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Super-Gaussian, superdiffusive transport of multimode active matter
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Living matter often exhibits multimode transport that switches between an active, self-propelled motion and a
seemingly passive, random motion. Here, we investigate an exactly solvable model of multimode active matter,
such as living cells and motor proteins, which alternatingly undergoes active and passive motion. Our model
study shows that the reversible transition between a passive mode and an active mode causes super-Gaussian
transport dynamics, observed in various experiments. We find the non-Gaussian character of the matter’s
displacement distribution is essentially determined by the population ratio between active and passive motion.
Interestingly, under a certain population ratio of the active and passive modes, the displacement distribution
changes from sub-Gaussian to super-Gaussian as time increases. The mean-square displacement of our model
exhibits transient superdiffusive dynamics, yet recovers diffusive behavior at both the short- and long-time
limits. We finally generalize our model to encompass complex, multimode active matter in an arbitrary spatial
dimension.
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I. INTRODUCTION

Active matter, such as motor proteins, living cells, and
Janus nanoparticles, consumes energy for its motion; in many
cases, active matter exhibits multiple transport modes: a seem-
ingly passive mode showing undirected, random motion and
active modes for self-propelled, systematic motion [1–4]. The
regulatory state of active matter or the heterogeneous environ-
ment surrounding active matter causes a stochastic transition
between biological modes, which has been widely observed in
various biological processes [3–9]. However, there also exists
active matter with only an active mode. This type of active
matter often shows a run-and-reverse motion, in which the
active matter moves in one direction for a period of time and
moves in the opposite direction for the next period [10,11].
Active matter motion with multiple modes or a run-and-
reverse type of motion has been observed for various systems
including cargo and vesicles in living cells and bacterial cell
systems [10–16].

Active matter generally exhibits anomalous, non-Gaussian
transport dynamics, which is in contrast to passive thermal
motion described by Einstein’s theory of Brownian motion
[2,17,18]. However, various models based on this theory
have been used to explain the long-time behavior of the
mean-square displacement (MSD) of active matter observed
in experiments, where the MSD is linearly proportional to
measurement time [19,20]. Although these models assume
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that active matter motion is qualitatively the same as passive
thermal motion, in many cases, they provide a satisfactory
explanation of experimental results for the MSD at long times.
However, the short-time dynamics of active matter measured
by the MSD and the non-Gaussian displacement distribution
cannot be explained by those models based on the conven-
tional theory of Brownian motion [21,22].

Various experimental studies have shown that active matter
motion is superdiffusive, that is, the MSD of active matter
is proportional to tα with α > 1 [1,4,14,15]. To delineate
this superdiffusive behavior of active matter, mathematical
models involving Levy walks have been proposed [23–27].
Alternative models to account for the superdiffusive transport
dynamics of active matter are the active Brownian parti-
cle model [28,29] and the run-and-reverse motion model
[30]. These models do provide an enhanced explanation
for the anomalous MSD of active particles; however, the
above-mentioned models cannot explain the super-Gaussian
displacement distribution of active matter, whose kurtosis is
greater than that of a Gaussian [2,31].

In this work, we introduce an exactly solvable model of
active matter which can exhibit a super-Gaussian displace-
ment distribution. This behavior of our active matter model
is consistent with the previous observations that active matter
shows diffusive dynamics both at short times and at long
times but with a greater diffusion coefficient at long times
[2,5,19,20] and transient superdiffusion at the intermediate
times [32–34]. The key feature of our active matter model
is that it undergoes self-propelled motion and diffusive mo-
tion alternatively. Similar models have been investigated in
the context of intermittent search strategies [35–39], reaction
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kinetics [7], transport of membrane protein [40,41], and diffu-
sion in randomly switching environments [42–44]. However,
to the best of our knowledge, there has not yet been rigorous
study on the non-Gaussian character of the displacement dis-
tribution of multimode active matter.

From our exactly solvable model study, we find that the
population ratio of the passive diffusive mode to the active,
self-propelled mode determines the type of displacement dis-
tribution to be sub-Gaussian (kurtosis < 3) or super-Gaussian
(kurtosis >3). In a certain range of the population ratio, the
displacement distribution can change from sub-Gaussian to
super-Gaussian over time. We also present a generalization
of this one-dimensional model into higher spatial dimensions.

II. THEORETICAL MODELS

We first consider a simple one-dimensional model of mul-
timode active matter, which is relevant to the motor proteins
moving along the microtubule [2]. In the high-friction regime,
where we can neglect the inertial term in the Langevin equa-
tion, the velocity, ẋ(t ), of our multimode active matter model
is written as the sum of two components:

ẋ(t ) = vs,� (t ) + vξ (t ), (1)

where vs,� (t ) and vξ (t )[≡γ −1ξ (t )] represent the velocity
component of self-propelled, ballistic motion, whose value
depends on internal state � of active matter, and the velocity
component caused by the random fluctuating force, ξ (t ). γ

denotes the friction constant. As usual, we model the dynam-
ics of ξ (t ) as Gaussian white noise, whose time correlation,
〈ξ (t + t0)ξ (t0)〉, is linearly proportional to the Dirac delta
function. On the other hand, the dynamics of vs(t ) is coupled
to transitions between states of the multimode active matter
so that the relaxation of 〈vs(t + t0)vs(t0)〉 from the initial
value, 〈v2

s 〉, to the final value, 〈vs〉2, occurs in the timescale
of the state dynamics of our active matter, which is far longer
than the fluctuation timescale of the random force ξ (t ). This
theoretical model captures the essential features observed in
the transport dynamics of experimentally observed motion of
the motor protein complex on the microtubule [2]. Later in
this work, we extend this model to describe multimode active
matter moving in higher spatial dimensions.

In our model, we assume that there exist internal state
variables, �, that are often beyond our ability to observe but
coupled to the self-propelled velocity and hence the displace-
ment of active matter. We model the dynamics of the hidden
state variables as a multidimensional Markov process. Then,
the Fokker-Planck equation corresponding to Eq. (1) is given
by

∂

∂t
P(�, x, t ) = ∂

∂x

[
D0

∂

∂x
− vs(�)

]
P(�, x, t )

+ L(�)P(�, x, t ), (2)

where P(�, x, t ) denotes the probability density function
(PDF) of active matter at position x, at hidden state �, and
at time t [45–48]. In Eq. (2), D0 stands for the diffusion
coefficient of passive motion originating from the random
fluctuating force defined by D0 = ∫∞

0 dt〈vξ (t )vξ (0)〉 [49].

FIG. 1. Model systems and typical trajectories. (a) The single-
mode model consists of two internal states, �+ and �−. The
single-mode active matter in state �± performs self-propelled, di-
rected motion with velocity ±va despite a random force exerted from
the medium. Stochastic transitions between the internal states occur
with a constant rate, kaa. (b) The multimode model consisting of three
internal states: passive motion state, �0, in addition to active motion
states, �+ and �−. The multimode active matter performs undirected,
random motion in state �0, but performs directed, self-propelled
motion with velocity ±va in state �±. k0a and ka0 represent the
stochastic transition rates from the passive �0 to the active �± state
and from the active �± to the passive �0 state, respectively. For each
model, a typical time trace of active matter position is delineated.
Colors in the active matter diagram and trajectory represent the cell’s
internal states.

L(�) in Eq. (2) denotes a mathematical operator describing
hidden state dynamics [47,48].

We now compare two simple, exactly solvable models
of active matter (Fig. 1): one for single-mode active matter,
which undergoes both diffusion and run-and-reverse motion
[13,30,50,51] at the same time, and another for multimode
active matter that undergoes pure diffusion and self-propelled
motion in an alternating manner. Our multimode active matter
model is relevant to intermittent search strategies [35,37] and
the multimode motor protein multiplex model [2].

