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In this paper, we propose a method for registering unorganized point clouds without using targets or markers. Motivated by the 4-
points congruent sets (4PCS) algorithm, which is a nontarget-based registration method commonly used in the related fields, we
develop a feature-based 4PCS algorithm (F-4PCS). *e method combines the basic approach of the 4PCS algorithm with
geometric feature information to produce consistent global registration results efficiently. We use the features from the point
feature histogram descriptor and the ones that capture the surface curvature. *e experimental results show that the proposed
method successfully registers point clouds of both the outdoor and indoor scenes and demonstrates better performance than the
existing 4PCS-based registration methods.

1. Introduction

In industrial environments such as a megastructure con-
struction site or a shipbuilding yard, scanning is a popular
method to obtain the geometric information of various
objects that are being assembled or constructed or of the
shipyard itself for modelling its current configuration for
various purposes. Currently, 3D scanners such as LiDAR’s
are mostly used to produce 3D point clouds of an object. For
a large object, multiple scans at different positions are re-
quired to cover its entire shape because of the limited range
of the scanner. However, the data points of each scan are
defined with respect to the local coordinate system associ-
ated with its scan position. *erefore, the entire shape of the
target object cannot be represented by moving the scan
datasets into the reference coordinate system. Instead, each
scanned data should be transformed against the reference
frame to represent the shape of the target object while the
geometric consistency among the scan datasets is being
considered. *is process is called registration.

*ere are two types of registration: global and local. *e
global registration computes the best transformation to align
two point sets without considering their initial relative

positions or orientations. *e local registration, on the other
hand, iteratively finds a local optimum solution that registers
two point sets, starting from an approximate solution de-
termined by the initial relative positions and orientations of
the point sets.

*e most widely used local registration algorithm is an
iterative closest point (ICP) algorithm [1]. When a source
and a target point clouds are given, it finds the correspon-
dence between them based on the closest point pairs,
computes the rigid body transformation for registration, and
updates the relative position of the source point cloud with
respect to the target. *is process is repeated until an op-
timum solution is reached. In the past decades, a large
number of ICP variants were introduced to improve the
original ICP algorithm. Lim [2] proposed a point-to-plane
ICP scheme to improve registration performance. LM-ICP
algorithm improves robustness using a nonlinear minimi-
zation technique, and various extended versions of ICP al-
gorithm were developed to improve both speed and
performance [3–5]. In [6], global optimization was studied
based on ICP. In addition, the application of ICP algorithm is
extended to nonrigid registration. Nonrigid ICP algorithms
were developed, which consider affine transformation by
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using a more efficient function or simplifying the affine
transformation problem into a quadratic programming
problem [7].

ICP-based methods generally solve a local optimization
problem. Given a rough initial solution, they iteratively
improve the solution to an optimal solution. *erefore, they
have the limitation that appropriate initial relative positions
and orientations of input point sets should be provided to
find the optimum solution that best registers the two point
clouds. Moreover, nonrigid registration is not considered in
this paper because the 3D scanner is calibrated sophisticated
enough to have no scaling or skew problem. In this paper, we
focus on the problem of global registration with no scaling
effect. *erefore, ICP-based algorithms cannot be used in
our application. Instead, they can be considered for a more
refined result after the global registration solution is
obtained.

*e core step of global registration is to find corre-
spondence between two sets of points. Once the corre-
spondence is obtained, a rigid body transformation can be
computed from the correspondence to register the two
scans. Manual registration is highly time consuming because
it requires browsing each point set and looking for points or
geometric parts that exist in both of the point sets to establish
correspondence. Furthermore, it is not easy to findmatching
points between two point sets visually. *erefore, a method
that can find correspondence automatically is needed.

*e correspondence between two datasets can be de-
termined automatically with targets or markers. *is ap-
proach uses multiple known geometric shapes or markers,
such as spheres or distinctive patterns on the paper. *e
targets or markers are detected, and the corresponding
relations between them are established for registration
[3, 8–11]. It can produce accurate registration results as long
as the targets or markers are detected accurately and ro-
bustly; however, it requires that the targets should be
carefully installed and maintained in the area of interest.
Furthermore, they should remain unmoved during the ac-
quisition step, which is a restricted condition in an actual
industrial site. Besides, it is not easy to detect targets or
markers robustly.

A nonmarker-based method can be used to solve such
problems. Various features and descriptors computed from
the point sets are used for computing correspondence. Some
of the features are feature histograms (PFH), fast PFH,
radius-based surface descriptors, ensembles of shape func-
tions, or compact geometric feature descriptors [12–16].
However, it may take a long time to compute the features
because all of the points need to be used in the computation.
Filtering the point cloud can decrease the computation time
by reducing the number of points in each point set; however,
a feature loss can occur, thereby resulting in unsuccessful
registration. Moreover, the sampling density, the sampled
point distribution, and the noise level sensitively affect the
feature computation, and therefore, robust and consistent
features are not easy to obtain.

To overcome the drawbacks of feature-dependent
methods, feature-independent methods are developed such
as the reformative component registration algorithm [17]

and the 4-points congruent sets (4PCS) algorithm [18]. In
[17], the authors proposed a ship component accuracy
evaluation framework. *ey propose an algorithm that
registers the points of a component and the corresponding
CAD model by performing parallel transformation and
finding a correct registration direction without feature in-
formation. However, matching the center of gravity of the
point sets using parallel transformation can fail when one
input data is part of other data. Moreover, one entity should
be expressed as a NURBS surface to find the registration
direction, which is not a usual case in practice.

*e 4PCS algorithm is an extended version of the
RANdom SAmple Consensus (RANSAC) algorithm by [19].
It finds a congruent base in two point clouds P and Q by
introducing a 4-point set as a base to dramatically reduce the
time for estimating the optimal correspondence. *e main
advantage of the 4PCS algorithm is that it requires point
coordinates only and does not consider all the points during
the computation. However, the 4-point set in Q is randomly
selected, which means that its registration result can be
inconsistent or unstable depending on the choice of the 4-
points sets. We may avoid such a problem by considering
more points for the choice of the 4-point sets. However, it
would significantly extend the computation time when large
point sets are considered, which compromises the main
advantage of the algorithm.

