unbounded.
t can be shown that the derivative of Vi along the trajectory
f (18) is given as V̇i(t) = −(p̂i − pi)⊤

(∑
j∈Ni

kpijPbij
)
(p̂i − pi),

hich is negative definite due to the positive definiteness of∑
j∈Ni

kpijPbij
)
(Lemma 6). This completes the proof. □

heorem 3. Under Assumptions 1–2, the cascade system (17)
s input-to-state stable with respect to the input h(p̂, R̂). Further,
ˆ (t) → p almost globally and asymptotically as t → ∞.

roof. We provide a proof by using mathematical induction. The
lmost global asymptotic convergence of the localized position of
he first follower follows directly since the desired equilibrium,
ˆ3 = p3, of the nominal system, ˙̂p3 = f3(p̂3, t), is GES (Lemma 8),
nd the input is bounded and h3(t) → 0 asymptotically due
o R̂i → Ri almost globally as t → ∞ and p̂j = pj, ∀j ∈

3. It can be shown similarly for all other followers using the
acts that the convergence of position estimate of an follower
s not influenced by the latter agents in the network and the
rientations and positions of earlier agents converge to the actual
oses asymptotically. This completes the proof. □

emark 1. The position localization (16) runs in parallel with
he aforementioned orientation estimation scheme (4). Note also
hat the underlying graph of a twin-leader–follower network is
earing rigid. Thus, given estimates of agent orientations R̂i(t),
he position computations in the network via (16) can also be
one in a bidirectional way. Then, we obtain Corollary 2 whose
roof is similar to Proof of Li, Luo, and Zhao (2020, Thm. 2).
e showed above that the position estimation via (16) using
nidirectional communications is also almost globally convergent
sing the input-to-state stability theory.

orollary 2. Suppose that Assumptions 1–2 hold and the sum in
16) is taken over all j to which agent i measures directions bi

ij.
hen, under the estimation law (16), p̂(t) → p almost globally and
symptotically as t → ∞.

. Conclusion

In this paper, a network pose localization scheme was pro-
osed for twin-leader–follower networks by using direction mea-
urements in R3. In particular, an orientation localization law
n SO(3) and a position localization protocol were presented.
e showed that the actual orientations and positions of all fol-

ower agents can be estimated almost globally and asymptoti-
ally. An extension of this work to systems with more general
raph topologies is left as future work.
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