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Abstract

■ During real-world scene perception, viewers actively direct
their attention through a scene in a controlled sequence of eye
fixations. During each fixation, local scene properties are
attended, analyzed, and interpreted. What is the relationship
between fixated scene properties and neural activity in the visual
cortex? Participants inspected photographs of real-world scenes in
an MRI scanner while their eye movements were recorded.
Fixation-related fMRI was used to measure activation as a function
of lower- and higher-level scene properties at fixation, operation-
alized as edge density and meaning maps, respectively. We found

that edge density at fixation was most associated with activation in
early visual areas, whereas semantic content at fixation was most
associated with activation along the ventral visual stream including
core object and scene-selective areas (lateral occipital complex,
parahippocampal place area, occipital place area, and retrosplenial
cortex). The observed activation from semantic content was not
accounted for by differences in edge density. The results are con-
sistent with active vision models in which fixation gates detailed
visual analysis for fixated scene regions, and this gating influences
both lower and higher levels of scene analysis. ■

INTRODUCTION

Visual perception and visual cognition are active processes
in which saccadic eye movements play a central role
(Henderson, 2013; Rayner, 2009; Henderson & Ferreira,
2004; Findlay & Gilchrist, 2003; Yarbus, 1967; Buswell,
1935; Dodge, 1903). In natural perception, the eyes move
from location to location toenable the acquisitionof informa-
tion as it is needed in real time (Hayhoe, 2017; Henderson,
2003, 2011; Rayner, 1998; Yarbus, 1967; Buswell, 1935).
During active visual scene processing, the information
acquired during each eye fixation is combined to produce
a complete scene representation (Hollingworth, 2005;
Hollingworth & Henderson, 2002). Indeed, what we recog-
nize, understand, and remember about a scene is tightly tied
to where we look (Hayhoe, 2017; Henderson, 2011).
Current theoretical approaches and computational models
of active scene viewing therefore attempt to account for
how attention and, particularly, eye movements are related
to scene variables associated with eye fixations (Kümmerer,
Wallis, Gatys, & Bethge, 2017; Nuthmann, Smith, Engbert,
& Henderson, 2010; Torralba, Oliva, Castelhano, &
Henderson, 2006; Itti & Koch, 2001; Koch & Ullman, 1985).
Real-world scenes contain a large amount of information

about local scene elements and relationships that cannot
be processed from a brief central glimpse (Fei-Fei, Iyer,
Koch, & Perona, 2007; Hollingworth & Henderson, 2002;
Henderson & Hollingworth, 1999b). To access this local in-
formation, viewers must actively direct attention to specific
scene regions via eye movements. Previous eye-tracking

studies have shown a tight link between fixation locations
and cognitive processes (Hayhoe, 2017; Henderson, 2011;
Rayner, 2009). However, the nature of the associations
between fixations in scenes and activation in the cortical
systems supporting visual analysis during active scene
perception remains largely an open question (Malcolm,
Groen, & Baker, 2016; Peelen & Kastner, 2014). To address
this question, here, we tested the hypothesis that variation
in scene content across fixations is related to variation in
activation in visual areas of cortex. We specifically hypothe-
sized that increases in lower-level visual feature content at
fixation would be associated with greater activation in early
visual areas, whereas increases in higher-level scene con-
tent at fixation would be associated with greater activation
in higher-level visual areas including scene-related areas.

We tested these hypotheses by combining fMRIwith high-
resolution eye tracking in fixation-related (FIRE) fMRI.
Specifically, we coregistered fMRI with eye tracking while
participants silently and freely viewed photographs of real-
world scenes (Figure 1A). We then employed FIRE fMRI
analysis to measure neural activation associated with the
content at each fixated location. FIRE fMRI has been shown
to reveal underlying neural activity associated with eye
fixations in reading (Schuster, Hawelka, Himmelstoss,
Richlan, & Hutzler, 2020; Carter, Foster, Muncy, & Luke,
2019; Hsu, Clariana, Schloss, & Li, 2019; Desai, Choi, Lai, &
Henderson, 2016; Henderson, Choi, Lowder, & Ferreira,
2016; Henderson, Choi, Luke, & Desai, 2015; Schuster,
Hawelka, Richlan, Ludersdorfer, & Hutzler, 2015; Richlan
et al., 2014) as well as object perception (Marsman,
Renken, Haak, & Cornelissen, 2013; Marsman, Renken,
Velichkovsky, Hooymans, & Cornelissen, 2012). However,
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little work to date has extended the method to active scene
perception (Henderson & Choi, 2015).