*ere are some modified versions of the 4PCS algorithm
to boost both its performance and speed: the SUPER 4PCS
algorithm [20], the key-point-based 4PCS (K-4PCS) algo-
rithm [21], and the semantic key-point-based 4PCS algo-
rithm (SK-4PCS) [22]. *e flow of these algorithms is
essentially the same as that of the 4PCS method. *e SUPER
4PCS algorithm focuses on how to reduce the time for
searching congruent 4-points sets by reducing the search
range. *e K-4PCS algorithm, which was designed to handle
huge 3D terrestrial laser scanning data, introduces a pre-
processing stage that reduces the number of points through a
voxel grid filtering technique and estimates key points. *e
key points are used to construct congruent point sets, which
the 4PCS algorithm takes as input to produce a matching
result. Similar to the K-4PCS algorithm, the SK-4PCS al-
gorithm also applies the voxel grid filter and extracts se-
mantic key points from the nonground points. It shows
faster computation speed and better performance compared
to the K-4PCS algorithm, although the input point cloud is
limited to building scenes.*esemethods, however, have the
same problem as the 4PCS algorithm related to the random
base generation step.

In this study, we propose a feature-based 4PCS (F-4PCS)
algorithm, a hybrid approach that combines the stochastic
selection step of the 4PCS method for a reduced compu-
tation time with a deterministic search step of the feature-
based algorithm for improved consistency. *e algorithm
uses features based on the PFH descriptor and an additional
one using the surface curvature at each point. *e reduction
of computation time is achieved by reducing the number of
congruent sets based on the feature correspondence infor-
mation. *e consistency of the registration is realized by
choosing the congruent 4-point sets using feature
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information from the input point sets, thereby, eliminating
any random selection.

*e main contribution of the proposed method is as
follows. *e method overcomes the problems of the existing
4PCS algorithm and its variants. When a source and a target
point clouds are given, 4PCS algorithm and its variants
generate a random base or a 4-point set, with which the
registration computation is performed. *is means that a
different registration result could occur even though the
same input data is provided because of the random gen-
eration of the base. Namely, it often happens that regis-
tration can either succeed or fail, even for the same input
data. To solve this inconsistency problem, we propose an
approach that generates bases using feature information. We
newly introduce an improved PFH by using a new feature
that can capture the curvature property of the underlying
geometry and fuse it with the 4PCS method to overcome the
limitation of the 4PCS method while maintaining the
computation time. We checked that it always produces the
same registration results if the same inputs and parameters
are given, while the computation time for registration is
maintained similar to that of 4PCS algorithm and its
variants.

2. Technical Approach

2.1. Overview. In this section, we present the schematic
diagram of the proposed algorithm, as shown in Figure 1.
We assume that the target point cloud Q and the source
point cloud P are given as input. First, we preprocess P and
Q using a voxel grid filter to obtain filtered point clouds
Pv, Qv and compute features. Next, we compute the 4-point
sets B � a, b, c,d{ }, where B ∈ Qv and U′ � U1, U2, . . . , Uk􏼈 􏼉,
where Ui is the ith set of 4-points in Pv that is assumed to be
aligned with B when a proper transformation matrix is
applied to Pv up to a certain threshold δ. *e goal of the
proposed algorithm is to find the best corresponding base
U ∈ U′ when the base B is chosen in Qv. *e general
structure of the proposed algorithm is equal to the structure
of 4PCS algorithm, but two important steps of 4PCS al-
gorithm are modified: base B acquisition step and U′ ac-
quisition step. In B acquisition step, the first main step of our
approach, fixed bases B are generated using the proposed
feature information. *e second step is to find the set U′
using the feature information. *e third step is the selection
step that chooses the best correspondent set U to B from U′.
After these three steps are performed, a transformation
matrix Topt is computed using the relationship between B

and U. If the transformed Pv accurately aligns with Qv up to

δ after Topt is applied, the algorithm is terminated. If not, the
whole procedure is repeated until the termination condition
is satisfied or all the bases are used. After the algorithm is
terminated, the general point-to-point iterative closest point
(ICP) algorithm is used to refine the registration result [1]. In
the following sections, the preprocessing steps and the main
process of the proposed algorithm will be explained in detail.
*e notations used in this study are summarized in Table 1.

2.2. Voxel Grid Filtering. Massive 3D scan point clouds, P

and Q, are obtained by a 3D scanner. *erefore, we cannot
directly use them because the computation time taken to
process them would grow almost exponentially. We avoid
this problem by reducing the numbers of points of P and Q

with a voxel grid filter [23]. During the voxel grid filtering
procedure, we compute and save points pl

k, k � 1, . . . , Li

inside each subdivided 3D box and also compute the cen-
troid or the mean vector cl for each points set pl

k of an input
point cloud using equation

cl �
1
Li

􏽘

Li

k�1
pk, (1)

where the centroids cl become the new points of the input
point cloud. We apply this procedure to P and Q and obtain
filtered point clouds Pv and Qv.

2.3. Feature Computation. *e F-4PCS algorithm finds 4-
point sets B and U in Pv and Qv using features. *e features
used in the procedure are based on the PFH descriptor that
extracts unique features from the input point cloud using
only the Euclidean coordinates. We choose PFH descriptor
because it shows reliable registration results of laser scans
[12–16, 24]. *e feature histogram acquisition stage for a
given query point pc in the input point cloud is as follows
[24]. First, we search the K neighbourhood point set of pc.
*en, three geometric features f1, f2, f3 from the PFH
descriptor are computed:

f1 � v · nj,

f2 � u ·
pi − pj􏼐 􏼑

pi − pj

,

f3 � arc tan w · nj,u · nj􏼐 􏼑,

(2)

where ‖ · ‖ is the Euclidean L2 norm [25], pi and pj are from
the K neighborhood point set of a given query point pc, and

Is termination
condition
satisfied?

