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Abstract: When two nonorthogonal resonances are
coupled to the same radiation channel, avoided crossing
arises and a bound state in the continuum (BIC) appears
with appropriate conditions in parametric space. This pa-
per presents numerical and analytical results on the
properties of avoided crossing and BIC due to the coupled
guided-mode resonances in one-dimensional (1D) leaky-
mode photonic lattices with slab geometry. In symmetric
photonic lattices with up-down mirror symmetry, Frie-
drich–Wintgen BICs with infinite lifetime are accompanied
by avoided crossings due to the coupling between two
guided modes with the same transverse parity. In asym-
metric photonic lattices with broken up-down mirror
symmetry, quasi-BICs with finite lifetime appear with
avoided crossings because radiating waves from different
modes cannot be completely eliminated.We also show that
unidirectional-BICs are accompanied by avoided crossings
due to guided-mode resonances with different transverse
parities in asymmetric photonic lattices. The Q factor of a
unidirectional-BIC is finite, but its radiation power in the
upward or downward direction is significantly smaller than
that in the opposite direction. Our results may be helpful in
engineering BICs and avoided crossings in diverse
photonic systems that support leaky modes.

Keywords: avoided crossing; bound state in the contin-
uum; guided-mode resonance.

1 Introduction

The ability to confine light to limited regions is of funda-
mental importance in both basic science and practical
applications. Conventionally, electromagnetic waves can
be localized in photonic structures by separating specific
eigenmodes away from the continuum of radiating modes.
This mode separation can typically be achieved through
metallic mirrors, total internal reflections at dielectric in-
terfaces [1], and photonic band gaps in periodic structures
[2, 3]. Optical bound states in the continuum (BICs) are
special electromagnetic states that remainwell localized in
photonic structures even though they coexist with out-
going waves that can carry electromagnetic energy away
from the photonic structure [4–8]. Diverse types of BICs
have been implemented in various photonic systems,
including metasurfaces [9–11], photonic crystals [12–17],
plasmonic structures [18], and fiber Bragg gratings [19].
Recently, robust BICs in subwavelength photonic crystal
slab geometry have attracted much attention because they
are associated with interesting topological physical phe-
nomena [20–23] as well as practical applications, such as
lasers [24, 25], sensors [26, 27], and filters [28].

BICs found in slab-type photonic lattices so far can be
split into three categories: (i) symmetry-protected BICs, (ii)
single-resonance parametric BICs, and (iii) Friedrich–
Wintgen BICs. Symmetry-protected BICs appear at the Γ
point (the center of the Brillouin zone) due to the symmetry
mismatch between their mode profiles and those of
external plane waves [29, 30]. Single-resonance parametric
BICs are found at generic k points along dispersion curves
when the relevant coupling to the radiation continuum
completely vanishes [31]. Friedrich–Wintgen BICs, which
are generally found in the vicinity of the avoided crossing
of two dispersion curves, arise because of the destructive
interference of two guided-mode resonances coupled to the
same radiation channel [32]. BICs and avoided crossings
have been extensively studied in diverse photonic plat-
forms thus far. Historically, Friedrich and Wintgen pre-
sented a general formalism to find BICs in quantum
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systems in 1985 [33]. Recently, it has been shown that the
Friedrich–Wintgen formalism is valid to describe optical
BICs in photonic structures [34–37]. The aim of the present
paper is to address the fundamental properties of avoided
crossings and BICs due to coupled guided-mode reso-
nances in one-dimensional (1D) leaky-mode photonic
lattices.

When two nonorthogonal resonances generate avoi-
ded crossings, BICs with infinite lifetimes appear in para-
metric space, and the conditions for Friedrich–Wintgen
BICs can generally be fulfilled through the fine tuning of
structural parameters. In photonic lattice slabs, however,
the Friedrich–Wintgen BIC can be found near the avoided
crossing in the photonic band structure without the fine
tuning of structural parameters. In this study, we investi-
gated BICs and avoided crossing due to two different
waveguide modes in photonic lattice slabs with symmetric
and asymmetric cladding layers through finite element
method (FEM) simulations and temporal coupled-mode
formalism.We show that the avoided crossings in photonic
lattices with asymmetric cladding layers support only
quasi-BICs with a finite value of Q factor, whereas the
avoided crossings with symmetric cladding structures
support true-BICs with infinite Q factor. We also show that
unidirectional-BICs are accompanied by avoided crossings
due to two guided-mode resonances with different trans-
verse parities in asymmetric photonic lattices. The Q factor
of the unidirectional-BIC is finite but its radiation power in
the upward or downward direction is significantly smaller
than that in the opposite direction.