To investigate these issues, we quantified the content of
each fixated scene region at two levels of representation.
For the analysis of low-level visual features, we examined
in a whole-brain analysis the edge density at fixation
(Figure 1D). We investigated edge density because edges
are well known to be associated with activity in the visual
cortex, and it has been suggested that they may also be
related to activation in scene-related areas along the ventral
visual stream in fMRI studies (Watson, Hymers, Hartley, &
Andrews, 2016; Kauffmann, Ramanoël, Guyader, Chauvin,
& Peyrin, 2015; Musel et al., 2013; Rajimehr, Devaney,
Bilenko, Young, & Tootell, 2011; although see Henderson,
2011). Edge density is also related to fixation behavior in
scenes (Henderson, Chanceaux, & Smith, 2009; Baddeley
& Tatler, 2006; Mannan, Ruddock, & Wooding, 1996).

For the analysis of high-level properties of scene content,
we capitalized on “meaning map” representations intro-
duced by Henderson and Hayes (2017). Meaningmaps rep-
resent the spatial distribution of semantic features across a
scene (Figure 1C), with meaningful regions operationalized
as those that are informative and recognizable (Antes, 1974;
Mackworth & Morandi, 1967). To create meaning maps, we
used crowdsourced responses given by large numbers of
naive participants who rated the informativeness and recog-
nizability of thousands of context-free scene patches.
Meaning defined in this way is associated with the distribu-
tion of attention during free viewing of scenes (Peacock,
Hayes & Henderson, 2019; Henderson & Hayes, 2017,
2018), visual search in scenes (Hayes & Henderson, 2019),
memory for scenes (Bainbridge, Hall, & Baker, 2019), and
linguistic descriptions of scenes (Ferreira & Rehrig, 2019;
Henderson, Hayes, Rehrig, & Ferreira, 2018).

For our questions concerning higher-level scene proper-
ties, we conducted whole-brain analyses as well as conjunc-
tion analyses on four cortical areas related to object and
scene perception chosen a priori based on previous
studies: lateral occipital complex (LOC), parahippocampal
place area (PPA), transverse occipital sulcus (TOS; also
called occipital place area [OPA]), and retrosplenial cortex
(RSC; also called medial place area; Epstein & Baker, 2019;

Çukur, Huth, Nishimoto, & Gallant, 2016; Malcolm et al.,
2016; MacEvoy & Epstein, 2011; Peelen, Fei-Fei, & Kastner,
2009; Walther, Caddigan, Fei-Fei, & Beck, 2009; Epstein &
Higgins, 2007; Epstein & Kanwisher, 1998). If, in addition
to previously demonstrated computations for global scene
properties, scene-selective areas are also sensitive to
higher-level properties of locally attended scene regions,
then activation in scene-related areas should also increase
systematically with increases in meaning across fixations.
A critical aspect of the FIRE fMRI method is that it pro-

vides information concerning voxels that change their acti-
vation with changes in features at fixation. For this reason,
FIRE analysis does not identify regions that activate to the
stimulus globally but instead reflects activation to locally fix-
ated features beyond any activation produced by the pres-
ence of the global stimulus across all fixations. Because of
this characteristic, FIRE fMRI analysis can provide informa-
tion about which attended scene properties modulate acti-
vation beyond any overall activation produced globally by
scenes. Importantly, when comparing different fixated
properties, only the property values included in the FIRE
analysis as regressors change from one analysis to another.
The fixations themselves are identical across analyses, so all
other aspects of viewing (e.g., the participant’s motivation,
fatigue, time in the scanner) are controlled.
In summary, this study investigated neural activation asso-

ciated with the properties of fixated scene regions when
participants freely viewed photographs of real-world scenes
via eye movements.