U selection

ICP algorithm 

No

Yes

B & U′

acquisition

Voxel Grid
filtering

&
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computation
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Figure 1: Flow chart of the proposed algorithm, where the boxes in the second and third columns are newly added/modified stages.

Mathematical Problems in Engineering 3

 2629, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/2480703 by G

w
angju Institute of Science and T

echnology (G
IST

), W
iley O

nline L
ibrary on [04/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



nj is a normal of pj.u, v,w are axes of the Darboux frame
defined by [15]. In the F-4PCS procedure, we use four
features f1, f2, f3, and f4, three of which are the same as
those of the PFH descriptor. *e main key difference from
the PFH descriptor is that we use one more feature f4. To
compute f4, we first obtain covariance matrices Ci using
equation (3) for all the filtered points of the input point
cloud.

C
i

�
1
Li

􏽘

Li

k�1
pi

k − ci􏼐 􏼑 pi
k − ci􏼐 􏼑

T
, (3)

where pi
k are the removed points in each 3D box and ci is a

centroid obtained from equation (1). Once Ci is computed,
we compute the eigenvalues λi

m, where m � 1, 2, 3 and i �

1, . . . , N∗ and N∗ is the number of the subdivided boxes
with Ll and l � 1, . . . , N using the symmetric QR algorithm
[26]. *en, finally we compute the feature f4 using equation
(4) and surface curvature σi based on the eigenvalues of the
covariance matrix C:

σi �
λi
1

λi
1 + λi

2 + λi
3

, λi
1 < λ

i
2 < λ

i
3,

f4 �
σi

σj

, σi < σj.

(4)

*e surface curvature depicts how much the underlying
shape is bent at a given point. In this case, the surface
curvature close to zero implies that the local geometric

structure is close to a planar surface. Note that the computed
eigenvalues λi

m and λj
m for the two different points pi and pj

are used to construct f4. *e main role is to recover the lost
geometric information before the voxel grid filtering because
λi

m and λj
m are computed from the removed points within

each 3D box. *en, we can form a new feature set
f1, f2, f3, f4.

*e procedure is repeated until the feature sets for all the
points in the K-neighborhood are computed. After the
feature sets are obtained, we perform a histogram binning
process that transforms the feature sets into the bins of a
histogram and creates a feature histogram FH with 81(34)
bins. For a more detailed instruction of the binning process,
refer to [27].

2.4. F-4PCSAlgorithm. *e essence of the F-4PCS algorithm
includes how to acquire B and U′, and how to select U that
yields the best result. In this section, each step of the F-4PCS
algorithm is presented in detail.

2.5. B Acquisition Step. *e first step of the F-4PCS algo-
rithm is to obtain the initial bases B1, B2, . . . , Bm􏼈 􏼉. We
construct the bases using the computed feature histograms
for all the points in Qv by the following procedure. When
one query point a � pq is selected in Qv, two most nearest
points, b and c are chosen using the similarity measure
‖FHa − FHi‖, where the lower value indicates higher simi-
larity and FHa represents a feature histogram of a in Qv. FHi

is a feature histogram of the point wi, wi ∈ Qv − a{ }. *en, a

Table 1: List of notations.

Variable Explanation
General
B 4-point set a, b, c, d{ } of the target point cloud Q

U′ Congruent 4-point sets to B of the source point cloud P

U Best correspondent set among U′

Voxel grid filtering and feature computation steps
L Number of points in a 3D box
c Centroid of the points in a 3D box
N Number of 3D boxes or filtered points in the voxel grid filtering step
pk Original point before the voxel grid filtering step
C Covariance matrix for the points in 3D box
pi, pj Points after the voxel grid filtering step
K Number of the used neighbourhood points to each query point pk

FH Proposed feature histogram created by the features f1, f2, f3, f4
Pv, Qv Filtered point clouds by the voxel grid filter
F-4PCS algorithm steps
p, q Points of Pv and Qv

e Intersection point of the line ab and c d of B

S Number of the nearest points to points of B
H Histogram to generate point pairs R1, R2
R Point pair which is composed of two points α1i , α2j
β Number of the bases of B′ in F-4PCS algorithm
o Overlap ratio of the transformed P and Q

δ Main threshold to control the range of congruent 4-points sets U′
T Set of transformation matrixes computed from U′ and B′
s Score threshold, a termination condition of F-4PCS algorithm
Topt Best transformation matrix among T
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triplet a, b, c{ } is obtained. We choose the fourth point d that
is the closest to the triangle created by the triplet to build a 4-
point set like the 4PCS algorithm does. We repeat this
procedure until m bases are obtained, wherem is the number
of the points in Qv.

*e next step is to filter them bases to reduce the number
of candidates because using all the bases is time consuming.
*e filtering procedure is to directly use the method by [28],
called a reciprocity test, which works as follows. First, for
each q ∈ Qv, we find themost similar or nearest neighbour of
q among p ∈ Pv using the computed feature histograms and
the similarity measure, and we similarly find the nearest
neighbour of p among Qv for each p ∈ Pv.

*en, we build correspondence sets κi
1 from these cor-

respondence results. After computing κi
1, we now select

correspondence pairs (p, q) from κi
1 if and only if p is the

nearest point from q and q is the nearest point of p from
(p, q). *e selected correspondence set is defined as κ2.

In B acquisition step, we use the reciprocity test to select
the reliable bases. *e base B is a 4-point set. So, we perform
the reciprocity test for all the four points. And, if one of the
points passes the test, we assume that the base is reliable. We
repeat this procedure for all the bases and build the base set
B′ that contains the total β bases. We move to the next step
after the base B is selected from B′ . Algorithm 1 summarizes
the entire B acquisition step, where FHp indicates the feature
histogram of Pv.