2 Lattice structure and perspective

Figure 1 illustrates a 1D photonic lattice and the attendant
schematic photonic band structures including avoided

crossings. As shown in Figure 1(a), wemodel a 1D photonic
lattice consisting of high (ϵh) and low (ϵl) dielectric con-
stant media. A single periodic layer of thickness d is
enclosed by a substrate medium (lower cladding) of
dielectric constant ϵs and cover (upper cladding) of ϵc. The
period of the lattice is Λ and width of high dielectric con-
stant medium is ρΛ. This simple lattice supports multiple
TE-polarized guided modes, and each mode has its own
dispersion curve because the thickness d = 1.30 Λ is
thick enough and its average dielectric constant
ϵavg = ϵl + ρ(ϵh − ϵl) = 6.00 is larger than ϵs and ϵc [38]. In
dielectric slab waveguides with symmetric (asymmetric)
cladding layers ϵs = ϵc (ϵs ≠ ϵc), as schematically illustrated
in Figure 1(a), guided modes are classified into two cate-
gories by their transverse-mode profiles [39]. Even (even-
like) modes TEm=0,2,4,… have even (even-like) transverse
electric field profiles, and odd (odd-like) modes TEm=1,3,5,…

have odd (odd-like) transverse field profiles with symmet-
ric (asymmetric) cladding layers. In photonic lattices with
asymmetric cladding layers, as shown in Figure 1(b),
avoided crossings ACmn (in red circles) due to TEm and TEn
modes arise when 0 < ρ < 1 and Δϵ = ϵh − ϵl > 0. In photonic
lattices with symmetric cladding layers, as shown in
Figure 1(c), two even modes generate avoided crossing
AC02 (in red circle), but dispersion curves due to even and
odd modes cross each other (C01 and C02 in blue circles)
because even and odd modes are perfectly orthogonal in
symmetric waveguide structures. In this study, we limited
our attention to the avoided crossings AC01 and AC02 in
asymmetric photonic lattices (ϵs = 2.25 and ϵc = 1.00) and
AC02 in symmetric lattices (ϵs = ϵc = 2.25) because these
simplest cases clearly demonstrate the key properties of the
avoided crossings and BICs in photonic lattice slabs. We
consider the avoided crossings only in the white region
where quasi-guided modes can couple to external plane
waves effectively and generate diverse zero-order spectral

Figure 1: (a) Schematic of a one-dimensional (1D) photonic lattice for studying avoided crossings and bound states. With periodic dielectric
constant modulation, guided modes are described by the complex frequency Ω � ω − iγ, where γ represents the decay rate of the mode.
Conceptual illustration of the photonic band structures including avoided crossings due to different waveguidemodes in the photonic lattices
(b) with asymmetric cladding layers (ϵs ≠ ϵc) and (c) symmetric cladding layers (ϵs = ϵc).
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responses [40–42]. In the yellow region below the light line
in the substrate, guided modes are nonleaky and not
associated with BICs [43]. In the gray region above the
folded light line, guided modes are less practical because
they generate higher-order diffracted waves outside the
lattice [44].

3 Results and discussion

Figure 2(a) shows the evolution of the avoided crossing
AC02 due to TE0 and TE2 modes under variation of ρ in the
photonic lattice with symmetric cladding layers. As seen in
Figure 2(a), a band gap opens at kc where two uncoupled
dispersion curves cross each other, and its size increases as
the value of ρ increases from zero. However, the gap size
decreases and becomes zero as ρ is further increased. The
bands remain closed for a while in spite of the additional
increase in ρ. The band gap reopens and its size grows
again, decreases, and approaches zero when ρ is further
increased and approaches 1. The insets of Figure 2(a)
depictingmagnified views of the dispersion curves near the
crossing point kc indicate that the degenerate point kd
where the band closes is slightly different from kc in gen-
eral. As ρ increases, the relative position of kd changes from