For our single-mode model shown in Fig. 1(a), active mat-
ter has two hidden states, �+ and �−, at which active matter
undergoes active motion in the positive and negative direc-
tions, respectively. For the sake of simplicity, the transitions
between the two hidden states are assumed to be Poisson
processes. For this model, Eq. (2) becomes

∂

∂t

(
P+(x, t )
P−(x, t )

)
= ∂

∂x

[
∂

∂x
D0I −

(
va 0
0 −va

)](
P+(x, t )
P−(x, t )

)

+
(−kaa kaa

kaa −kaa

)(
P+(x, t )
P−(x, t )

)
, (3)
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where P±(x, t ) denotes the probability density that active mat-
ter is at position x, at hidden state �±, and at time t [see
Appendix A for the derivation of Eq. (3)]. In Eq. (3), ±va and
kaa denote the velocity, vs(�±), of the self-propelled motion
of the active matter at state �± and the transition rate between
the two hidden states, �+ and �−.

On the other hand, the multimode model shown in Fig. 1(b)
has three hidden states, �+, �−, and �0 at which active matter
undergoes self-propelled active motion in the positive and
negative directions, and passive random motion, respectively.
For this model, Eq. (2) reads as

∂

∂t

(P+(x, t )
P0(x, t )
P−(x, t )

)
= ∂

∂x

[
∂

∂x
D0I −

(
va 0 0
0 0 0
0 0 −va

)](P+(x, t )
P0(x, t )
P−(x, t )

)

+
(−ka0 k0a 0

ka0 −2k0a ka0

0 k0a −ka0

)(P+(x, t )
P0(x, t )
P−(x, t )

)
. (4)

In Eq. (4), Pi(x, t ) designates the probability density of
matter at hidden state �i (i ∈ +,−, 0) and at position x at
time t . ±va has the same meaning as in Eq. (3). k0a and ka0

denote, respectively, the transition rate from state �0, at which
vs(�0) = 0, to either state, �+ or �−, and the transition rate
from state �± to state �0, respectively. Typical time traces
are depicted for the two models in Fig. 1. Exact analytic
solutions of Eqs. (3) and (4) can be obtained in the Fourier
domain as given in Eqs. (C3) and (B4) in Appendix C and B,
respectively.

III. MEAN VELOCITY DISTRIBUTION

From the exact solutions, we obtain the distribution,
f (v̄, t ), of the mean velocity, defined by x(t )/t (≡v̄(t )). The
mean velocity distribution is related to the displacement distri-
bution P(x, t ) by P(x, t ) = t−1 f (x/t, t ). The shape of f (v̄, t )
changes over time. The characteristic relaxation time, τc,
defined by τc ≡ ∫∞

0 dtφvs (t ) with φvs (t ) ≡ 〈vs(t )vs(0)〉/〈v2
s 〉,

is a criterion for determining the shape of the distributions.
The analytic expression of τc is dependent on the model in
question. For the single-mode model, τc is given by half the
lifetime of active states �±, i.e., τc = (2kaa)−1. For the mul-
timode model, τc is the same as the lifetime, k−1

a0 , of the state
�± (see Appendices D and E). The PDFs of the displacements
at short and long times are derived in Appendix F.

At times much shorter than τc, the mean velocity dis-
tribution can be approximated by a linear combination of
Gaussians centered at the state-dependent self-propelled ve-
locity, vs(�i ), for both models (see Appendices G and H), that
is

f (v̄, t ) ∼=
∑

i

peq
i (4πD0/t )−1/2

× exp[−(v̄ − vs(�i ))
2/(4D0/t )] (t � τc), (5)

where peq
i denotes the equilibrium probability of state �i,

given by peq
± = 1/2 for the single-mode model and by peq

± =
k0a/(ka0 + 2k0a) and peq

0 = ka0/(ka0 + 2k0a) for the multimode
model. Equation (5) can also be obtained from the distribu-
tion of the instantaneous velocity given in Eq. (1), because
the mean velocity, x(t )/t , is the same as the instantaneous

FIG. 2. PDFs for mean velocity distribution. The time-dependent
mean velocity distribution, (a) fS (v̄, t ) for the single-mode model
and (b) fM (v̄, t ) for the multimode model with the population ratio
of the passive state to the active states being R = 0.5. In both (a)
and (b), the mean velocity distribution is displayed starting from
time t = tD(≡ε2/D0); the relaxation time τc of the velocity-velocity
autocorrelation function is set to be 10tD. ε denotes a length unit.
The unit of time is tD. (c), (d) The mean velocity distribution at
t = tD (c) for the single-mode model and (d) for the multimode
model, with three different values of τc(in tD unit); (lines) analytic
results, and (circles) stochastic simulation results (see Appendix K).
In (d), the value of R is set to be 0.5, for which the three states
of the multimode model are equally probable at equilibrium, i.e.,
peq

± = peq
0 = 1/3. (e) The mean velocity distributions at t = tD for

the multimode model with four different values of R: (blue dotted
line) R = 0; (blue solid line) R = 0.05; (black line) R = 0.5; and
(red line) R = 5. The Gaussian distribution with the same mean and
variance as fM (v̄, tD ) for R = 5 is plotted as a red dotted line. The
value of τc is set to be 10tD. (f) Dependence of the root-mean-square
velocities, or the standard deviation of the mean velocity distributions
on the relaxation rate, τ−1

c , are displayed for four different values of
R represented in (e). In our length and time units, the value of D0 is
unity. The values of the other parameter is set to be va = 5 ε/tD for
all cases.

velocity in the short-time limit (see Appendix H). As shown
in Figs. 2(a) and 2(b), the mean velocity distribution, fS (v̄, t ),
of the single-mode model has two Gaussian peaks centered at
+va and −va at short times (t � τc). In comparison, the mean
velocity distribution, fM (v̄, t ), of the multimode model has
an additional Gaussian peak centered at 0, resulting from the
state �0. The variance of each Gaussian peak is approximately
given by 2D0/t .
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At times much longer than the characteristic time τc, the
mean velocity distribution becomes a single-peaked Gaussian
distribution centered at the initial position for both the single-
mode and multimode models of active matter. As shown in
Figs. 2(a) and 2(b), both fS (v̄, t ) and fM (v̄, t ) converge to a
Gaussian distribution with a variance proportional to t−1/2 at
long times. That is to say, for both models, the distribution
of x(t )/

√
t approaches Gaussian at long times, in accordance

with the Gaussian central limit theorem (see Appendix G).
Taking a different approach, the mean velocity distribution
converges more quickly to the long-time asymptotic Gaussian
distribution as the value of τc decreases [see Figs. 2(c) and
2(d)]. In the small-τc limit, the mean velocity distribution is
Gaussian at any finite time.

The mean velocity distribution, fM (v̄, t ), of the multimode
model is also dependent on the lifetime, τ0(≡1/(2k0a)), of
passive state �0, as well as on the lifetime, τa(≡1/ka0 = τc), of
active states �±. As shown in Fig. 2(e), when the population
ratio, R(≡peq

0 /(peq
+ + peq

− ) = τ0/τa = ka0/(2k0a)), of passive
state to active states decreases, fM (v̄, t ) approaches fS (v̄, t )
(see Appendix I). However, as the value of R increases,
the peak centered at v̄ = 0 in fM (v̄, t ) grows large, so that
the MSD of the multimode model is smaller than the MSD of
the single-mode model.

Note also that the variance of the mean velocity,
〈δv̄2〉(≡〈δx2〉/t2), decreases with the relaxation rate, τ−1

c , of
the fluctuation in the self-propelled velocity, as shown in
Fig. 2(f). This is a common feature of dynamically disordered
systems and is called motional narrowing in spectroscopy
[52].