2.6.U′ Acquisition Step. After the 4-point set B is acquired,
we need to find the best congruent 4-points set U from Pv. In
order to build U, we construct the congruent 4-point sets U′.
First, the affine invariant ratios r1 and r2 are computed from
B using equation

r1 �
‖a − e‖
‖a − b‖

,

r2 �
‖c − e‖
‖c − d‖

,

(5)

where e is the intersection point of the lines ab and c d. Next,
we move to the point pair generation step to build point
pairs R

g
1 , Rl

2, which will be used to construct U′.
Point pairs R1, R2 are 2-point sets from Pv, which are

constructed based on the Euclidean distances ‖a − b‖ and
‖c − d‖. In this step, we use a new input parameter S of
F-4PCS algorithm, the nearest points in Pv of base B which is
used to filter unreliable point pairs using the computed
feature histograms FH and FHp. *e procedure of the point
pair generation step is composed of two steps: R1 and R2
generation steps.

In R1 generation step, we build point pairs based on the
distance ‖b − a‖, meaning we construct 2-point sets con-
gruent to the first point a and the second point b of the base
B in Qv. For a, we search the S nearest points in Pv using
‖FHa − FHp

i ‖, where FHa is the feature histogram of a and
FHp

i is the feature histograms of the ith point in Pv. *en, we
collect these nearest points and define them as the point set
α1, which is the set of congruent point candidates to a. In the

next step, we similarly find S nearest points of b in Pv using
‖FHb − FHp

i ‖, where FHb is the feature histogram of b, and
define these points as the another point set α2. Finally, we
build point pairs R

g
1 using α1 and α2. In order to build R

g
1 , we

construct two histogram sets Hh � αh
1, . . . , αh

S |h � 1, 2􏼈 􏼉 with
the length S for each histogram. *en, the point pairs R

g
1 are

created by Hh and the constraint that ‖α2j − α1i ‖≤ ‖b − a‖

from equation (6), which describes the general form of one
point pair. Note that the computation complexity of the
point pair generation step is O(S2 + k) since two histograms
Hh with length S are extensively compared:

R1 � α1i , α2j􏼐 􏼑|α1i ≠ α
2
j􏽮 􏽯, α2j − α1i

�����

�����≤ ‖b − a‖. (6)

In R2 generation step, a similar procedure is repeated to
build point pairs Rl

2, except that we find S nearest points of c
and d to obtain the point sets α1, α2. After obtaining the
point pairs R

g
1 , Rl

2, the point pair generation step ends and
moves to the final step of U′ acquisition step.

In the final step, the immediate points e1, e2, e3, e4􏼈 􏼉 are
estimated using all possible combinations of the point pairs
R1, R2 and the ratios r1, r2, are defined in equation

e1 � α1i + r1 α2j − α1i􏼐 􏼑,

e1 � α1i + r2 α2j − α1i􏼐 􏼑.
(7)

Here, for simplicity, only two immediate points corre-
sponding to R1 are described. Finally, we compare the
computed immediate points (e1, e2) from R1 with (e3, e4)
from R2 and construct Ui ∈ U′ when ‖e3 − e1‖, ‖e4 − e1‖,
‖e3 − e2‖, and ‖e4 − e2‖< 2δ; thus, the set Ui that is com-
posed of two point pairs are approximately congruent to B

[18]. *e complexity of the F-4PCS algorithm is O(S2 + k)

because generating point pairs takes most of the compu-
tation time. After U′ is obtained, the initial transformation
matrices T � T1,T2, . . . ,Tk􏼈 􏼉 between B and U′, and the
overlap ratios o are computed. To estimate an overlap ratio o,
we apply the transformation matrix Ti ∈ T to the source
point cloud Pv so that Pv aligns to the target point cloud Qv.

For each point of Pv, we estimate the distance between
the point and its closest point in Qv, and if the distance is less

Input: point clouds Pv, Qv and feature histograms FH, FHp

Output: Selected base set B′
for q ∈ Qv do
a⟵ q;
b, c⟵ two nearest points of a in Qv using FH;
d⟵MINqi∈Qv

‖qi − a, b, c{ }‖ where i � 1, . . . , m;
B⟵ a, b, c, d{ };

Set Initial bases Bi, where i � 1, . . . , m;
Construct correspondence sets κi

1 using FH, FHp;
for Bi do
Apply reciprocity tests to a, b, c, d{ } ∈ B;
if a or b or c or d passes the reciprocity test then
B ∈ B′;

return B′

ALGORITHM 1: B acquisition step.

Mathematical Problems in Engineering 5
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than an uncertainty measure (δ > 0), we conclude that the
points align and count them to compute the overlap ratio.
*is process continues for all values of Ui ∈ U′ to compute
the overlap ratio set oi � o1, o2, . . . , ok􏼈 􏼉, and both T and oi

are saved for the next main step. Algorithm 2 summarizes
the entire U′ acquisition step.

2.7.U Selection Step. U selection step is identical to the step
of 4PCS procedure. We choose the congruent base with the
highest overlap ratio obest among oi as the best congruent
base U � a′, b′, c′, d′􏼈 􏼉 from U′ , as shown in Figure 2. *en,
we check whether the overlap ratio obest satisfies a termi-
nation threshold s and terminates if obest ≥ s, choosing Ti of
U as an final initial transformation matrix Topt, the final
output of F-4PCS algorithm. Otherwise, the algorithm goes
back to the B acquisition step, selecting the next base B from
B′ and repeats the whole procedure until s is satisfied or all
the bases are used.