the right to left side of kc. These band dynamics are asso-
ciated with the band transition of the Friedrich–Wintgen
BIC, as seen by the simulated Q factors plotted in
Figure 2(b). As ρ increases from zero, the Friedrich–Wint-
genBICswithQ factors larger than 1010 appear at kbnear the
crossing point kc. The distance between the location of the
BIC and crossing point |kc − kb| increases, decreases, and
becomes zero when ρ = 0.444. However, the distance in-
creases again, decreases, and approaches zero as ρ is
further increased and approaches 1. The Friedrich–Wint-
gen BIC across the band gap under the variation of ρ by
passing through the degenerate point kb= kc= kdwhere two
dispersion curves cross as straight lines. The spatial elec-
tric field (Ey) distributions plotted in the insets of
Figure 2(b) show that the Friedrich–Wintgen BICs, that
have TE0-like field distributions, are well localized in the
lattice without radiative loss, whereas leaky modes in the
opposite band branch with TE2-like field distributions are
radiative outside the lattice.

Figure 3(a) illustrates the evolution of the avoided
crossingAC02 due to TE0 and TE2modes of photonic lattices
with asymmetric cladding layers. The band dynamics
shown in Figure 3(a) is the same as that in Figure 2(a). As ρ
varies from 0 to 1, the band gap opens at kc, closes at kd,
reopens, and vanishes with ρ = 1. In the evolution process

Figure 2: Avoided crossings and BICs due to TE0 and TE2 modes in leaky-mode photonic lattices with symmetric cladding layers.
(a) Finite element method (FEM) simulated dispersion relations near avoided crossings for five different values of ρ. Here, k0 denotes the
wavenumber in free space and K = 2π/Λ is the magnitude of the grating vector. Insets illustrate magnified views of dispersion curves near the
crossing points. (b) Simulated Q factors of guided modes in upper and lower bands. Insets with blue and red colors represent spatial electric
field (Ey) distributions of BICs and leakymodes at the y=0 plane. Vertical dotted lines denote themirror plane in the computational cell. In the
FEM analysis, we use structural parameters ϵavg = 6.00, Δϵ = 1.00, d = 1.30 Λ, and ϵs = ϵc = 2.25.
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under variation of ρ, there exists a finite range of ρ in which
the bands remain closed. The degenerate point kd becomes
the same as kc when the two dispersion curves cross as
straight lines. In the closed band states with kc ≠ kd, two
dispersion curves have low curvatures, as clearly seen in
the insets of Figures 2(a) and 3(a). The most noticeable
effect of asymmetric cladding layers on the avoided
crossings can be found by comparing the simulated Q
factors illustrated in Figure 3(b) with those in Figure 2(b).
There exist quasi-BICs with TE0-like spatial electric field
distributions around the crossing point kc in Figure 3(b).
The Q factors of the quasi-BICs in Figure 3(b) are saturated
to finite values less than 107 at kb, whereas the Q values of
the Friedrich–Wintgen BICs in Figure 2(b) seem to diverge
to infinity at kb. The quasi-BICs also pass through the
degenerate point kb = kc = kd and across the band gap under
variation of ρ, as do the Friedrich–Wintgen BICs.

The dynamics of avoided crossing and the band tran-
sition of the bound states illustrated in Figures 2 and 3 can
be understood from the temporal coupled-mode theory
describing the interference of two different resonances in
the same resonator [45]. When two leakywaveguidemodes
TEm and TEn with complex frequencies Ωm � ωm − iγm and
Ωn � ωn − iγn, respectively, are excited in the photonic
lattice shown in Figure 1(a) by the incomingwaves |s+〉, two
resonance amplitudes A � (Am,An)T evolve in time as

dA/dt � −iHA +DT
∣∣∣∣s+〉 with the Hamiltonian H and

coupling matrix D given by

H � (ωm α
α ωn

) − i( γm β
β γn

), (1)

D � ( dm1 dn1

dm2 dn2
), (2)

where α denotes the near-field coupling between the
guided modes and β represents the interference of radi-
atingwaves through far-field coupling.Matrix elementsdmj

and dnj represent the radiative coupling of TEm and TEn
modes to the port j, respectively. Eigenmodes of the
Hamiltonian are a linear combination of TEm and TEn
modes, and from the determinant condition |H − ΩI| � 0,
the corresponding eigenvalues are given by