IV. MEAN-SQUARE DISPLACEMENT
AND NON-GAUSSIAN PARAMETER

For both the models, the mean-square displacement shows
three different kinetic phases: short-time diffusion, interme-
diate transient superdiffusion, and long-time diffusion with
a greater diffusion coefficient, in agreement with previ-
ously reported experimental results [32,33]. Exact analytic
expressions of the MSD, 〈x2(t )〉, for both models can be
decomposed into two diffusion components, namely the MSD
from the random fluctuating force (〈x2

ξ (t )〉) and the MSD from
self-propelled motion (〈x2

vs
(t )〉). The resulting MSD is then

written as

〈x2(t )〉 = 〈x2
ξ (t )
〉+ 〈x2

vs
(t )
〉

= 2D0t + 2Daτc(e−t /τc − 1 + t /τc), (6)

where Da is the additional diffusion coefficient component
contributed from self-propelled motion, defined by Da ≡∫∞

0 dt〈vs(t )vs(0)〉 = τcv
2
a pa. Here, pa designates the proba-

bility of active states, which is unity for the single-mode
model and pa = peq

+ + peq
− = (1 + R)−1 for the multimode

model. D0 and τc have the same meaning as in the previous
section. See Appendices B and E for two different deriva-
tions of Eq. (6). As shown in Fig. 3(a), the MSD is given
by 〈x2(t )〉 ∼= 2D0t = 〈x2

ξ (t )〉 at short times (t � τc) and is
dominantly contributed from passive, random motion. On
the other hand, at long times (t 
 τc), the MSD is given
by 〈x2(t )〉 ∼= 2(D0 + Da)t , with the diffusion coefficient in-

creased by Da. At intermediate times (t ≈ τc), the MSD of
our model shows a transient superdiffusive behavior where the
value of α(t )[≡d ln〈x2(t )〉/d ln t] is significantly greater than
unity. For our model, the value of α(t ) is actually greater than
unity at all times; however, at both the short-time limit and
the long-time limit, the value of α(t ) approaches unity and the
apparent dynamics of our model follows Fickian diffusion.

In the early stage of the intermediate regime, the MSD
is approximately a quadratic function of time (α = 2), i.e.,
〈x2(t )〉 ∼= 2D0t + Daτc(t/τc)2, shown by the green lines in
Fig. 3(b), which originates from ballistic, self-propelled mo-
tion of active matter. This ballistic motion diminishes as the
velocity autocorrelation function, e−t/τc , decreases, and the
dynamics of the multimode active matter changes from su-
perdiffusive motion to normal diffusive motion. As shown
in Eq. (6), the mean-square displacement resumes diffusive
behavior faster as the characteristic relaxation time τc of the
velocity autocorrelation function decreases.

An equation similar to Eq. (6) has been reported in many
other studies because the equation can be derived based on
two simple assumptions: first, overall movement is composed
of two independent movements with different relaxation
timescales; second, the velocity autocorrelation can be rep-
resented by an exponential function [53–56]. Because our
models also include these assumptions, both models yield the
same analytic results for MSDs, but the two models can have
far different displacement distributions.

The displacement distribution, PM (x, t ), of the multimode
model can be super-Gaussian, which is in accordance with the
experimental data reported in Refs. [2,31], whereas PS (x, t )
of the single-mode model is always sub-Gaussian. For the
multimode model, the non-Gaussian parameter (NGP), a mea-
sure of the deviation of the displacement distribution from
Gaussian, is sensitive to the population ratio, R, of the passive
state to the active states, which is shown in Fig. 3(c). The
exact analytic expression of the time-dependent NGP, defined
as [〈x4(t )〉/3〈x2(t )〉2] − 1, is given in Eq. (B8) of Appendix B.
The short-time and long-time asymptotic expressions of NGP
are given by

NGPR(t ) ∼=
⎧⎨
⎩

1
12

(R−2)
(R+1)2

(D(0)
a

D0

)2
(t/τc)2, t � τc,

2 R2−R−1
(R+1)3

( D(0)
a

D0+Da

)2
τc
t , t 
 τc,

(7)

where D(0)
a designates τcv

2
a , or the value of Da in the limit

where active matter is always in active states. According to
Eq. (7), the displacement distribution, PM (x, t ), of multimode
active matter is super-Gaussian when R > 2, but sub-Gaussian
when R < (1 + √

5)/2 ∼= 1.62 at all times, which is found to
be the case for the multimode model as shown in Fig. 3(d).
When (1 + √

5)/2 ∼= 1.62 < R < 2, the displacement distri-
bution of the multimode model shows an interesting switching
behavior from the short-time sub-Gaussian distribution to
super-Gaussian distribution, as shown in Fig. 4(a). In this
special case, the displacement distribution is sub-Gaussian at
times shorter than τc but super-Gaussian at times longer than
τc as demonstrated in Fig. 4(b).

Note that NGPR(t ) vanishes in the large-R limit, in
which the multimode matter is always in the passive
state. This means that, in our model, it is self-propelled,
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FIG. 3. Mean-square displacement and non-Gaussian parameter. (a) Time-dependent MSD: (lines) analytic results, (circles) stochastic
simulation results. The single-mode and multimode models share the same MSD, given in Eq. (6). In the model calculation, the value of τc is
set equal to tD. As in Fig. 2, the value of D0 is unity. The value of Da(=τcv

2
a pa) is set to be 10 D0. For both single-mode and multimode models,

the MSD exhibits the same superlinear time dependence; the value of α(t )[≡d ln〈x2(t )〉/d ln t] is greater than unity at all times. However, at
both short-time and long-time limits, the value of α(t ) approaches unity. (b) Time dependence of 〈x2(t )〉/2t for the three different values of τc:
(red line) τc = 0.1 tD, (black line) τc = tD, and (blue line) τc = 10 tD. The effective diffusion coefficient increases from D0 to D0 + Da, whose
transition timescale is determined by τc. The green line represents the ballistic motion (〈x2(t )〉 ∼= 2D0t + Daτc(t/τc )2) for each case. (c) Time
dependence of the non-Gaussian parameter for the single-mode model (blue line) and for the multimode models with various values of R (black
lines), where the time profile of the MSD is kept the same as shown in (a). The two red lines represent the non-Gaussian parameter, NGPR(t ),
for the two critical values of R, 1.62 and 2. When R < 1.62(R > 2.00) the displacement distribution is sub-Gaussian (super-Gaussian) at all
times. (d) NGPR(t ) for the entire range of R and time. The value of limR→0 Da = D(0)

a (≡τcv
2
a ) is set to be 10D0. The two horizontal red lines

represent NGPR(t ) for the two limit values of R. When the value of R is between 1.62 and 2, the displacement distribution switches from
sub-Gaussian to super-Gaussian as the time increases. The boundary between the sub-Gaussian regime and the super-Gaussian distribution
regime is represented by the black line.

ballistic motion that causes the displacement distribution to
be non-Gaussian. In the opposite, small-R limit, PM (x, t ) has
exactly the same shape as PS (x, t ) as shown in Appendix
I; consequently, NGPR(t ) of the multimode model reduces
to NGP0(t )[= limR→0 NGPR(t )] of the single-mode model,
whose asymptotic behavior is given by

NGP0(t ) ∼=
⎧⎨
⎩

− 1
6

(D(0)
a

D0

)2
(t /τc)2, t � τc.

−2
(

D(0)
a

D0+D(0)
a

)2
τc
t , t 
 τc.

(8)

Equation (8) clearly shows that the displacement dis-
tribution, PS (x, t ), of single-mode active matter is always
sub-Gaussian. This sub-Gaussian displacement distribution
for single-mode active matter has been reported in other stud-
ies, which show that perpetual self-propelled motion with

orientational relaxation in two-dimensional space generates a
sub-Gaussian displacement distribution [53,56,57].