METHODS

Participants

Forty-three right-handed participants (14men), aged 18–34
(M = 21.48) years, were recruited from the Columbia,
South Carolina, community. They were all native speakers of
English and reported normal or corrected-to-normal vision.
All participants gave informed consent, were screened for
MRI safety, andwere given $10 per hour for participation in
compliance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki) and by approval of

Figure 1. Example scene with eye movements and analysis maps. (A) One participant’s eye movements. (B) Regions of analysis around four example
fixation locations. (C) The four regions within the scene’s meaning map. (D) The same four regions within the scene’s edge map. In B and C, the
solid green circles show a high- and low-meaning fixation. In B and D, the dotted green circles show a high- and low-edge-density region.
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the University of South Carolina Institutional Review Board
for human participants. Three participants were removed
from analysis, one because of a technical problem with
the scanner and the others because of inattention during
the experiment, leaving 40 participants for the analysis.

Stimuli

Images were 40 full-color photographs depicting a wide
variety (20 natural and 20 human constructed) of real-world
scenes. The scenes did not include faces.

Apparatus

Images were presented using an Avotec Silent Vision 6011
projector in its native resolution (1024 × 768) at a refresh
rate of 60 Hz. Eye movements were recorded via an SR
Research Eyelink 1000 long-range MRI eye-tracker
sampling at 1000Hz. Viewingwas binocular, and eyemove-
ments were recorded from one eye.

Procedure

Sceneswere presented in two functional runs, with each run
containing 10 natural and 10human-constructed scenes pre-
sented in a random order. Scenes were shown individually,
and participants were instructed to view them silently. Each
scene was presented for 12 sec, with a 6-sec central fixation
marker on a gray screen between scenes. Each run lasted
about 6 min. These runs were presented with separate runs
containing text that were not relevant for this study.

Eye-movement Data Acquisition

A 13-point calibration procedure was implemented in the
scanner before each functional run to map eye position
to screen coordinates. Successful calibration required an
average error of less than 0.49° and a maximum error of
less than 0.99°. A central fixation marker was presented on
the screen during the 6-sec interval between each trial,
and participants were instructed to fixate that marker.
Eye movements were recorded throughout the runs.

MRI Data Acquisition

MR data were collected on a Siemens Medical Systems
3-T Trio. A 3-D T1-weighted MPRAGE radio frequency–
spoiled rapid flash scan in the sagittal plane and a T2/PD-
weighted multislice axial 2-D dual fast/turbo spin-echo scan
in the axial plane were used. The multiecho whole-brain
T1 scans had a 1-mm isotropic voxel size (repetition
time [TR] = 2530 msec, flip angle = 7°). Functional runs
were acquired using gradient-echo EPI images with TR =
1850 msec, echo time = 30 msec, flip angle = 75°, field of
view= 208mm, andmatrix = 64× 64. Volumes consisted
of thirty-four 3-mm axial slices, resulting in a 3.3 × 3.3 ×
3 mm voxel size.

Eye Movement and fMRI Coregistration

The fMRI and eye-tracking data were synchronized so that
fixation onset from the eye tracker could be aligned with
the fMRI data. This was accomplished by aligning the onset
of the trial runwith the onset of the functional scan. Times of
experiment onset, block onset, and fixation onsetwere saved
in the eye-movement record by Experiment Builder (SR
Research). Timing was obtained by recording a transistor–
transistor logic pulse from the scanner to the experimental
control computer running Experiment Builder, making it
possible to coregister eye movement and fMRI events for
later analysis.

fMRI Analysis

The AFNI software package (Cox, 1996) was used for image
analysis. Within-participant analysis involved slice timing
correction, spatial coregistration (Cox & Jesmanowicz,
1999), and registration of functional images to the anatomy
(Saad et al., 2009). Voxel-wisemultiple linear regressionwas
performed with the program 3dREMLfit, using reference
functions representing each condition convolved with a
standard hemodynamic response function. Reference func-
tions representing the sixmotion parameters were included
as covariates of no interest. In addition, the signals extracted
from cerebrospinal fluid andwhitematter (segmented using
3dSeg) were also included as noise covariates of no interest.

To examine the effects of fixated scene features, an
amplitude-modulated (parametric) regressor was used that
contained the onset times (from the onset of each run) of
each fixation and the feature values (edge density and
meaning map value) at the fixated location. There are
multiple fixations within each TR. We take advantage of
the fact that the timings of the fixations within each TR, as
well as the feature values of the fixated locations within
each TR, vary from TR to TR. This variation, combined with
the large number of TRs, provides sufficient power to ex-
tract information from the low-temporal-resolution fMRI
data based on the high-temporal-resolution eye-tracking
data. The ideal hemodynamic response resulting from this
regressor was subsampled to match the time resolution of
EPI images. A binary regressor coding the onset of all fix-
ations was used.