Ω(kz) � Ω(kz) ± 1
2

�������������������
[ΔΩ(kz)]2 + 4(α − iβ)2√

, (3)

where Ω � (Ωm + Ωn)/2 and ΔΩ = Ωm − Ωn. From Eq. (3), we
obtain avoided band structures in k space. Equation (3)
indicates that the real parts of the two eigenvalues are
degenerate, and the avoided band closeswhen the real part
in the square root x � (Δω)2 − (Δγ)2 + 4(α2 − β2) is a nega-
tive value and the imaginary part y = −2(Δω · Δγ + 4αβ) is
zero. When α = 0 with 0 < ρ < 1, the band closes at kz = kc
because y = 0with Δω(kc) = 0 and x = −(Δγ)2 − β2 is negative.

Figure 3: Avoided crossings and quasi-BICs due to TE0 and TE2 modes in leaky-mode photonic lattices with asymmetric cladding layers.
(a) Simulated dispersion relations near avoided crossings for five different values of ρ. Insets illustrate magnified views of dispersion curves
near the crossing points. (b) SimulatedQ factors of guidedmodes in upper and lower bands. Insets with blue and red colors represent spatial
electric field (Ey) distributions of BICs at the y = 0 plane. Structural parameters are the same as in Figure 2 except that ϵc = 1.00.
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In Figure 2(a) with ρ0 = 0.444 and Figure 3(a) with
ρ0 = 0.432, two dispersion curves cross as straight lines at
kc = kd because near-field coupling vanishes with α = 0. For
a given value of ρ, in theweaklymodulated photonic lattice
considered herein, the magnitudes of α, β, and Δγ = γm − γn
are small and could be approximated as constant values
near kc, but Δω = ωm − ωn changes from zero to some finite
value as a function of kz. When αβ > 0 is slightly deviated
from zero with the variation of ρ from ρ0, the two condi-
tions y = 0 and x < 0 can be fulfilled simultaneously at
kz = kd > kc where ΔωΔγ < 0, as shown in Figures 2(a) and
3(a) with ρ = 0.40. When αβ < 0, on the other hand, bands
can be closed at kz = kd < kc where ΔωΔγ > 0 as shown in
Figures 2(a) and 3(a) with ρ =0.50. The avoided band opens
when the two conditions cannot be fulfilled simulta-
neously as

∣∣∣∣αβ∣∣∣∣ is further increased with 0 < ρ < 1.
Formation of the Friedrich–Wintgen BICs in Figure 2(c)

and quasi-BICs in Figure 3(c) can be seen by determining β
in terms of decay rates. Due to the principle of energy
conversation and time-reversal symmetry, the photonic
structure shown in Figure 1(a) supports the relation

D†D � 2Γ, and by solving the relation, we have

|dm1|2 + |dm2|2 � 2γm1 + 2γm2, (4)

|dn1|2 + |dn2|2 � 2γn1 + 2γn2, (5)

|dn1||dm1|ei(θn1−θm1) + |dn2||dm2|ei(θn2−θm2) � 2β, (6)

where θmj and θnj represent the phase angles of dmj and dnj,
respectively, and γmj and γnj denote the decay rates of TEm
and TEnmode to the port j, respectively [35, 45]. Considering
the avoided crossings between two even (even-like) modes
shown in Figure 2 (Figure 3), phase angles at port 1 and port
2 satisfy the relation exp(iθn1 − iθm1) � exp(iθn2 − iθm2) � ±1,
as conceptually illustrated in Figure 4. Moreover, it is
reasonable to conjecture from Eqs. (4) and (5) that

∣∣∣∣dmj

∣∣∣∣ �����
2γmj

√
and

∣∣∣∣dnj

∣∣∣∣ � ���
2γnj

√
. Hence, the far-field couplings between

two evenmodes βe–e andbetween two even-likemodes βel–el
can be written as

βe–e � ± ����
γnγm

√
, (7)

βel–el � ±( �����
γn1γm1

√ + �����
γn2γm2

√ ). (8)

In Eq. (7), we used γn1 = γn2 = γn/2 and γm1 = γm2 = γm/2.
Coupled guided-mode resonance results in two hybrid ei-
genmodes. The anti-phase mode with β < 0 shown in
Figure 4(a) can be a BIC or quasi-BIC because radiating
waves from TE0 and TE2 modes interfere destructively at
the two radiation ports simultaneously, and the in-phase
modewith β > 0 in Figure 4(b) becomesmore lossy because
radiating waves interact constructively.