In general, the NGP of the multimode active matter
whose motion obeys the Langevin equation, Eq. (1), can be
written as

NGPR(t ) =
〈
x2
vs

(t )
〉2

〈x2(t )〉2 NGPR,vs (t ), (9)

where NGPR,vs (t )[≡〈x4
vs

(t )〉/(3〈x2
vs

(t )〉2) − 1] denotes the
NGP originating from self-propelled active motion. At
short times, NGPR,vs (t ) can be approximated by a con-
stant value, (R − 2)/3, while the ratio, 〈x2

vs
(t )〉2

/〈x2(t )〉2

[=(D(0)
a t/2D0τc(R + 1))2], is proportional to t2. This result

explains the quadratic time dependence of NGPR(t ) at short
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FIG. 4. Time evolution of displacement distribution from sub-
Gaussian to super-Gaussian. When 1.62 < R < 2, the displacement
distribution of the multimode active matter model is sub-Gaussian
at short times but super-Gaussian at long times. (a) NGPR(t ) when
R = 1.75: (lines) analytic results (circles) stochastic simulation re-
sults. The two red lines represent NGPR(t ) for the two critical values
of R, 1.62 and 2. (b) The deviation �PM (x, t ), of the displacement
distributions, PM (x, t ) from the Gaussian distribution with the same
variance at the four different time points marked by the solid circles.
PM (x, t ) becomes Gaussian in the short- and the long-time limits. The
red arrows indicate the tail peaks that determine the sign of the NGP
value. The negative (positive) tail peak causes the NGP value to be
negative (positive) at t/tD = 0.44(7.0). The length and time units are
the same as in Fig. 2. The values of parameters used are τc = tD and
Da = 10D0.

times. The convergence of NGPR,vs (t ) to a constant value is
consistent with Ref. [53]. At long times, NGPR,vs (t ) is pro-
portional to t−1 and the ratio, 〈x2

vs
(t )〉2

/〈x2(t )〉2, approaches

a constant. This result explains the long-time behavior of
NGPR(t ).

For both of our models, the displacement distributions,
PM (x, t ) and PS (x, t ), approach a Gaussian distribution at long
times; however according to Eqs. (7) and (8), their deviation
from Gaussian, measured by the non-Gaussian parameter,
slowly decreases with time, following t−1 at long times
(t 
 τc). As shown in Fig. 3(c), the deviation of the displace-
ment distribution from a Gaussian can be sizable even at long
times where the MSD, given in Eq. (6), is linearly proportional
to time. This result is consistent with the Fickian yet non-
Gaussian diffusion of active matter observed in Refs. [2,5,58].

V. GENERALIZATION OF THEORETICAL MODEL

The multimode active matter model discussed above can be
extended to a more complex model in a higher spatial dimen-
sion, d . For this generalized model, the stochastic differential
equation corresponding to Eq. (1) is given by

ṙ(t ) = vs,� (t ) + γ −1ξ (t ), (10)

where each bold symbol denotes a d-dimensional vector cor-
responding to each scalar quantity in Eq. (1). The general
expression of the MSD obtained from Eq. (10) is given by

〈|r(t )|2〉 = 2d
∫ t

0
dτ (t − τ )

[
D0τ

−1
p φξ (τ ) + Daτ

−1
c φvs (τ )

]
,

(11)

where D0, τp, Da, and τc are, respectively, defined
by D0 = d−1γ −2

∫∞
0 dt〈ξ (t ) · ξ (0)〉, τp ≡ ∫∞

0 dt φξ (t ), Da =
d−1

∫∞
0 dt〈vs,� (t ) · vs,� (0)〉, and τc ≡ ∫∞

0 dt φvs,� (t ). Here,
φv(t ) denotes the normalized time-correlation function,
〈v(t ) · v(0)〉/〈v(0)2〉, of vector v(t ). The functional form of
φvs,� (τ ) varies depending on the internal state dynamics
and its coupling to the self-propelled velocity. Given that
the relaxation time of random fluctuating force ξ (t ) is far
shorter than the observation time t , Eq. (11) reduces to
〈|r(t )|2〉 ∼= 2dD0t + 2dDaτ

−1
c

∫ t
0 dτ (t − τ )φvs,� (τ ). This re-

sult is the generalization of Eq. (6) for multidimensional
systems with arbitrary φvs,� (τ ); it reduces to Eq. (6) for the
one-dimensional model with φvs,� (τ ) = exp(−t/τc). In addi-
tion, the general expression of NGP can also be written as

NGPR(t ) =
〈∣∣rvs (t )

∣∣2〉2
〈|r(t )|2〉2 NGPR,vs (t ). (12)

Here, NGPR,vs (t ) is defined by NGPR,vs (t )≡ d
d+2 〈|rvs (t )|4〉/

〈|rvs (t )|2〉2 − 1 with 〈|rvs (t )|2〉 and 〈|rvs (t )|4〉 defined
as

∫ t
0

∫ t
0 dτ2dτ1〈vs,� (τ2) · vs,� (τ1)〉 and

∫ t
0

∫ t
0

∫ t
0

∫ t
0 dτ4

dτ3dτ2dτ1〈vs,� (τ4) · vs,� (τ3)vs,� (τ2) · vs,� (τ1)〉, respectively
(see Appendix J). The NGP given in Eq. (12) vanishes in
both the short-time and the long-time limits. At times far
shorter than the relaxation timescale, τc, of self-propelled
velocity, (〈|rvs (t )|2〉/〈|r(t )|2〉)2 approaches zero, and hence
NGPR(t ) vanishes. On the other hand, in the long-time
limit, (〈|rvs (t )|2〉/〈|r(t )|2〉)2 approaches (Da/(D0 + Da))2, but
NGPR,vs (t ), or the NGP of the self-propelled displacement,∫ t

0 dτ vs,� (τ ), vanishes because its distribution becomes
a Gaussian distribution, in accordance with the Gaussian
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central limit theorem. However, the NGP has a nonzero
value between the two limits. In the simple one-dimensional
case, the multimode active matter model with Poisson
state-switching dynamics, Eq. (12) reduces to Eq. (9).
Equations (11) and (12) enable us to calculate the MSD and
NGP for general multimode active matter with potentially
non-Poisson state-switching dynamics.

VI. SUMMARY

We investigated the non-Gaussian character of the dis-
placement distribution of multimode active matter that
alternatingly undergoes passive diffusion and state-dependent
self-propelled motion, examples of which are shown in Fig. 1.
We find that the displacement distribution is always sub-
Gaussian for the single-mode active matter that undergoes
self-propelled motion only, shown in Fig. 1(a). However, for
the multimode active matter shown in Fig. 1(b), the dis-
placement distribution is super-Gaussian when the population
ratio of the passive mode to the active modes is large but
sub-Gaussian is small. For an intermediate range of the pop-
ulation ratio, the displacement distribution is sub-Gaussian at
short times but super-Gaussian at longer times before it ap-
proaches Gaussian in the long-time limit. This non-Gaussian
displacement distribution emerges even in timescales where
the mean-square displacement exhibits the normal diffusion
behavior. We also presented a generalization of our model to
encompass a general multimode active matter in higher spatial
dimensions.

ACKNOWLEDGMENTS

The authors are grateful to Mr. Dae Hyun Kim for
helpful discussions and Mr. Luke Bates for his careful
reading of our manuscript. This work was supported by
the Creative Research Initiative Project program (Grant
No. 2015R1A3A2066497) funded by the National Re-
search Foundation (NRF) of Korea; the NRF grant (MSIT)
(Grant No. 2020R1A5A1018052); the NRF grant (Grant No.
2017R1D1A1B03028457); and the Priority Research Center
Program through the NRF (Grant No. 2009-0093817), funded
by the Korean government.