The individual statistical maps and the anatomical scans
were projected into standard stereotaxic space (Talairach &
Tournoux, 1988) and smoothed with a Gaussian filter of
5-mm FWHM. In the random effects analyses, group maps
were created by comparing activations against a constant
value of 0. The group maps were thresholded at voxel-wise
p < .001 and corrected for multiple comparisons by re-
moving clusters with a below-threshold size to achieve a
map-wise corrected alpha< .05. Using the (recently updated)
program 3dREMLfit with 1000 iterations, the cluster threshold
was determined through Monte Carlo simulations that esti-
mate the chance probability of spatially contiguous voxels ex-
ceeding the voxel-wise p threshold, that is, of false-positive
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noise clusters. The analysis was restricted to a mask that
excluded areas outside the brain as well as deep white
matter areas and the ventricles. Data and analysis scripts
related to these analyses are available from the authors
upon reasonable request.

Eye-Movement Analysis

Fixations and saccades were segmented with EyeLink’s
standard algorithm using velocity and acceleration thresh-
olds (30°/s and 9500°/s2). Fixationwas defined as pauses be-
tween saccades of 50–1500 msec that were not part of a
blink. Eye-movement data were imported into MATLAB
(The MathWorks) using the EDF converter tool. The first
fixation, located at the center of the display because of
the 6-sec blank period, was eliminated from analysis. Basic
eye-movement measures were examined to ensure that
participants were moving their eyes naturally in the scan-
ner. Data analysis was based on 52,246 fixations across par-
ticipants and scenes, with a mean of 33 fixations per scene
(SD= 6.98 fixations), a mean fixation duration of 318 msec
(SD = 69 msec), and a mean saccade amplitude of 2.84°
(SD = 0.66°). Eye-movement measures were comparable
to those typically obtained for similar scenes viewed outside
the scanner (Cronin, Hall, Goold, Hayes, & Henderson,
2020; Castelhano, Mack, & Henderson, 2009).

Scene Feature Definitions

Low-level Content: Edge Density

Edge density is ameasure of the edges present in an image.
We calculated edges using the Canny edge detection algo-
rithm in MATLAB, which returns a value of 1 for an edge
and 0 otherwise, using parameter settings for fine edges
with low and high thresholds of 0.10 and 0.27, respectively,
and sigma = 1. For each fixated region, edge density was
defined as the total count of edge pixels within that region
(Henderson et al., 2009).

High-level Semantic Content: Meaning Maps

Local scene meaning was represented by meaning maps
(Henderson&Hayes, 2017).Meaningmaps capture the spa-
tial distribution of semantic features in scenes. To generate

meaning maps, each scene photograph was decomposed
into a series of highly overlapping, tiled circular patches at
fine and course spatial scales (Figure 2). The two scales
and numbers of patches were chosen based on simulations
showing that ground-truth visual properties of scenes can be
recovered from them (Henderson & Hayes, 2017). Patches
were rated by workers on Amazon Mechanical Turk
(MTurk). MTurk workers each rated a randomly selected
subset of individually presented patches taken from the
set of scenes to be rated. MTurk workers were recruited
from the United States, had a hit approval rate of 99% and
500 hits approved, were only allowed to participate in the
study once, and were paid $0.50 cents per assignment. All
workers provided informed consent. Each worker rated
300 random patches. Workers were instructed to assess
themeaningfulness of each patch based on how informative
or recognizable it was. They were first given two low-
meaning and two high-meaning scene patches as examples
and then rated the meaningfulness of scene patches on a 6-
point Likert scale from “very low” to “very high.” Patches
were presented in a random order and without scene con-
text. Each unique patch was rated three times by three inde-
pendent raters for a total of 48,960 ratings. Because of the
high degree of overlap across patches, each fine patch con-
tained rating information from 27 independent raters, and
each coarse patch contained rating information from 63 in-
dependent raters. Meaning maps for each scene were gen-
erated by averaging ratings by pixel over patches and raters
and smoothing the results to create fine and coarse maps,
averaging those maps, and smoothing the resulting maps
using a Gaussian kernel (Figure 1C). More details can be
found in previous work (Henderson & Hayes, 2017, 2018).
For the FIRE fMRI analysis, meaning was defined as the
average meaning map value within a 1° circle centered at
each fixation location corresponding to the scene region
falling on the fovea.

