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a b s t r a c t

This paper proposes a generalized weak rigidity theory, and aims to apply the theory to formation
control problems with a gradient descent flow law. The generalized weak rigidity theory is utilized
in order to characterize desired rigid formations by a general set of pure inter-agent distances and
subtended angles, where the rigid formation shape with distances and subtended angles is determined
up to translations and rotations (if the formation shape is composed of only subtended angles, then it
is determined up to translations, rotations and, additionally, scaling factors). As the first result of its
applications, this paper provides analysis of local exponential stability for a formation control system
with pure distance/angle or only angle constraints in 2- and 3-dimensional spaces. Then, as the second
result, it is shown that if there are three agents in 2-dimensional space then almost global exponential
stability is ensured for a formation control system with pure distance/angle or only angle constraints.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Based on the rigidity theories, distributed formation control
as been investigated under the networked multi-agent sys-
ems [1–4]. In formation control problems, the rigidity theories
ave been key concepts to characterize a rigid formation shape1
ith a specific set of constraints, such as distances, bearings, sub-
ended angles, etc. The rigidity theories can briefly be classified
ccording to types of constraints; for example, distance based
igidity theory, bearing based rigidity theory, angle based rigidity
heory and mixed rigidity theory.

In particular, based on use of the distance based rigidity (dis-
ance rigidity) theory [5–8], formation control problems have
een extensively studied [3,9–12], where a rigid formation is
haracterized by constraints of inter-agent distances. In formation
ontrol with the distance rigidity theory, each agent is required
o sense relative positions of its neighbors. In terms of the bear-
ng based rigidity (bearing rigidity or parallel rigidity) theory
13–16], inter-agent bearings are used to achieve a unique for-
ation shape (up to translations and scaling factors) with which

ormation control problems have been also studied [15–17]. This

✩ This paper includes the material in the preprint version (Kwon and Ahn,
2018). This work was supported by National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (2019R1A4A1029003)

∗ Corresponding author.
E-mail address: hyosung@gist.ac.kr (H.-S. Ahn).

1 In this paper, a formation shape is said to be rigid if smooth motions of all
gents are those corresponding to trivial motions, such as translation, rotation
nd scaling of the entire formation, without deformation of the formation shape.
 t
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167-6911/© 2020 Elsevier B.V. All rights reserved.
approach makes use of measurement of relative bearings or po-
sitions of its neighbors in formation control. In recent years,
formation control problems based on the angle based rigidity
theory and mixed rigidity theory have attracted much research
interest [2,18–25].2

This paper particularly focuses on formation control based
on the mixed rigidity theory with distances and subtended an-
gles, where the rigidity theory with distances and subtended
angles is called weak rigidity theory [19–22]. In addition, for-
mation control with only subtended angles is also of interest
to this paper. Although there have been several studies on for-
mation control with angle information over undirected sensing
networks [26–29], such studies are not completed yet. For exam-
ple, the works [26–28] propose 3-agent formation control laws
to achieve local exponential convergence or global asymptotic
convergence of 3-agent formations in 2-dimensional space, and
the work [29] only considers local exponential convergence of
multi-agent formations in 2-dimensional space. Compared with
the existing formation control problems involving only subtended
angles, we will show that our proposed control law can guaran-
tee local exponential convergence of multi-agent formations in
3-dimensional space as well as 2-dimensional space, and global
exponential convergence of 3-agent formations in 2-dimensional
space. The main motivation on studying such formation control
is that distance constraints (edges) in characterizing rigid forma-
tions (graphs) can be removed, which leads to the reduction of

2 The concept of the stiffness introduced in [18,24,25] could be regarded as
he concept of the rigidity.

https://doi.org/10.1016/j.sysconle.2020.104800
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
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he number of agents that control scaling factors of a formation
n formation control. This motivation is explained in detail in
emark 1 in Section 2.
In fact, although the weak rigidity theories in [19–22] are con-

eptually similar in the sense that subtended angle information
s used, the weak rigidity theories have been interpreted in a
ifferent way. To distinguish the existing relevant works, we call
he theories of Park et al. (2017) [19], Jing et al. (2018) [20] and
won et al. (2018) [22] basic weak rigidity theory, type-1 weak
igidity theory and type-2 weak rigidity theory, respectively, in this
aper. In the work based on the basic weak rigidity theory [19],
he authors introduced the weak rigidity theory for the first
ime, where the theory is studied with some special cases in
he 2-dimensional space. In accordance with the definition of the
asic weak rigidity theory, a rigid formation has to be composed
f triangular formations, and each triangular formation should
ave two adjacency distance constraints to define a subtended
ngle constraint. For example, as shown in Fig. 1(a), two distance
onstraints for a subtended angle constraint should be defined
or the triangular formation. Based on the type-1 weak rigidity
heory [20], inner products of inter-agent relative positions can
e regarded as angle constraints to characterize rigid formations;
owever, such an inner product cannot be regarded as pure angle
nformation. We would like to remark that the inner products of
nter-agent relative positions are distinct from the inner products
f inter-agent relative bearings, i.e., cosines of subtended angles
mong agents. The inner product of inter-agent relative positions
sed in the type-1 weak rigidity theory includes distance and
ngle information simultaneously, which implies that it could
nclude redundant information when characterizing rigid forma-
ions. For example, considering two inner products z⊤