APPENDIX A: DYNAMICS OF THE MULTIMODE
ACTIVE MATTER MODEL

For the multimode active matter model, the velocity of
the self-propelled motion of an active particle is dependent
on the internal state, �, of the active matter. In the high-
friction regime, we specify the state of our active matter by
its position, x, and the internal state, �, of active matter.
In this work, we consider only active matter with discrete
internal states, {�i}. Assuming the dynamics of x and �i

is a multidimensional Markov process, one can obtain the
time-evolution equation governing the joint probability den-
sity function, P(�i, x, t ), of the active matter state, starting
from the following generalized Chapman-Kolmogorov equa-
tion [59]:

P(�i, x, t + �t ) =
∫

d (�x)P(�i, x − �x, t )
(x − �x; �x) +
∑

j

[P(� j, x, t )Tj→i − P(�i, x, t )Ti→ j], (A1)

where 
(x; �x) and Tj→i denote the probability that x undergoes a change �x in time interval �t and the probability of transition
from state � j to state �i in time interval �t , respectively. Using the Taylor series expansions of Eq. (A1), we obtain

∂P(�i, x, t )

∂t
�t + O(�t2) = − ∂

∂x
[〈�x〉P(�i, x, t )] + 1

2

∂2

∂x2
[〈�x2〉P(�i, x, t )]

+
∑

j

{P(� j, x, t )Kj→i − P(�i, x, t )Ki→ j}�t + O(�t2), (A2)

where 〈�xk〉 and Kj→i are defined by 〈�xk〉 = ∫ d (�x)�xk
(x; �x) and Tj→i = Kj→i�t + O(�t2), respectively.
The expressions of 〈�x〉 and 〈�x2〉 in Eq. (A2) can be obtained from the Langevin equation describing stochastic motion of

our active matter model in the high-friction regime, i.e.,

γ v(t ) ∼= F (�) + ξ (t ), (A3)

where γ , v(t ), F (�), and ξ (t ), respectively, denote the friction coefficient, the velocity of active matter at time t , the force
associated with the self-propelled motion of active matter at state �, and the random and rapidly fluctuating force. By integrating
Eq. (A3) over time from t to t + �t , we obtain

�x[≡x(t + �t ) − x(t )] = γ −1

[
F (�)�t +

∫ t+�t

t
ξ (τ )dτ

]
. (A4)

In obtaining Eq. (A4), we assume that the change in F during time interval �t is negligible. By taking average of Eq. (A4)
over the entire realization of stochastic processes, {�(t ), ξ (t )}, and by assuming that the random fluctuation force has an isotropic
distribution, 〈ξ (t )〉 = 0, we obtain

〈�x〉 = vs(�)�t + O(�t2), (A5)
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where vs(�) is defined by F (�)/γ . From Eq. (A4), one can also obtain the following expression for 〈�x2〉:

〈�x2〉 = γ −2
∫ t+�t

t
dτ2

∫ t+�t

t
dτ1〈ξ (τ2)ξ (τ1)〉 + O(�t2), (A6)

which follows because the random fluctuating force is not correlated with the state-dependent force, i.e., 〈F (�(t ))ξ (t )〉 = 0.
Substituting the well-known fluctuation-dissipation relation, 〈ξ (τ2)ξ (τ1)〉 = 2γ kBT δ(τ2 − τ1), into Eq. (A6), we obtain

〈�x2〉 = 2kBT

γ
�t + O(�t2). (A7)

By substituting Eqs. (A5) and (A7) into Eq. (A2), we obtain

∂P(�i, x, t )

∂t
= − ∂

∂x
[vs(�)P(�i, x, t )] + kBT

γ

∂2

∂x2
P(�i, x, t ) +

∑
j

{P(� j, x, t )Kj→i − P(�i, x, t )Ki→ j} (A8)

Identifying D = kBT/γ , we obtain Eq. (2) in the main text from Eq. (A8).

APPENDIX B: DERIVATION OF THE SECOND AND FOURTH MOMENTS OF DISPLACEMENT
FOR THE MULTIMODE MODEL

The multimode active matter model has three internal states, �+, �0, and �−. Each internal state regulates the direction and
speed of a given active matter as depicted in Fig. 1(b), based on the initial conditions that the internal states are initially in
equilibrium and the initial position of active matter is zero. Three simultaneous equations are obtained from Eq. (4) by applying
the Fourier transform and the Laplace transform to Pi(x, t ) with i ∈ +, 0, −. The solution of the simultaneous equations
provides three probability density functions for the individual internal states in the Fourier-Laplace domain, written as⎛

⎝P̃+(w, s)
P̃0(w, s)
P̃−(w, s)

⎞
⎠ = 1

(s + D0w2)
(
χ (w, s) + v2

aw
2
)+ 2k0av2

aw
2

⎛
⎝peq

+ (χ (w, s) − i vaw(s + D0w
2 + ka0 + 2k0a))

peq
0

(
χ (w, s) + v2

aw
2
)

peq
− (χ (w, s) + i vaw(s + D0w

2 + ka0 + 2k0a))

⎞
⎠ with

χ (w, s) ≡ (s + D0w
2 + ka0)(s + D0w

2 + ka0 + 2k0a). (B1)

In Eq. (B1), w and s, respectively, denote the Fourier transform of position x and the Laplace transform of time t . The tildes
indicate that the functions are represented in the Fourier-Laplace domain. peq

+ , peq
0 , and peq

− denote the equilibrium probabilities
of the states �+, �0, and �−, respectively. A summation of the PDFs, given in Eq. (B1), provides the PDF of multimode active
matter, which is given by

P̃M (w, s) ≡ P̃−(w, s) + P̃0(w, s) + P̃+(w, s) = χ (w, s) + peq
0 v2

aw
2

(s + D0w2)
(
χ (w, s) + v2

aw
2
)+ 2k0av2

aw
2
. (B2)

The denominator in Eq. (B2) is a cubic function of z ≡ s + D0w
2 as z3 + 2(ka0 + k0a)z2 + (ka0(ka0 + 2k0a) + v2

aw
2)z +

2k0av
2
aw

2. If we assume the roots of the cubic function as −Ci(w) with (i ∈ 1, 2, 3), the PDF can be rewritten as

P̃M (w, s) = 1

s + D0w2
− 2k0av

2
aw

2

(
1

s + D0w2
+ 1

ka0 + 2k0a

) 3∏
i=1

1

s + D0w2 + Ci(w)

= 1

s + D0w2
− 2k0av

2
aw

2

(
1

s + D0w2
+ 1

ka0 + 2k0a

) 3∑
i=1

1

s + D0w2 + Ci(w)

3∏
j 
=i

1

Ci(w) − Cj (w)
. (B3)

Inverting s in P̃(w, s) generates the Fourier domain PDF, written as

P̂M (w, t ) = v2
aw

2e−D0w
2t

(
3∑

i=1

(
2k0a

Ci(w)
− 2k0a

ka0 + 2k0a

)
e−Ci (w)t

3∏
j 
=i

1

Ci(w) − Cj (w)

)
. (B4)

Equations (B2) and (B4) can both be used to derive the analytic solution for the MSD of the multimode model. One way is to
use the second partial derivative of P̂M (w, t ), while the other way, which is an easier way to obtain the time-domain MSD, is to
apply the inverse Laplace transform to the second partial derivative of P̃M (w, s), written as

〈x2(t )〉 = lim
w→0

[
−∂2P̂M (w, t )

∂w2

]
= L−1

s→t

(
lim
w→0

[
−∂2P̃M (w, s)

∂w2

])
= 2D0t + 2Daτc(e−t /τc − 1 + t/τc), (B5)

where L−1
s→t and Dα denote the inverse Laplace transform operator and Da ≡ ∫∞

0 dt〈vs(t )vs(0)〉 = τcv
2
a pa with pa being the

probability of active states, pa = 2k0a/(ka0 + 2k0a). The time-dependent MSD of this model is given in Eq. (6).
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The analytic solution for the fourth moment of the displacement is obtained using the following equation:

〈x4(s)〉 = lim
w→0

[
∂4P̃M (w, s)

∂w4

]
= 24

s3

[
D2

0 + 2v2
ak0a

(s + ka0)(ka0 + 2k0a)

(
3D0 − 1

s + ka0

(
ka0D0 − v2

a + v2
aka0

s + ka0 + 2k0a

))]
. (B6)