If the F-4PCS algorithm fails to reach the score s after
using all the bases, we collect the best transformation ma-
trices Tβ

i from Ui, where β is the total number of B′ , and
chooseTβ

i with the highest overlap ratio among o
β
best from Tβ

i

as the final initial transformation matrix Topt. After the
F-4PCS algorithm is terminated, the point-to-point ICP
algorithm is applied to refine the registration result for
further optimization. Algorithm 3 summarizes the proposed
F-4PCS algorithm, including the B and U′ acquisition steps,
which are unique from the 4PCS-based algorithms.

2.8. Problems of 4PCS and SUPER 4PCS Algorithms. *e
F-4PCS algorithm shares the same overall structure as the
4PCS algorithm; however, it can handle the problems of the
latter effectively.

First, the base B is randomly generated in the 4PCS
algorithm by randomly sampling the points from Q. *us,
the registration result of the 4PCS algorithm can be different
for each run, causing the inconsistent registration results.
However, the F-4PCS algorithm produces consistent reg-
istration results because the F-4PCS algorithm does not
randomly generate a base but a fixed base for each run.
Second, in the U′ acquisition step, generation of R1 and R2 is
different between the 4PCS algorithm and the F-4PCS al-
gorithm.*e 4PCS algorithm goes over all the points in P to
build R1 and R2 by only allowing point pairs the distance of
which is less than ‖a − b‖ or ‖c − d‖ of B, resulting in its time
complexity of O(n2 + k). *us, the problem is that the total
number of possible point pair combinations becomes ex-
tremely large when the size of the input data is huge, leading
to a long computation time. In the F-4PCS algorithm, on the
other hand, two histograms H1 and H2 with the length S≪ n

obtained from the method in U′ acquisition step are used to
compute the corresponding point pairs, and so its com-
plexity becomes O(S2 + k), which is lower than that of the
4PCS algorithm.

*e SUPER 4PCS algorithm shares the structure of the
F-4PCS algorithm because it is an extended version of the
4PCS algorithm. *e time complexity of the SUPER 4PCS
algorithm is O(n + k1 + k2), which can be lower than the

complexity of the F-4PCS algorithm depending on the
choice of the parameter S. However, the SUPER 4PCS al-
gorithm randomly generates bases in the similar way to the
4PCS algorithm; thus, it also produces different registration
results, even though the same input data is used.*erefore, it
produces inconsistent registration results, which is the same
problem we face with the 4PCS algorithm.

3. Results and Discussion

To demonstrate the performance of the F-4PCS algorithm,
three actual 3D datasets acquired from different scanners are
used. *e algorithm is compared with the 4PCS, K-4PCS,
and SUPER 4PCS algorithms with the same voxel grid filter
size. SK-4PCS algorithm is not used for experiments because
datasets do not have major ground planes, which is nec-
essary for SK-4PCS algorithm. *e common input param-
eters are an approximation level δ that affects the range of
possible matched bases U′, a score s that is a termination
condition, an overlap fraction that is a ratio showing how
much two point clouds overlap, and the voxel grid filter size
that is the cube dimension size used to filter the points in
meter. For the F-4PCS, 4PCS, and K-4PCS algorithms, the
parameters δ, s and the overlap fraction are fixed to 0.1, 0.9,
and 0.5. However, δ � 0.5 was used for the SUPER 4PCS
algorithm with Dataset 1 experiments because, with δ � 0.1,
the algorithm always failed to find a registration result. *e
voxel grid filter size is set to 2.5 for Dataset 1, 0.4 for Dataset
2, and 2.0 for Dataset 3, where 1.0 corresponds to one meter.
In the F-4PCS algorithm, we set the number of neigh-
bourhood points to be 25 (K� 25) for each point in the
feature computation step and set S to 150 for Dataset 1, 350
for Dataset 2, and 200 for Dataset 3. For a fair comparison of
the existing methods with the proposed one, we used the
same parameter values, except one case. *e selected pa-
rameter values were chosen empirically by considering the
properties of the input data points and the performance of
each algorithm. *e original implementation of the SUPER
4PCS algorithm is modified to use OpenGR library [29] and
a voxel grid filter for a fair comparison. To boost the speed of
computation of the algorithms, OpenMP library [30] is
applied to all the algorithms. *e F-4PCS, 4PCS, and
K-4PCS algorithms are compiled and tested in a C++ en-
vironment with Visual Studio 2015 while the SUPER 4PCS
algorithm is compiled and tested with Visual Studio 2017
because OpenGR library is not compatible with Visual
Studio 2015. A hardware system used in the tests has an Intel
core i7-6700k CPU and 32GB RAM on the 64-bit Windows
10 platform.

To test the performance of the algorithms, the root mean
square error (RMSE) from equation (8) for the transformed
P and Q is used, where qi ∈ Q is the closest point to pi ∈ P,
and n is the total number of points in P.

RMSE �

������������

􏽐
n
i�1 pi − qi( 􏼁

2

n

􏽳

. (8)

In addition, we estimate RMSEICP, the RMSE after the
general point-to-point ICP algorithm. We estimate the
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computation time t in seconds. *e tested algorithms except
F-4PCS produce different results for the same inputs because
of their randomly selected bases; thus, we run each test five
times for each two input point clouds to compute the av-
erage of the computation time and their RMSEs.

3.1. Dataset 1. Dataset 1 contains 13 point clouds of an
offshore plant with multiple structures and cranes. *ey
were obtained using a FARO scanner moving around the
offshore plant. *e numbers of points in each scanned point

set are in the range of two to four millions, and the average
number of the filtered points by the voxel grid filter is 2,375.
We consecutively perform a pairwise registration for Dataset
1, so there are a total of 12 pairwise registrations. Notice that
a huge crane in the right side was continuously moving
during the 3D data acquisition step, so the positions of the
crane are different in each point cloud or part of the crane
was cut off in some data as we can observe in Figure 3.