RESULTS

Of primary interest was FIRE activation that increased as
lower- and higher-level scene content increased at at-
tended locations. These analyses also included fixation on-
set along with parametric regressors for fixation content.

Figure 2. Meaning maps. (A) A real-world scene. (B) Fine scale patches from the patch grids. (C) Coarse scale patches from the patch grids.
(D) Examples of patches receiving low (left column) and high (right column) average meaning ratings.
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Fixation onset accounted for the average level of activa-
tion across all fixations and served as a measure of global
activation from the continuously present scene. Onset
activation was not of particular interest here, although it
served as the baseline (intercept) against which to assess
the edge density and semantic content regressors.
Beginning with edge density, the results of the paramet-

ric edge density regressor showed that the density of edges
at fixationwas strongly associatedwith activation in occipital
visual areas (Figure 3, Table 1). Additional activation was
seen bilaterally in the cingulate cortex and, in the right
hemisphere, in the supramarginal gyrus/inferior parietal
lobe and in the frontal gyrus. No activation was observed
in the inferior temporal lobes along the ventral visual stream.
In contrast to edge density, the results of the parametric

meaning regressor showed that meaning map value at
fixation was positively associated with activation further
along the ventral visual stream (Figure 4A, Table 2), including

the bilateral superior, middle, and inferior occipital gyri;
precuneus; lingual gyrus; middle temporal gyrus; parahip-
pocampal gyrus; and fusiform gyrus as well as right angular
gyrus. Bilateral activation was also observed frontally in
the superior, middle, and inferior frontal gyri and insula,
with additional frontal activation in the left precentral and
left medial frontal gyri.

It could be that more semantically informative scene re-
gions are alsomore visually complex. To examine the influ-
ence ofmeaning at attended locations while controlling for
visual complexity, in a second analysis, we used a partial
regression approach in which edge density was included
as a parametric regressor along withmeaning. This analysis
allowed us to look for activation uniquely related to mean-
ing at fixated locations while statistically controlling for
edges at the same locations. Consistent with the main
analysis, meaning remained positively associated with acti-
vation in the ventral visual stream when controlling for

Figure 3. Regions showing
increased FIRE fMRI activity to
increased edge density at
fixation during active scene
viewing. Data are shown on
inflated brain images, with gyri
shown as light gray and sulci
shown as dark gray. The top and
bottom rows show the lateral
and medial views, respectively,
of the left (L) and right (R)
hemispheres.

Table 1. Regions Showing Increased FIRE fMRI Activity to Increased Edge Density at Fixation during Active Scene Viewing

Volume Max x y z Anatomical Structure

19251 6.573 4 −85 −3 R/L cuneus, R/L lingual gyrus

3645 5.222 52 −52 38 R supramarginal gyrus, R inferior parietal lobule

3321 5.165 −7 −25 38 R/L cingulate gyrus, R paracentral lobule

1296 4.689 −1 34 14 R/L anterior cingulate

891 5.059 10 −52 29 R cingulate gyrus, R precuneus

864 4.919 46 40 8 R middle frontal gyrus, R inferior frontal gyrus

Locations of peak activation are shown for each cluster with significant activity (Family-wise error [FWE] corrected at alpha < .05). Multiple peaks
required separation by a minimum of 25 voxels. The volume of the cluster (μL), peak z score, Talairach coordinates, and anatomical structures are
shown. L = left hemisphere; R = right hemisphere.
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edges (Figure 4B, Table 3). Notably, these partial regres-
sion results were replicated using a variety of other image
features as controls not reported here, including high-pass
spatial frequencies, image entropy, and clutter. Together,
these results suggest that much of the activation observed

along the ventral stream was produced by higher-level fea-
tures at fixation and not by simple visual features.
To investigate whether the activation related to meaning

along the ventral stream included cortical regions previously
associated with real-world scenes, we generated functional

Figure 4. Regions showing increased FIRE fMRI activity to increased meaning at fixation during active scene viewing. (A) FIRE activation associated
with meaning. (B) FIRE activation associated with meaning controlling for edge density. Data are shown on inflated brain images, with gyri shown as
light gray and sulci shown as dark gray. The top and bottom rows show the lateral and medial views, respectively, of the left (L) and right (R)
hemispheres.