Applying the inverse Laplace transform to Eq. (B6) provides the fourth moment of displacement in the time domain, written
as

〈x4(t )〉 = 12(D0 + Da)2t2 + 24D2
aτ

2
c

(R + 1)2 (R5e−(1+1/R)t/τc + (−R2 + 3R − 3)(R + 1)3e−t/τc − (3R3 − R2 − 6R − 3)

+ (R + 1)2(R2 − 1 + D0/Da)e−t/τc t/τc + (R + 1)(R2 − 2R − 2 − (R + 1)D0/Da)t/τc). (B7)

The second and fourth moments expressed in the time domain are combined to produce the NGP:

NGPR(t ) ≡ 〈x4(t )〉
3〈x2(t )〉2 − 1 = 1

3
κ (t ) − 1

= 1

(R + 1)4

(
2D(0)

a τc

〈x2(t )〉
)2(

−e−2t/τc−4e−t/τc + 5 − 4e−t/τc t/τc−2t/τc + (−2e−2t/τc−8e−t/τc+10−8e−t/τc t/τc − 4t/τc)R

+ (−e−2t/τc + 1 − 2e−t/τc t/τc)R2 + (6e−t/τc − 6 + 4e−t/τc t/τc + 2t/τc
)
R3 + 2

(
e−(1/R)t/τc − 1 + 1

R
t/τc

)
e−t/τc R5

)

with

〈x2(t )〉
2D(0)

a τc

= D0

D(0)
a

t

τc
+ 1

(R + 1)

(
e−(t /τc ) + t

τc
− 1

)
, (B8)

where κ (t ) denotes kurtosis and D(0)
a ≡ (R + 1)Da = τcv

2
a . On the log-scale time axis, as shown in Fig. 3(b), the relaxation time,

τc, shifts the NGPR(t ) curve along the time axis as well as the MSD curve. In Fig. 3(d), NGPR(t ) in all ranges of R and t/τc

is evaluated and plotted under the condition that D0/D(0)
a = 0.1, where the red lines are the two lines shown in Fig. 3(c) and

the black line marks a border line switching from sub-Gaussian to super-Gaussian at a given R. Although NGPR(t ) depends on
D0/D(0)

a , the border line is invariant to the change of the D0/D(0)
a ratio in Eq. (B8). Thus, NGPR(t ) with R less than (1 + √

5)/2 is
sub-Gaussian at all times, and NGPR(t ) with R larger than 2 is super-Gaussian at all times. When (1 + √

5)/2 < R < 2, PM (x, t )
can switch from sub-Gaussian to super-Gaussian over time, as shown in Fig. 4(a).

APPENDIX C: DERIVATION OF THE SECOND AND FOURTH MOMENTS OF DISPLACEMENT
FOR THE SINGLE-MODE MODEL

The single-mode model has two internal states, �+ and �−. Each internal state regulates the direction and speed of active
matter, as shown in Fig. 1(a). Based on the initial conditions that the internal states are initially in equilibrium and the initial
position of active matter is zero, two simultaneous equations are obtained from Eq. (3) by applying the Fourier transform and
the Laplace transform to Pi(x, t ) with i ∈ +, −. The analytic solution of the simultaneous equations provides two PDFs in the
Fourier-Laplace domain, written as(

P̃+(w, s)
P̃−(w, s)

)
= 1

2

1

v2
aw

2 + (s + D0w2)(s + D0w2 + 2kaa)

(
s + D0w

2 + 2kaa − ivaw

s + D0w
2 + 2kaa + ivaw

)
. (C1)

The PDF of active matter for the single-mode model in Fourier-Laplace domain is written as

P̃S (w, s) ≡ P̃−(w, s) + P̃+(w, s) = s + D0w
2 + 2kaa

v2
aw

2 + (s + D0w2)(s + D0w2 + 2kaa)
. (C2)

Applying the inverse Laplace transform to Eq. (C2) generates the PDF of active matter represented in the Fourier domain as

P̂S (w, t ) = e−t (kaa+D0w
2 )

(
cosh (t �) + kaa

�
sinh (t �)

)
with � ≡

√
k2

aa − v2
aw

2. (C3)

From this function, the time-dependent second and fourth moments of displacement are simple to obtain. The time-dependent
MSD of this model is given in Eq. (6). The fourth moment of displacement is also evaluated from the PDF as

〈x4(t )〉 = 12τ 2
c

(
(D0 + Da)2 t2

τ 2
c

+ 2Da

(
(Da − D0)

(
1 − e−t/τc

) t

τc
+ 3Da

(
1 − e−t/τc − t

τc

)))
, (C4)
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where Da = τcv
2
a . The second and fourth moments expressed in the time domain can be combined to produce the NGP:

NGP0(t ) =
(

2Daτc

〈x2(t )〉
)2

(5 − e−2t/τc − 4e−t/τc − 4e−t/τc t/τc − 2t/τc) =
(

2Daτc

〈x2(t )〉
)2

β(t )

with

〈x2(t )〉
2Daτc

= D0

Da

t

τc
+
(

e−t/τc + t

τc
− 1
)

and

β(t ) ≡ 5 − e−2t/τc − 4e−t/τc − 4e−t/τc t/τc − 2t/τc. (C5)

In Eq. (C5), NGP0(t ) is less than or equal to zero because β(t ) � 0 in all time ranges, and the equation is equal to NGPR(t )
of the multimode model in the small-R limit as NGP0(t ) = limR→0 NGPR(t ).

APPENDIX D: TIME-CORRELATION FUNCTIONS FOR TWO MODELS

Time-correlation functions of the velocity component, vs, of self-propelled motion are used to calculate Da and NGPR(t ) as
well as the second and fourth moments of displacement. In our model, because vs is only dependent on the internal state, we
analytically obtain the time evolution of internal state probabilities as(

P+(t )
P−(t )

)
= G

(
P+(0)
P−(0)

)
with G = e−kaat

(cosh(kaat ) sinh(kaat )
sinh(kaat ) cosh(kaat )

)
(D1)

for the single-mode model and (P+(t )
P0(t )
P−(t )

)
= G(t )

(P+(0)
P0(0)
P−(0)

)

with

G(t ) = 1

k

⎛
⎝k0a + ka0e−kt +ke−ka0t

2 k0a − k0ae−kt k0a + ka0e−kt −ke−ka0t

2
ka0 − ka0e−kt ka0 + 2k0ae−kt ka0 − ka0e−kt

k0a + ka0e−kt −ke−ka0t

2 k0a − k0ae−kt k0a + ka0e−kt +ke−ka0t

2

⎞
⎠

and

k ≡ ka0 + 2k0a (D2)

for the multimode model. We obtain the velocity autocorrelation function, 〈vs(t ) · vs(0)〉, through the following equation:

〈vs(t )vs(0)〉 =
∑

i∈+,−

∑
j∈+,−

vs(� j )vs(�i ) G(t ) jiP(�i, 0), (D3)

where G(t ) ji denotes a transition matrix from �i to � j after t time passing. The transition matrices are shown in Eq. (D1) for the
single-mode model and in Eq. (D2) for the multimode model. The calculation results of 〈vs(t )vs(0)〉 are v2

ae−2kaat for the single-
mode model and pav

2
ae−ka0t for the multimode model. The four-time velocity autocorrelation function, 〈vs(t4)vs(t3)vs(t2)vs(t1)〉,

is obtained by the following equation, written as

〈vs(t4)vs(t3)vs(t2)vs(t1)〉 =
∑

i∈+,−

∑
j∈+,−

∑
k∈+,−

∑
l∈+,−

vs(�l )vs(�k )vs(� j )vs(�i ) G(t4 − t3)lkG(t3 − t2)k jG(t2 − t1) jiP(�i, t1) . (D4)

The results of 〈vs(t4)vs(t3)vs(t2)vs(t1)〉 are v4
ae−2kaa (t4−t3+t2−t1 ) for the single-mode model and p2

av
4
a (eka0(t3−t2 ) +

Re−2k0a (t3−t2 ) )e−ka0(t4−t1 ) for the multimode model. The four-time velocity autocorrelation functions can be used to generate
〈|rvs (t )|4〉 in Eq. (J4), and their results are equal to the fourth moment of displacement written in Eqs. (B7) and (C4).