Table 2 shows the average evaluation results for the 4PCS,
K-4PCS, SUPER 4PCS, and F-4PCS algorithms with Dataset
1. *e 4PCS algorithm shows reasonable performance with

Q B

e1

a

b

d

c

P

c′

b′

d′

a′

U

e2

Figure 2: Selected base B � a, b, c, d{ } in Q and its congruent base U � a′, b′, c′,d′􏼈 􏼉 in P.

Input: base B, parameter S, point clouds Pv, Qv and feature histograms FH, FHp

Output: Congruent base set U′, Transformation matrix set T and overlap ratio set oi

Compute ratios r1, r2;
R

g
1 , Rl

2⟵ Point pairs generation step;
for R1 ∈ R

g
1 do

for R2 ∈ Rl
2 do

Compute immediate points e1, e2, e3, e4􏼈 􏼉;
Ui⟵ R1, R2􏼈 􏼉;
if ‖ei − ej‖< 2δ, where i � 3, 4 and j � 1, 2 then

Compute transformation matrix Ti and overlap ratio o;
Ui ∈ U′;
Ti ∈ T;
o ∈ oi;

return U′,T, oi

ALGORITHM 2: U′ acquisition step.

Input: point clouds P, Q

Output: Initial transformation matrix set Topt that aligns P to Q

Apply a Voxel grid to P and Q to reduce their size;
Compute feature histograms FHi, FH

p

j from Pv, Qv;
Base set B′⟵ Algorithm 1: B acquisition step;
for B ∈ B′ do

U′,T, oi⟵ Algorithm 2: U′ acquisition step;
U,Ti, obest⟵ U selection step;
if obest ≥ s then
Topt⟵Ti;
return Topt;

Set Transformation matrices Tβ
i and overlap ratios o

β
best;

Set Ti ∈ T
β
i , where its oi � MAXoi

best;
Topt⟵Ti;
return Topt

ALGORITHM 3: F-4PCS algorithm.

Mathematical Problems in Engineering 7
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the RMSE of 1.49m and the average computation time of
14.6 s. However, the 4PCS algorithm sometimes fails to find
correct results for Cases 5, 6, 7, and 9. *e K-4PCS algorithm
is faster than the 4PCS algorithm with an average compu-
tation time of 8.35 s. However, the K-4PCS algorithm fails
more often than the 4PCS algorithm for a repetitive test of
each case, resulting in the worst average RMSE of 4.19m.*e
SUPER 4PCS algorithm achieves the fastest computation time
among the tested algorithms with only 3.85 s, and its per-
formance is the best in some registrations such as Case 3 with
RMSE 0.99m. However, it sometimes fails to find correct
registration results just like the 4PCS and K-4PCS algorithms
for Cases 5, 6, 7 and 9, where the 4PCS algorithm also fails,
resulting in the average RMSE of 2.23m. *e F-4PCS algo-
rithm fails to find a correct registration of Case 5 but succeeds
to register more input cases than the others. Figure 4 shows
the registration results of Cases 6 and 9 by 4PCS algorithm
and the F-4PCS algorithm, where the red point cloud is a
target and the green point cloud is a source. While 4PCS
algorithm fails to register the top parts of themain structure in
Figures 4(b) and 4(e) for both cases, the F-4PCS successfully
registers the main structures, producing the average RMSE
1.23m and the computation time of 6.73 s.

*e inconsistent results of the 4PCS, K-4PCS, and
SUPER 4PCS algorithms are shown in Figure 5. All the three

algorithms produce different registration results for each
run, even though the same input data is used. On the
contrary, the F-4PCS algorithm achieves a consistent reg-
istration result.

3.2. Dataset 2. Dataset 2 is composed of indoor scenes
around pipes in the shipyard. It includes various pipes,
conveyor belts, wrapped structures, and workers, as we can
see in Figure 6, where a black circle indicates the location of a
3D scanner during the 3D data acquisition step. We can see
that a scan range of some data such as Figure 6(a)–6(c) are
smaller than the range of the other data such as Figure 6(d).
*is is because the pipes or structures blocked the scanning
range during the scanning step. *e data sequence is
composed of 11 point clouds that were consecutively taken
bymoving the laser scanner, and the density of each point set
is far lower than that in Dataset 1. We set S to 350, which is
higher than that for Dataset 1 because the acquired point
clouds of Dataset 2 contain more noise than the point clouds
of Dataset 1. *e total numbers of the points in each point
cloud are in the range of about seventy thousands to one
million, and the average number of the filtered points by the
voxel grid filter is 1,230. Overall, ten pairwise cases of
registration are performed.

(a) (b)

Figure 3: Source input data of case 1 with (a) a front view and (b) a side view.

Table 2: Dataset 1 registration results of 4PCS, K4PCS, SUPER 4PCS, and F-4PCS algorithms.

4PCS K-4PCS

Avg. t (s) RMSE (m) RMSEICP (m) t (s) RMSE (m) RMSEICP (m)

14.6 1.39 0.94 8.35 4.19 1.49
Super 4PCS F-4PCS (proposed)

Avg. t (s) RMSE (m) RMSEICP (m) t (s) RMSE (m) RMSEICP (m)

3.85 2.23 1.15 6.73 1.23 0.84

8 Mathematical Problems in Engineering
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*e registration results of the 4PCS, K-4PCS, SUPER
4PCS, and F-4PCS are summarized in Table 3. *e 4PCS
algorithm sometimes cannot find appropriate congruent 4-
points sets U and fails in 8 out of 10 pairwise registrations.

*erefore, the algorithm finishes earlier than expected be-
cause it reaches the maximum iteration number without
successful registration results. *us, it ends up with a high
RMSE of 0.91m, but with a low computation time. *e

Input 4PCS F-4PCS (proposed)

(a) (b) (c)

(d) (e) (f)

Figure 4: Input data sequences of case 6 (first row) and case 9 (second row) and the initial registration results. (a) and (d) are the input
datasets of case 6 and case 9 before registration, (b) and (e) are the results by 4PCS, and (c) and (f) by the F-4PCS algorithms. *e dashed
rectangular areas are magnified for better visualization.