Maximal or minimal values of imaginary parts in the
eigenvalues of the hybrid eigenmodes can be obtained
when the two complex values ΔΩ and α − iβ in the square
root of Eq. (3) are in phase, i.e.,

Δγ
Δω

� β
α
. (9)

With Eq. (9), Eq. (3) can be rewritten as

Ω(kz) � Ω(kz) ± μ(α/β − i), (10)

where μ �
����������
(Δγ)2 + 4β2

√
/2 is a real positive value. In the

photonic lattice with symmetric cladding layers, by Eq. (7),
μ is the same as −Im(Ω) � (γm + γn)/2, and the eigenvalue
of anti-phase mode with β < 0 becomes purely real and
turns into a BIC at kz = kb = kc = kd when α = 0, as shown in
Figure 2(b) with ρ = ρ0 = 0.444. When α/β > 0 (α/β < 0), the
Friedrich–Wintgen BICs with the anti-phase modes appear
at kz = kb < kc < kd (kz = kb > kc > kd) or at the lower (upper)
band branch, as shown in Figure 2(b) with ρ < ρ0 (ρ > ρ0). In
the photonic lattice with asymmetric cladding layers, by
Eq. (8), μ is slightly different from (γm + γn)/2. Therefore,
when α = 0, a quasi BIC with the nonzero minimal imagi-
nary part in the eigenfrequency appears at kz = kb = kc = kd,
as shown in Figure 3(b) with ρ = ρ0 = 0.432. When α/β > 0
(α/β < 0), the quasi BICs appear at kz = kb < kc < kd
(kz = kb > kc > kd) or at the lower (upper) band branch, as
shown Figure 3(b) with ρ < ρ0 (ρ > ρ0).

When two guided modes with different transverse
parities (TE0 and TE1) are coupling, as noted in Figure 5,
radiating waves from different modes interfere construc-
tively at one of the two radiation ports, while they interact
destructively at the other port. Because Eqs. (4)–(6)
are valid for the coupling between two waveguide
modes with different spatial parities, except that

Figure 4: Conceptual illustration of far-field
coupling of radiating waves due to TE0 and
TE2 modes. Radiating waves originating
from different modes interfere
(a) destructively when β < 0 and
(b) constructively when β > 0 at the two ra-
diation ports simultaneously.
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exp(iθn1 − iθm1) � −exp(iθn2 − iθm2) � ±1, the far-field
coupling between an even and an odd mode and be-
tween an even-like and odd-like mode can be written as
βe–o = 0 and

βel–ol � ±( �����
γn1γm1

√
−

�����
γn2γm2

√ ), (11)

respectively, where we set β < 0 (β > 0) when the radiating
waves interfere destructively (constructively) at the port 1,
for convenience. In the symmetric photonic lattices with
βe–o = 0, near-field coupling α is also zero because the
overlap integral of the even andoddmodes is zero [45]. Two
dispersion curves for the even and odd modes cross each
other, and there is no band gap, as schematically repre-
sented in Figure 1(c). In photonic lattices with asymmetric
cladding layers, on the other hand, avoided crossings due
to TE0 and TE1 modes take place because α ≠ 0 and β ≠ 0 in
general, and their properties can also be described by Eq.
(3). Through FEM simulations, we verified that a band gap
opens at kc, closes at kd, closed band state remains for a
while, reopens, and vanishes under variation of ρ from 0 to
1. However, there cannot be a BIC or quasi-BIC due to the
phase mismatch of the radiating waves at one of the two
radiating ports, as shown in Figure 5. Instead, we found
that there exists a unidirectional-BIC whose decay rate at
one port is suppressed by the destructive interference,
whereas decay to the opposite port is enhanced by
constructive interaction. Figure 6(a–c) shows the simu-
lated band structures, Q factors, and power ratios P2/P1,
where Pj represents the radiation power to port j, respec-
tively, when ρ = 0.385 and 0.583. Because the coupling
strengths between even-like and odd-like modes are weak,
as can be seen in Figure 6(a), two dispersion curves cross as
like straight lines at kd ∼ kc in the closed band states.
SimulatedQ factors in Figure 6(b) show that there is no BIC
or quasi-BIC. However, Figure 6(c) shows that there exist
unidirectional-BICs whose radiation power to the port 1 or
port 2 is significantly larger (up to 40 dB) than that to the
opposite port. The spatial electric field distributions in the
insets of Figure 6(c) demonstrate that unidirectional-BICs
radiate to the only downward (upward) direction when