APPENDIX E: RELAXATION TIME OF THE TWO MODELS

In the high-friction regime, where we can safely neglect the inertial term in the Langevin equation, the velocity, ẋ(t ), of active
matter with a friction constant, γ , can be written as the sum of two components:

ẋ(t ) = vs(t ) + γ −1ξ (t ), (E1)

where vs(t ) and γ −1ξ (t ) represent the velocity component of self-propelled, ballistic motion and the velocity component caused
by random fluctuating force. If we assume that the initial position of active matter is zero, then the time integration of Eq. (E1)
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produces the time-dependent position, written as

x(t ) =
∫ t

0
(vs(τ ) + γ −1ξ (τ ))dτ . (E2)

From Eq. (E2), the MSD of the active matter can be evaluated from the velocity correlation function, written as

〈x2(t )〉 =
∫ t

0
dτ2

∫ t

0
dτ1

[
〈vs(τ2)vs(τ1)〉 + 1

γ 2
〈ξ (τ2)ξ (τ1)〉

]

= 2D0t + 2
∫ t

0
dτ (t − τ )〈vs(τ )vs(0)〉. (E3)

By comparing Eq. (E3) with Eq. (6), we obtain the following equation:∫ t

0
dτ (t − τ )〈vs(τ )vs(0)〉 = Daτc

(
e−t/τc − 1 + t/τc

)
. (E4)

Because Da is equal to τc〈v2
s 〉, the second derivative of each side of Eq. (E4) provides the normalized time-correlation function

of velocity, φvs (t ), as

φvs (t ) = 〈vs(t )vs(0)〉/〈v2
s

〉 = e−t /τc , (E5)

where the comparison result of τc is given by (2kaa)−1 for the single-mode model and k−1
a0 for the multimode model which is

consistent with Eq. (D3).

APPENDIX F: PROBABILITY DENSITY FUNCTION OF THE DISPLACEMENT AT SHORT AND LONG TIMES

The diffusion dynamics of our models is highly dependent on the relaxation time, τc, of the velocity, vs(�). At short times
(t � τc), a given active matter maintains its direction and magnitude of velocity, and each unrelaxed velocity produces three
individual peaks in the PDF of displacement. The PDF of displacement at short times is derived from Eq. (B1), which is written
as ⎛

⎝P̃short,+(w, s)
P̃short,0(w, s)
P̃short,−(w, s)

⎞
⎠ =

⎛
⎝peq

+ (s + D0w
2 + i vaw)−1

peq
0 (s + D0w

2)−1

peq
− (s + D0w

2 − i vaw)−1

⎞
⎠. (F1)

PM (x, t ) at short times is written as

PM,short (x, t ) = 1√
4πD0t

(
peq

− e−[(x+vat )2/4D0t] + peq
0 e−(x2/4D0t ) + peq

+ e−[(x−vat )2/4D0t]
)
, (F2)

where the distribution is a Gaussian with a variance of 2D0t . The three peaks in PM,short (x, t ) are approximated as a single
Gaussian function with a small variance at very short times (t � 2D0/v

2
a) that gradually separate as time increases.

At long times (t 
 τc), the peaks of individual vs(�)s are again intermingled into a single Gaussian and follow the distribution,
written as ⎛

⎝P̃long,+(w, s)
P̃long,0(w, s)
P̃long,−(w, s)

⎞
⎠ = 1

s + Deffw2

⎛
⎝ peq

+ (1 − i vaw/ka0)

peq
0 (1 + v2

aw
2/ka0(ka0 + 2k0a))

peq
− (1 + i vaw/ka0)

⎞
⎠, (F3)

where Deff is equal to D0 + Da. The PDF PM (x, t ) at long times is written as

PM,long(x, t ) = 1√
4πDefft

e−(x2/4Deff t )

(
1 + peq

0 DaτcR

2Defft

(
1 − x2

2Defft

))
. (F4)

In Eq. (F4), the deviation from Gaussian is proportional to peq
0 DaτcR/2Defft . Thus, at long times, PM (x, t ) approaches a

Gaussian distribution in accordance with the central limit theorem.

APPENDIX G: MEAN VELOCITY DISTRIBUTION AND STATIONARY DISTRIBUTION

The mean velocity, v̄(t ), is defined by v̄(t )≡ x(t )/t . The mean velocity distribution, f (v̄, t ), is related to the probability
density function p(x, t ) of displacement by P(x, t ) = t−1 f (v̄ ≡ x/t, t ). From the short-time expression of the displacement PDF
in Eq. (F2), we obtain the following expression of the short-time mean velocity distribution of our multimode active matter
model:

fM,short (v̄, t ) = 1√
4πD0/t

(
peq

− e−[(v̄+va )2/(4D0/t )] + peq
0 e−[v̄2/(4D0/t )] + peq

+ e−[(v̄−va )2/(4D0/t )]
)

(t � τc). (G1)
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The short-time mean velocity distribution is the sum of three Gaussian functions with the same variance, 2D0/t , which are
centered at va, 0, and −va. Because the variance is inversely proportional to t , the width of the individual peaks in Eq. (G1)
decreases over time. Note that, in the small-t limit, the variance of the mean velocity diverges. This follows because, in our
model, active matter motion occurs under random fluctuating force modeled as Gaussian white noise. The mean velocity, x/t ,
approaches the instantaneous velocity in the small-t limit, which obeys our Langevin equation (1) in the main text. In Eq. (1),
the variance of Gaussian white noise, ξ (t ), is infinite at all times, and so too is the variance of the instantaneous velocity.

On the other hand, at long times (t 
 τc), fM (v̄, t ) takes the following form:

fM,long(v̄, t ) = 1√
4πDeff /t

e−[v̄2/(4Deff /t )]

(
1 + peq

0 DaτcR

2Defft

(
1 − v̄2

2Deff /t

))
. (G2)

Note that fM,long(v̄, t ) approaches the delta function centered at 0 in the long-time limit.

APPENDIX H: DERIVATION OF SHORT-TIME MEAN VELOCITY DISTRIBUTION FROM EQ. (1)

In our model, the velocity of active matter consists of two components in Eq. (1). If we assume that the two components are
independent, then the mean velocity distribution is written as

f (v̄, t ) =
∫

dvsdvξ δ(v̄ − (vs + vξ )) fs(vs, t ) fξ (vξ , t ), (H1)

where vs and fs(vs, t ), respectively, denote the velocity component caused by self-propelled motion and its distribution function;
vξ [≡γ −1ξ (t )] and fξ (vξ , t ) denote the velocity component due to the random fluctuating force and its distribution function. At
short times, the velocity component, vξ , caused by the random fluctuating force is already relaxed and follows a Gaussian
distribution with a variance of 2D0/t , whereas the self-propelled motion approximately maintains its direction. The two
distribution functions at short times can be written as

fξ (vξ , t ) = e−[v2
ξ

/
(4D0/t )]

/√
4πD0/t and fs(vs, t ) =

∑
i∈�

peq
i δ(vs − vi ). (H2)

By applying Eq. (H2) to Eq. (H1), the mean velocity distribution function at short times can be rewritten as

fshort (v̄, t ) = 1

2π

∫ ∞

−∞
du
∫

dvsdvξ eiu(v̄−(vs+vξ ))
∑
i∈�

peq
i δ(vs − vi ) fξ (vξ , t )

= 1

2π

∑
i∈�

peq
i

∫ ∞

−∞
dueiu(v̄−vi )

∫
dvξ e−iuvξ fξ (vξ , t )

=
∑
i∈�

peq
i

∫
dvξ fξ (vξ , t )δ(v̄ − vi − vξ ) =

∑
i∈�

peq
i fξ (v̄ − vi, t )

=
∑
i∈�

peq
i

1√
4πD0/t

e−[(v̄−vi )2/(4D0/t )]. (H3)

Here, Eq. (H3) is equivalent to Eq. (G1), which is shown in Eq. (5).