21z31 and
⊤

13z23, where zij denotes a relative position from agent j to agent
, we can observe that the Euclidean norm of z13 is redundantly
nvolved. Moreover, the type-1 weak rigidity theory cannot con-
ider rigid formations with only subtended angle information. In
ecent years, the type-2 weak rigidity theory [21,22] has been
ntroduced, where the concept of the type-2 weak rigidity theory
s the extended concept from the basic weak rigidity theory but
istinguished from the type-1 weak rigidity theory by types of
onstraints. Compared with the type-1 weak rigidity theory, the
ype-2 weak rigidity theory involves pure distance/angle or only
ngle constraints without any redundant information; for exam-
le, see Fig. 1(b). In particular, based on the type-2 weak rigidity
heory, one can achieve a rigid formation with only subtended an-
le constraints as shown in Fig. 1(c) whereas one cannot achieve
t based on the type-1 weak rigidity theory. The comparison
etween the type-1 and type-2 weak rigidity theories is again
ighlighted in Remark 2 in Section 3.
Based on the type-1 weak rigidity theory, the studies on multi-

gent formation control in the d-dimensional space are almost
ompleted in [20]. On the other hand, there are still many tasks
hat need to be studied in the case of the type-2 weak rigidity
heory in d-dimensional space. In this sense, this paper aims to
xplore the type-2 weak rigidity theory and, further, to apply
he theory to formation control. In this paper, to differentiate
etween the weak rigidity theories, the extended concept from
he type-2 weak rigidity theory is named generalized weak rigidity.
onsequently, the main contributions of this paper are summa-
ized as follows. First, we introduce the concepts of generalized
eak rigidity and generalized infinitesimal weak rigidity in 2- and
-dimensional spaces. These concepts are used to examine
hether or not a given formation with pure distance/angle or
nly angle constraints is rigid or globally rigid. We then show
hat both concepts are generic properties. Moreover, it is shown
hat the generalized weak rigidity theory is a weaker condition
han the conventional distance rigidity theory. Second, we apply
2

he generalized weak rigidity theory to formation control with a
radient descent flow law. Based on the generalized weak rigidity
heory, we provide analysis of local exponential stability for a n-
agent formation control system in 2- and 3-dimensional spaces,
and further analysis of almost global exponential stability for a
3-agent formation control system in 2-dimensional space.

The rest of this paper is organized as follows. Preliminaries,
notations and motivation are briefly given in Section 2. Then,
Section 3 presents the generalized weak rigidity theory. Based
on the rigidity theory, Sections 4 and 5 discuss analysis of lo-
cal convergence and almost global convergence of formations,
respectively. Finally, Section 6 provides conclusion and summary.

2. Preliminary

Let ∥ · ∥ and |S| denote the Euclidean norm of a vector and
cardinality of a set S , respectively. The symbols Null(·) and rank(·)
denote the null space and rank of a matrix, respectively. The
symbol IN ∈ RN×N denotes the identity matrix, and the symbol
1n ∈ Rn denotes a vector whose all entries are 1 as 1n =

[1, . . . , 1]⊤. We define an undirected graph G as G = (V, E),
where V = {1, 2, . . . , n} denotes a vertex set and E ⊆ V × V
denotes an edge set with m = |E|. Since an undirected graph
is considered, it is assumed that (i, j) = (j, i) for all i, j ∈ V .
An angle set A ⊆ V × V × V is defined as A = {(k, i, j) |

θ k
ij is assigned to i, j, k ∈ V, θ k

ij ∈ [0, π]} with w = |A|, where
θ k
ij denotes an angle subtended by the adjacent edges (i, k) and
(j, k), where the adjacent edges (i, k) and (j, k) do not necessarily
belong to G. Angles used in this paper have no directions and
signs. For a position vector pi ∈ Rd, we define a configuration
p of G as p = [p⊤

1 , . . . , p⊤
n ]

⊤
∈ Rdn and define a framework as

(G,A, p) in Rd. A formation is regarded as a framework in this
paper. We define a relative position vector as zij = pi − pj for a
framework (G,A, p), (i, j) ∈ E and i ̸= j. We set the order of the
associated relative position vectors zij as zgij = zij, g ∈ {1, . . . ,m}.
Similarly, for (k, i, j) ∈ A and h ∈ {1, . . . , w}, a cosine Ahkij is
defined as Ahkij = cos θ k

ij . It is remarkable that Ahkij is equivalently

represented as Ahkij = cos θ k
ij =

z⊤ki zkj
∥zki∥∥zkj∥

=
∥zki∥2+∥zkj∥2−∥zij∥2

2∥zki∥∥zkj∥
. We

ccasionally make use of zg and Ah for notational convenience
nstead of zgij and Ahkij , respectively, if no confusion is expected.
ote that, in this paper, we focus on problems only in 2- and
-dimensional spaces, i.e., d = 2, 3.