ρ = 0.385 (ρ = 0.573), but leakymodes on the opposite band
branches radiate to the upward and downward directions
simultaneously. Here, we showed that unidirectional ra-
diation can be enabled by unidirectional-BICs accompa-
nied by avoided crossings. Very recently, unidirectional
radiation has also been realized by utilizing the topological
nature of BICs [46]. We believe that the unidirectional ra-
diation associated with BICs in planar photonic lattices is
interesting and could be utilized to increase the efficiency
of diverse optical devices, such as vertically emitting lasers
and grating couplers. Studies on the BICs and avoided
crossings herein are limited to analytical and numerical

Figure 5: Conceptual illustration of the far-
field coupling of radiating waves due to TE0
and TE1 modes.
(a) We set β < 0 for convenience when
radiating waves interact destructively
(constructive) at the port 1 (port 2). (b) When
β > 0, radiating waves interact
constructively (destructive) at the port 1
(port 2). A coupled resonant mode could be

an unidirectionally radiating mode whose decay rates to ports 1 and 2 is strongly asymmetric.

Figure 6: Finite element method (FEM) simulated (a) band
structures, (b)Q factors, and (c) power ratios in leaky-modephotonic
lattices with asymmetric cladding layers. Coupled guided-mode
resonances result in hybrid eigenmodes composed of TE0 and TE1
modes near the crossing point kc. Structural parameters are the
same as in Figure 3.
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investigations. However, the current state-of-the-art
nanofabrication technology can realize our results exper-
imentally and this may be the issue of our future work.

4 Conclusion

In conclusion, we have investigated avoided crossings and
BICs in 1D leaky-mode photonic lattices through FEM sim-
ulations and temporal coupled-mode theory. When two
guided-mode resonances are coupled, photonic band gaps
arise by avoided crossings and BICs appearing in photonic
band structures without the fine tuning of structural pa-
rameters. The widths of avoided band gaps vary by lattice
parameters. In particular, there exist closed band states in
which avoided bands remain closed under variation of fill
factor ρ. In photonic lattice slabs with symmetric cladding
layers, true-BICs with, in principle, infinite Q factor are
accompaniedbyavoidedcrossingsdue to twoguidedmodes
with the same transverse parity. In the couplingprocess, two
guidedmodes interact as in-phase or anti-phase. Anti-phase
mode becomes a BIC because radiatingwaves fromdifferent
modes vanish completely by destructive interference and in-
phase mode gets more lossy with constructive interference.
In photonic lattices with asymmetric cladding layers, on the
other hand, only quasi-BICs with finite Q factor are accom-
panied because the radiating waves by different modes
cannot be completely eliminated. True- and quasi-BICs
appear across thebandgapbypassing throughadegenerate
pointwhere twodispersion curves cross as straight lines.We
also show that unidirectional-BICs are accompanied by
avoided crossings due to two guided modes with different
transverse parities in asymmetric photonic lattices. The Q
factor of the unidirectional-BIC is finite but its radiation
power in the upward or downward direction is significantly
smaller than that in theopposite direction.Our researchhere
is limited to the BICs and avoided crossings associated with
the lowest three guided modes TE0, TE1, and TE2 in 1D
photonic lattices. However, extension of this work to BICs
and avoided crossings associated with higher order guided
modes and two-dimensional (2D) lattices is feasible. This
contribution may be helpful in engineering BICs in diverse
optical systems supporting leaky-modes.
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