Table 2. Regions Showing Increased FIRE fMRI Activity to Increased Meaning at Fixation during Active Scene Viewing

Volume Max x y z Anatomical Structure

107541 8.099 −25 −40 −6 L parahippocampal gyrus, L fusiform gyrus, L lingual gyrus

7.804 28 −37 −12 R fusiform, R parahippocampal gyrus, R culmen

6.938 34 −70 −12 R fusiform, R middle occipital gyrus, R lingual gyrus, R declive,
R inferior occipital gyrus

6.346 −37 −82 2 L middle occipital gyrus, L inferior occipital gyrus

6.284 31 −76 26 R superior occipital gyrus, R middle temporal gyrus, R cuneus,
R precuneus, R middle occipital gyrus, R angular gyrus

6.045 −28 −79 26 L superior occipital gyrus, L cuneus, L precuneus,
L middle temporal gyrus, L middle occipital gyrus

4617 5.820 −43 16 29 L middle frontal gyrus, L precentral gyrus, L inferior frontal gyrus

3699 5.271 43 16 26 R middle frontal gyrus, R inferior frontal gyrus

2808 5.660 22 7 5 R caudate, R lentiform nucleus

2376 5.835 −13 4 14 L caudate, L lentiform nucleus

1485 5.194 −4 13 47 L superior frontal gyrus, L medial frontal gyrus

783 4.440 −25 25 5 L insula

756 4.926 28 16 56 R middle frontal gyrus, R superior frontal gyrus

675 5.151 34 22 2 R insula, R inferior frontal gyrus

567 4.857 −10 −76 −21 L declive, L pyramis

Locations of peak activation are shown for each cluster with significant activity (Family-wise error [FWE] corrected at alpha < .05). Multiple peaks
required separation by a minimum of 25 voxels. The volume of the cluster (μL), peak z score, Talairach coordinates, and anatomical structures are
shown. L = left hemisphere; R = right hemisphere.

2018 Journal of Cognitive Neuroscience Volume 32, Number 10



regions from a meta-analysis of previous studies using the
2019 release of Neurosynth (Yarkoni, Poldrack, Nichols,
Van Essen, & Wager, 2011). Specifically, we identified four
regions related to scene processing based on the published
literature: LOC, OPA/TOS, PPA, and RSC. We used Neurosynth
to generate activation masks for these regions and then ex-
amined the degree towhich activation associatedwithmean-
ing controlling for edge density overlapped with each
region. Results showed clear activation related to fixated

semantic features in all four scene regions (Figure 5).
Although not reported here, this pattern of results did not
change when high-spatial-frequency content, image entropy,
and image clutter were used instead of edge density as image
feature controls.

In summary, the results showed that activation in the
occipital cortex was associated with edge density at the fix-
ated location. In comparison, activation along much of the
ventral visual stream, and importantly within core areas of

Table 3. Regions Showing Increased FIRE fMRI Activity to Increased Meaning at Fixation during Active Scene Viewing, Controlling
for Edges

Volume Max x y z Anatomical Structure

44577 7.141 25 −40 −12 R parahippocampal gyrus, R fusiform gyrus

6.433 35 −70 −12 R fusiform gyrus, R declive, R inferior occipital gyrus

5.473 34 −68 23 R middle temporal gyrus, R superior occipital gyrus,
R middle occipital gyrus

35208 7.189 −25 −40 −6 L parahippocampal gyrus, L fusiform gyrus, L culmen,
L lingual gyrus

6.601 −38 −68 −10 L middle occipital gyrus, L inferior occipital gyrus,
L fusiform gyrus

2484 5.030 −46 16 29 L middle frontal gyrus

1674 4.753 43 16 26 R middle frontal gyrus

1107 4.923 19 4 5 R caudate, R lentiform nucleus

1107 5.141 −13 4 14 L caudate, L lentiform nucleus

Locations of peak activation are shown for each cluster with significant activity (Family-wise error [FWE] corrected at alpha < .05). Multiple peaks
required separation by a minimum of 25 voxels. The volume of the cluster (μL), peak z score, Talairach coordinates, and anatomical structures are
shown. L = left hemisphere; R = right hemisphere.