4PCS K-4PCS SUPER 4PCS

(a) (b) (c)

(d) (e) (f)

Figure 5: Inconsistent initial registration results of case 9. (a) and (d) are the results by 4PCS, (b) and (e) by K-4PCS, and (c) and (f) by
SUPER 4PCS algorithms when the input of case 9 in Figure 4(c) is given.

Mathematical Problems in Engineering 9
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K-4PCS algorithm successfully registers 8 out of 10 regis-
trations and sometimes fails for 4 and 7 cases, reaching the
lowest RMSE of 0.59m. However, the average computation
time reaches up to 1554.33 s, which is inappropriate for
actual use.*emain cause of the large computation time lies
in the keypoint extraction stage because this is the only
difference from the 4PCS algorithm. We were unable to run
five times for the K-4PCS algorithm since some registrations
took more than two to three hours, so we only ran three
times per each scan pair. *e SUPER 4PCS algorithmmostly
fails to align the sequences, registering only 1 out of the ten
input cases. In addition, its average computation time,
51.76 s, is higher than the 4PCS and F-4PCS algorithms.
F-4PCS successfully registers 8 out of 10 registrations except
Cases 5 and 10 with a reasonable average computation time
of 16.87 s, achieving the lowest RMSE of 0.55m, as shown in
Figure 7. We can see that the portable ladder and conveyor
belts in the scan data do not match when the SUPER 4PCS
algorithm is used because it only registers the major ground
plane, while the F-4PCS algorithm successfully registers
them.

3.3. Dataset 3. Dataset 3 is a construction site scene of an
offshore plant, where various pipes and parts are installed. It
is composed of one CADmodel and ten raw point clouds, as
shown in Figure 8. *e CAD model is a 3D map data of the

completed offshore plant, and the total number of point of
which reaches about 80,000. *e raw point clouds are taken
from the actual scene of the offshore plant by a mobile
device, Lenovo Phab 2 Pro for a few seconds. *e raw point
clouds may contain temporary supports, scaffolds, and
wrapped components, and the total numbers of the points in
each point cloud are only in the range of about twenty to
thirty thousands. We aligned the raw point clouds to the
CADmodel, and raw point clouds were obtained around the
pipe displayed in the dotted box from Figure 8(a). *e
parameter S is set to 200, which is higher than S of Dataset 1
and lower than S of Dataset 2 to take it into account that the
CADmodel is accurate, while the raw point clouds contain a
high level of noise compared to Dataset 1.

Ten registrations are performed for this experiment, and
the registration results are summarized in Table 4. Notice
that the total number of the filtered CADmodel is 5,122, and
the average number of filtered points of source point cloud is
636. All the algorithms except F-4PCS fail to find any
transformation matrices for all the data sequences, so the
results of them are not included. *is is because the point
density of the source point sets is much lower than the target
point cloud, and the dimension of the target point cloud is
much larger than that of the source point cloud. Further-
more, the source point clouds contain temporary supports,
scaffolds, and other unexpected parts that may not be in-
cluded in the CAD model. *erefore, randomly generated

(a) (b)

(c) (d)

Figure 6: Raw input data sequence of case 1 and case 7, where (a and b) are of Case 1 and (c and d) are of case 7.

Table 3: Dataset 2 registration results of 4PCS, K4PCS, SUPER 4PCS, and F-4PCS algorithms.

4PCS K4PCS

Avg. t (s) RMSE (m) RMSEICP (m) t (s) RMSE (m) RMSEICP (m)

9.19 0.91 0.63 339.43 0.59 0.42
Super 4PCS F-4PCS (proposed)

Avg. t (s) RMSE (m) RMSEICP (m) t (s) RMSE (m) RMSEICP(m)

51.76 0.71 0.68 16.87 0.55 0.47
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bases from the target point cloud will most likely fail to find
congruent bases from the source point cloud, meaning any
randomized scheme will not work for this type of datasets.
On the contrary, F-4PCS algorithm successfully registers 8
out of 10 registrations as we can observe results in Figure 8,
with the average RMSE of 0.18m. Some of the registration
results are shown in Figure 8. In addition, its computation is
4.89 s on average, which is appropriate for actual use. *e
initial registration results are further refined by the ICP
algorithm to produce the RMSE of 0.18m.

3.4. PFH Descriptor vs. Modified PFH Descriptor. In this
section, we analyse the time and performance of the pro-
posed PFH histogram that uses an additional feature f4. For
a fair comparison, all other parameters are set to be equal.

Table 5 presents the evaluation results of the PFH de-
scriptor-based F-4PCS algorithm for all the datasets. In the
experiment with Dataset 1, the computation times of the
PFH and the modified PFH histograms are almost identical;
however, the PFH histogram-based F-4PCS fails to register
Case 9, while the modified PFH-based F-4PCS algorithm
successfully registers the sequence. *e average RMSE and
RMSEICP of PFH-based F-4PCS are 2.42m and 1.37m,
which are higher than other algorithms except K-4PCS al-
gorithm. In the experiment with Dataset 2, the computation
time is lower than the F-4PCS algorithm, and RMSE is
slightly lower than the F-4PCS algorithm. However, the

(a) (b)

(d)(c)

(e) (f)

Figure 7: Input data sequences and initial registration results of case 5 (first column) and case 10 (second column). (a and b) are initial poses
of Case 5 and Case 10 before registration, (c and d) are the results by the SUPER 4PCS, and (e and f) by the F-4PCS algorithms. *e ground
planes are removed for better visualization.

(a) (b)

Figure 8: *e top view of the raw CAD data (a) wherein the zoomed pipe is displayed in dotted rectangular box and raw point cloud
acquired by a mobile device is displayed in (b). *e ground plane of CAD data is removed for better visualization.