APPENDIX I: CONVERGENCE OF PM (x, t ) TO PS(x, t ) AT THE SMALL-R LIMIT

The population ratio, R(≡peq
0 /(peq

+ + peq
− ) = τ0/τa = ka0/2k0a), of the passive state to the active state modulates the shape of

the probability density of active matter, PM (x, t ), in the multimode model. Applying ka0 = τ−1
c and 2k0a = R−1τ−1

c to Eq. (B2)
produces P̃M (w, s), written as

P̃M (w, s) =
(
s + D0w

2 + τ−1
c

)(
s + D0w

2 + τ−1
c + R−1τ−1

c

)+ v2
aw

2R/(R + 1)

(s + D0w2)
((

s + D0w2 + τ−1
c

)(
s + D0w2 + τ−1

c + R−1τ−1
c

)+ v2
aw

2
)+ R−1τ−1

c v2
aw

2

=
(
s + D0w

2 + τ−1
c

)(
Rs + RD0w

2 + Rτ−1
c + τ−1

c

)+ v2
aw

2R2/(R + 1)

(s + D0w2)
((

s + D0w2 + τ−1
c

)(
Rs + RD0w2 + Rτ−1

c + τ−1
c

)+ Rv2
aw

2
)+ τ−1

c v2
aw

2
. (I1)

In the limit of R → 0, P̃M (w, s) in Eq. (I1) reduces to

lim
R→0

P̃M (w, s) = s + D0w
2 + τ−1

c

(s + D0w2)
(
s + D0w2 + τ−1

c

)+ v2
aw

2
. (I2)
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Because the relaxation time of the single-mode model is τc = (2kaa)−1, applying 2kaa = τ−1
c to Eq. (C2) produces P̃S (w, s):

P̃S (w, s) = s + D0w
2 + τ−1

c

(s + D0w2)
(
s + D0w2 + τ−1

c

)+ v2
aw

2
. (I3)

P̃S (w, s) is the same as P̃M (w, s) in the small-R limit. This derivation also proves that fM (v̄, t ) approaches fS (v̄, t ) in the small-R
limit.

APPENDIX J: GENERAL MODEL

In general, active matter moves in a multidimensional space, d , and its random fluctuating force has a finite relaxation time,
τp. To obtain analytic solutions for this general model, the velocity of active matter corresponding to Eq. (1) is generalized to

ṙ(t ) = vs(t ) + γ −1ξ (t ), (J1)

where each bold symbol denotes a d-dimensional vector corresponding to each scalar quantity in Eq. (1). The integration of each
side of Eq. (J1) from 0 to t produces the time-dependent position, r(t ), written as

r(t ) =
∫ t

0
(vs(τ ) + γ −1ξ (τ ))dτ, (J2)

where we assume the initial position is zero. From Eq. (J2), the MSD is written as

〈|r(t )|2〉 = 2
∫ t

0
dτ (t − τ )[γ −2〈ξ (τ ) · ξ (0)〉 + 〈vs(τ ) · vs(0)〉]

= 2d
∫ t

0
dτ (t − τ )

[
D0τ

−1
p φξ (τ ) + Daτ

−1
c φvs (τ )

]
= 〈|rξ (t )|2〉 + 〈|rvs (t )|2〉, (J3)

where φξ (t ) denotes the normalized time-correlation function, 〈ξ (t ) · ξ (0)〉/〈ξ (0)2〉, of the random fluctuating force, ξ (t ), and
the relaxation time, τp, is defined as τp ≡ ∫∞

0 dt φξ (t ). Here, the diffusion coefficient for passive motion is defined by D0 =
d−1γ −2

∫∞
0 dt〈ξ (t ) · ξ (0)〉, and the diffusion coefficient for self-propelled motion is defined by Da = d−1

∫∞
0 dt〈vs(t ) · vs(0)〉.

The MSD consists of two independent movements from the random, thermal motion and the active, self-propelled motion. The
diffusive mode contribution to the MSD is defined as 〈|rξ (t )|2〉 ≡ 2dD0τ

−1
p

∫ t
0 dτ (t − τ )φξ (τ ), while the self-propelled mode

contribution is defined as 〈|rvs (t )|2〉 ≡ 2dDaτ
−1
c

∫ t
0 dτ (t − τ )φvs (τ ). If we assume that the distribution of ξ (t ) is a Gaussian,

then the analytic solution for the fourth moment of displacement can be written as

〈|r(t )|4〉 = (1 + 2d−1)〈|rξ (t )|2〉2 + 2(1 + 2d−1) 〈|rξ (t )|2〉〈|rvs (t )|2〉 + 〈|rvs (t )|4〉, (J4)

where 〈|rvs (t )|4〉 ≡ 4!
∫ t

0 dt4
∫ t4

0 dt3
∫ t3

0 dt2
∫ t2

0 dt1〈vs(t4) · vs(t3)vs(t2) · vs(t1)〉. The NGP for the general model can be written as

NGPR(t ) ≡ d

d + 2

〈|r(t )|4〉
〈|r(t )|2〉2 − 1 =

〈∣∣rvs (t )
∣∣2〉2

〈|r(t )|2〉2 NGPvs (t )

with

NGPvs (t ) ≡ d

d + 2

〈∣∣rvs (t )
∣∣4〉〈∣∣rvs (t )
∣∣2〉2 − 1. (J5)

At short times, NGPR(t ) approaches zero because 〈|r(t )|2〉2 
 〈|rvs (t )|2〉2. At long times, NGPR(t ) also approaches zero
because NGPvs (t ) approaches zero.

APPENDIX K: STOCHASTIC SIMULATION METHOD

Our stochastic simulation method consists of both Brownian dynamics for the time evolution of an active matter position
and the Gillespie method for the stochastic transition between internal states [60,61]. For Brownian dynamics, we numerically
integrate Eq. (1) as

x(t + �t ) = x(t ) + v(�)�t +
√

2D0�tξ ′(t ), (K1)

where x(t ), �t , and ξ ′(t ) denote the active matter position at time t , the size of the time step, and a Gaussian random number
from the standard normal distribution, respectively [61]. For the Gillespie method, we assume that transitions between internal
states for the multimode model are absent, except those transitions described by the following four unimolecular reactions:
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�+
K+ → 0=ka0−−−−−→ �0, �−

K − → 0=ka0−−−−−−→ �0, �0
K0 →+=k0a−−−−−→ �+, and �0

K0 →−=k0a−−−−−→ �− [60]. The reaction constants for the absent transitions
are set equal to zero. Our stochastic simulations proceed as follows:

(1) Randomly choose an internal state of active matter based on the equilibrium population between the states and set the
initial position equal to zero. Set the selected state to the current state, �c.

(2) Based on the current state, calculate the waiting time for a reaction using the equation, τ = − ln(RN )/
∑

j 
=c Kc→ j ,
where RN denotes an evenly distributed random number between 0 and 1, because concentration of the selected state is 1 and
the concentration for the other states is zero. Only the �0 state has two reaction paths with equal probability, and the other states
have only one path for state transition.

(3) Evolve the time-dependent position using Eq. (K1) with the state-dependent velocity, v(�c), and a given time interval,
�t , until the waiting time, τ , has been reached.

(4) After finishing the time evolution, change the current state to the state determined by the transition in 2. Return to 2.
when the elapsed time of the trajectory is less than the time limit of the trajectory.

(5) Repeat 1. until sufficient trajectories have been collected. We use 500 000 trajectories to obtain the velocity distributions
and the second and fourth moments of the displacement distributions.
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