Figure 5. FIRE fMRI activation
in scene-related areas to
increased meaning. Overlap
(blue) of regions showing
increased FIRE fMRI activity to
increased local meaning (green;
controlled for edges) and scene
regions identified by
Neurosynth (yellow). Labeled
regions are PPA, LOC, RSC, and
OPA/TOS. Data are shown on
inflated brain images, with gyri
shown as light gray and sulci
shown as dark gray. The top and
bottom rows show the lateral
and medial views, respectively,
of the left (L) and right (R)
hemispheres.

Henderson et al. 2019



the scene processing network, was associated with
moment-to-moment changes in fixated semantic content
as assessed by meaning maps. Importantly, this latter acti-
vation was not explained by variation in edge density.

DISCUSSION

Natural perception of real-world scenes (and, indeed, of
any complex visual stimulus) requires that the eyes be ori-
ented to important local regions of the image so that those
regions can be perceived, recognized, understood, and re-
membered (Hayhoe, 2017; Henderson, 2003, 2011;
Rayner, 1998; Yarbus, 1967; Buswell, 1935). Scene repre-
sentations are built up incrementally as fixation is moved
from region to region through the scene and local detail
is added to the scene representation (Henderson, 2017;
Hollingworth, 2005; Henderson & Hollingworth, 1999b).
How complete scene representations are generated by
the brain during active visual perception in which viewers
freely select regions for fixation and attention is largely
unknown. In neuroimaging studies of scene perception,
scenes are often presented for a brief period and/or
viewers are asked to maintain fixation at a central location.
Although these studies provide critical information con-
cerning how global scene representations are generated
by the brain, they do not speak to processes related to
moment-to-moment changes in features at fixation as the
eyes move through a scene during active viewing.

To investigate this question,wemeasured the relationship
between variation in the content of fixated scene regions
and activation in the ventral visual stream. We specifically
tested the hypothesis that neural activity is associated with
increases in content at each fixation position. Consistent
with this hypothesis, the results showed that activation along
much of the visual stream increased with moment-to-
moment changes in fixated scene content, with activation
in early visual areas reflecting fixated edge density and, in
later areas, reflecting higher-level properties related to se-
mantic content. Importantly, the latter activity was observed
in core areas of the scene-specific cortical network.

During active scene viewing, although local features
change from fixation to fixation, the global characteristics
of the scene do not. If regions along the visual streamwere
only sensitive to global visual features or global scene se-
mantics, then there would be no reason for activation in
these regions to vary with fixation location. Instead, we ob-
served that activation in both early and later cortical visual
regions was sensitive to the content present in each fixa-
tion. With regard to higher visual areas along the ventral
stream, the results provide evidence that, in addition to
scene gist and global scene properties and structure,
scene-selective cortical regions are involved in processing
local high-level properties at fixation as the eyes naturally
traverse a scene.

The finding that the activation in higher-order visual
areas along the ventral stream was associated with ratings

of meaning implemented as meaning maps is consistent
with the general hypothesis that the ventral stream codes
for both high-level visual and conceptual scene properties
(Epstein & Baker, 2019; Devereux, Clarke, & Tyler, 2018;
Martin, Douglas, Newsome, Man, & Barense, 2018;
Bonner, Price, Peelle, & Grossman, 2016). In future stud-
ies, it will be important to unpack what the meaning maps
capture. For example, ratings of meaning may be based on
a number of semantic dimensions that could be separated,
and this type of analysis may lead to a more fine-grained
assessment of the computations performed during fixa-
tions by specific cortical regions. Meaning ratings may also
be related to the presence of objects, although the finding
that the meaning-based effects persisted when controlling
for edge density rules out an explanation based on a simple
definition of visual object as a visually complex region.
The results demonstrate that FIRE fMRI can provide an