Table 4: Dataset 3 registration results of F-4PCS algorithms.

t (s) RMSE (m) RMSEICP (m)

Avg 4.89 0.19 0.18

Mathematical Problems in Engineering 11
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performances of both algorithms are similar to each other
since they both successfully register 8 out of 10 registrations
for all the same data sequences. For Dataset 3, its average
computation time is 11.61 s, which is higher than the pro-
posed F-4PCS algorithm. Although the RMSE of PFH de-
scriptor-based F-4PCS algorithm is similar to the RMSE of
the proposed F-4PCS algorithm, the modified PFH-based
F-4PCS algorithm actually successfully aligns only 4 out of
10 registrations while the proposed F-4PCS algorithm
successfully registers 8 out of 10 registrations. In fact, the
main cause of a low RMSE is that the moved source point
clouds attach to other pipes or parts of the target CAD data.
*e failure registration cases of the PFH-based F-4PCS al-
gorithm for Datasets 1 and 3 are shown in Figure 9.

In conclusion, the performance and computation time of
the two versions of the F-4PCS algorithm are similar to each
other in some datasets; however, the PFH-based F-4PCS
algorithm fails in one more case with Dataset 1 and fails to
align 6 out of 10 registrations with Dataset 3, thereby
showing that the proposed feature descriptor is better than
the PFH descriptor.

3.5. Data with Noise and Outliers. In this section, we tested
the F-4PCS algorithm with data that includes noise or
outliers. We used a hippo model in [20]. *e input pa-
rameters are equal to the parameters used for the earlier

datasets, except S that it is set to 100, and the voxel grid filter
size is set to 2.0.

We apply a zero-mean additive random Gaussian noise
with variance σ2 to the input points, similar to that in the
4PCS algorithm tests discussed in [18]. *e registration
process is successful when σ � 0.05 and 0.1, as shown in
Figure 10. However, sometimes registration fails when
σ ≥ 0.1, and the algorithm does not work at all when σ > 0.2.
*is is because the F-4PCS algorithm depends on the feature
descriptors, which often fail to find correspondence infor-
mation when the data is highly corrupted with significant
noise.

In the experiments using data with outliers, random
noise points are added to the original point clouds within
their bounding boxes, and the number of outliers are set to ρ.
*e percentage of the original number of point clouds is
exactly the same as that of the 4PCS algorithm experiments
in [18]. We tested three cases when ρ are set to 10, 20, and
40%.

*e F-4PCS algorithm successfully aligns the hippo
models up to 20% without a failure. Even when it reaches up
to 40%, which is the maximum percentage that the 4PCS
algorithm used in the experiments, it rarely fails to align the
point clouds, as shown in Figure 11.*is is because the voxel
grid filter effectively removes the outliers.

From these experiments, we found that the F-4PCS
algorithm is less robust to Gaussian noise as compared to the

Table 5: Registration results of PFH-based F-4PCS algorithms.

Dataset 1

Avg t (s) RMSE (m) RMSEICP(m)

13.53 2.42 1.37
Dataset 2

Avg t (s) RMSE (m) RMSEICP(m)

10.97 0.43 0.38
Dataset 3

Avg t (s) RMSE (m) RMSEICP(m)

11.61 0.18 0.15

(a) (b)

Figure 9: Registration failure cases for (a) Dataset 1 and (b) Dataset 3 of PFH-based F-4PCS algorithm.
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4PCS algorithm and is as robust as the 4PCS algorithm to
outliers.

However, the two input datasets are prepared to have a
large overlap area, as shown in Figure 12, which we barely
encounter in practice. Inmany cases, we end up having point
sets similar to Datasets 1, 2, and 3, with which the proposed
algorithm works much better than the existing ones because
the probability of actual datasets possessing outliers is much
more than them possessing artificial Gaussian noise.
*erefore, the F-4PCS algorithm can be used to align the
actual 3D data obtained from a laser scanner in industrial
environments.

4. Conclusions

In this study, we propose the F-4PCS algorithm for regis-
tering 3D scans used in industrial environments. *is al-
gorithm is an extended version of the 4PCS algorithm, which
overcomes the drawbacks of the 4PCS algorithm and its
variants. Furthermore, it is designed to improve the con-
sistency of the registration results and reduce the compu-
tation time.

*e proposed algorithm uses scanned points instead of
extra markers for registration. Moreover, this method is a
global registration scheme that does not require any

(a) (b) (c) (d)

Figure 10: F-4PCS algorithm initial registration results of the hippo models with Gaussian noise of different σ values for (a) original input,
(b) σ � 0.05, (c) σ � 0.1, and (d) σ � 0.2.

(a) (b) (c)

Figure 11: F-4PCS algorithm initial registration results of the hippo models with outliers of different ρ values for (a) ρ � 10%, (b) ρ � 20%,
and (c) ρ � 40%.

(a) (b)

(c) (d)

Figure 12: Initial registration results of the F-4PCS algorithm. (a and c) are initial poses of Cases 1 and 9 and (b and d) are initial registration
results.
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approximate initial registration or correspondence, and it
automatically performs registration, which are two advan-
tageous features for practical use.

However, this method yields only an approximate reg-
istration result, which should be followed by a refining
registrationmethod, such as ICP, to achieve high accuracy in
registration. Furthermore, the computation time of the
proposed registration method is another problem that
hinders its real-time application. *us, enhancing the ac-
curacy and reducing the computation time are two topics
that we recommend for future work.

Data Availability

Previously reported point cloud data in Figures 10 and 11
were used to support this study and are available at https://
geometry.cs.ucl.ac.uk/projects/2014/super4PCS/. *ese
prior studies and datasets are cited at relevant places within
the text [20]. *e other point cloud data used to support the
findings of this study were supplied by Samsung Heavy
Industries under license and so cannot be made freely
available. Requests for access to these data can be made to
the corresponding author.
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