additional source of evidence for extending and testing
neural theories of scene processing, with an emphasis spe-
cifically on natural active viewing in which people freely
move their eyes as they incrementally acquire information.
In addition to providing a basis for investigating incremen-
tal scene processing in the brain, the FIRE fMRI approach
provides two other key advantages. First, participants
perform no secondary behavioral task during scanning;
instead, they simply view scene photographs freely.
Therefore, any observed effects cannot be attributed to
task-specific response processes. Moreover, the obtained
eye-movement data allow us to verify that participants
are viewing scenes naturally and attentively although they
are not required to perform any sort of behavioral task. On
the basis of the present data as well as our previous work,
we can confirm that eye movements for scene viewing
while in an MRI scanner are similar to those observed out-
side the scanner (Choi & Henderson, 2015; Henderson
et al., 2015; Choi, Desai, & Henderson, 2014).
Second, because participants view complex scenes that

vary in their local characteristics over space, each fixation
provides a data point, resulting in large amounts of data
for each scene and each participant. The result is substan-
tial statistical power. Importantly, because the same set of
fixations contributes to data analysis for different regres-
sors (in this case, edge density and meaning), all aspects
of the stimulus, the participant’s motivation, level of fa-
tigue, time in the run, practice, and so forth are controlled.
That is, the BOLD data are the same in the regressor com-
parisons, and all that changes across comparisons is the re-
gressor that is considered. This aspect of FIRE fMRI analysis
provides an important advantage for comparing the influ-
ences of different scene properties in active vision.
At a general level, this study was motivated by an interest

in understanding the relationship between overt attention
and visual processing in the brain under naturalistic viewing
conditions (Choi & Henderson, 2015; Henderson & Choi,
2015). This approach has become of interest across a num-
ber of other domains such as natural reading (Carter et al.,
2019; Desai et al., 2016; Schuster et al., 2015; Altmann,
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Bohrn, Lubrich, Menninghaus, & Jacobs, 2014; Choi et al.,
2014), event understanding (Aly, Chen, Turk-Browne, &
Hasson, 2018; Baldassano, Hasson, & Norman, 2018), and
auditory narrative comprehension (Brennan, 2016; Hale,
Lutz, Luh, & Brennan, 2015). The research is in the spirit of
recent calls for understanding both neural activity and neural
models in the context of natural behavior (Kriegeskorte &
Douglas, 2018; Krakauer, Ghazanfar, Gomez-Marin, MacIver,
& Poeppel, 2017; Yamins & DiCarlo, 2016). As Kriegeskorte
andDouglas (2018) argue, the challenge is to buildmodels
of brain information processing that are consistent with
both the types of complex cognitive tasks that the brain
must support and the brain structures and functions needed
to implement thoseprocesses. Ourwork specifically focuses
on these issues in the context of active vision for naturalistic
visual scenes. Overall, this study sets the stage for using FIRE
fMRI to investigate a host of theoretical issues related to the
neurocognition of natural active scene viewing.
In the present work, we specifically focused on real-

world scenes because they include many aspects of the
visual world that are likely highly functional in the control
of attention but that do not exist in simple stimuli. These
aspects include visual complexity, physical regularity and
physical constraint, and semantic content. Furthermore,
we focused on active vision in which viewers are allowed
to orient their attention naturally over extended time and
space with eye movements because these are the condi-
tions under which attention normally operates. This
approach contrasts with studies that investigate covert
attention over briefly presented stimuli. Although those
studies are clearly important and have established critical
findings, the best way to determine whether the principles
generated from themwill scale up to natural active vision is
to investigate that scalability directly.
The present results have important implications for un-

derstanding the cortical basis of scene perception. We do
not fully perceive and understand a scene from only an ini-
tial brief glimpse. Instead, the first glimpse delivers general
semantic and spatial gist (Greene & Oliva, 2009; Fei-Fei
et al., 2007; Potter, 1975; Biederman, 1972). The gist pro-
vides a context within which to perceive and integrate in-
formation derived from attentively sampling local scene
regions. This sampling allows incremental generation of a
more complete scene representation in which details are
filled in over time (Henderson, 2011; Hollingworth, 2005;
Henderson & Hollingworth, 1999a). Complete under-
standing of a scene requires selecting important local scene
regions for closer perceptual and conceptual analysis via
shifts of overt attention (Hayhoe, 2017; Henderson, 2003,
2011; Rayner, 1998; Yarbus, 1967; Buswell, 1935). The pres-
ent results suggest that cortical areas previously found to
be scene-selective play a critical role in these incremental
computations. A complete theory of the cortical processing
of scenes will require an account of how initial global scene
gist and incremental local scene details are combined into a
unified representation as well as how the scene perception
network supports this process.
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