Remark 1. The advantages of formation control studied in this
paper are mainly threefold. First, the proposed formation control
protocol with pure distance/angle constraints is convenient to
control scalings of formations compared with the formation con-
trol system composed of only distance constraints; for example,
when we want to control a scaling of the formation illustrated in
Fig. 2(b), we only need to control the distance constraint between
agents 1 and 2 while all distance constraints of the formation
illustrated in Fig. 2(a) have to be controlled. This is due to the
fact that pure angle constraints are invariant to trivial motions
corresponding to translations, rotations and scalings of an en-
tire formation while distance constraints are invariant to only
a subset of the motions, i.e., translations and rotations. Second,
the proposed control system is a distributed multi-agent system,
that is, each agent only needs to measure relative positions of
its neighbor agents with respect to its local coordinate system.
Third, orientations of agents do not need to be aligned and each
agent does not require any orientation information in formation
control. These advantages can be found in Sections 4 and 5.
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c

Fig. 1. Triangular formations with different constraints. The symbol dij denotes a distance constraint between vertices i and j, and the symbol θ k

ij denotes an angle
onstraint subtended by edges (i, k) and (j, k). The dashed lines indicate virtual edges which are not distance constraints.
Fig. 2. Examples of rigid formations in R2 , where the solid lines denote distance
constraints, and the dashed lines denote virtual edges which are not distance
constraints. Angle constraints are denoted by θ k

ij , (k, i, j) ∈ A.

3. Generalized weak rigidity

In this section, we introduce a generalized weak rigidity theory
in Rd. The basic concept on the theory is related to how to exam-
ine whether or not a rigid formation shape can be determined up
to a translation and a rotation (and additionally, for specific cases,
a scaling factor) by given relative distance and subtended angle
constraints.

3.1. Generalized weak rigidity (GWR)

In order to define the concept of the generalized weak rigidity,
we make use of the following definition used in the distance
rigidity theory. It is well known that two frameworks (G,A, p)
and (G,A, q) are said to be congruent if ∥pi − pj∥ = ∥qi − qj∥
for all i, j ∈ V . We now define the fundamental concepts on the
generalized weak rigidity.

Definition 1 (Strong Equivalency). Two frameworks (G,A, p) and
(G,A, q) are said to be strongly equivalent if the following two
conditions hold

• ∥pi − pj∥ = ∥qi − qj∥, ∀(i, j) ∈ E ,
• cos

(
θ k
ij

)
∈(G,A,p)

= cos
(
θ k
ij

)
∈(G,A,q)

, ∀(k, i, j) ∈ A,

where
(
θ k
ij

)
∈(G,A,p)

and
(
θ k
ij

)
∈(G,A,q)

denote the angles belonging

to (G,A, p) and (G,A, q), respectively.

Definition 2 (Angle Equivalency). Two frameworks (G,A, p) and
(G,A, q) with E = ∅ are said to be angle equivalent if cos(
θ k
ij

)
∈(G,A,p)

= cos
(
θ k
ij

)
∈(G,A,q)

, ∀(k, i, j) ∈ A.

In this paper, E ̸= ∅ means that there exists at least one
distance constraint; on the other hand, E = ∅ means that any
distance constraint does not exist.

Definition 3 (Proportional Congruency). Two frameworks (G,A, p)
and (G,A, q) with E = ∅ are said to be proportionally congruent
if ∥pi − pj∥ = C∥qi − qj∥, ∀i, j ∈ V , where C denotes a positive
proportional constant.
3

Definition 4 (Generalized Weak Rigidity (GWR)). A framework
(G,A, p) is generalized weakly rigid (GWR) in Rd if there exists a
neighborhood Bp ⊆ Rdn of p such that each framework (G,A, q),
q ∈ Bp, strongly equivalent to (G,A, p) is congruent to (G,A, p).
Moreover, a framework (G,A, p) with E = ∅ is also generalized
weakly rigid (GWR) in Rd if there exists a neighborhood Bp ⊆ Rdn

of p such that each framework (G,A, q), q ∈ Bp, angle equivalent
to (G,A, p) is proportionally congruent to (G,A, p).

Definition 5 (Global GWR). A framework (G,A, p) is globally GWR
in Rd if any framework (G,A, q) strongly equivalent to (G,A, p)
is congruent to (G,A, p). Moreover, a framework (G,A, p) with
E = ∅ is also globally GWR in Rd if any framework (G,A, q) angle
equivalent to (G,A, p) is proportionally congruent to (G,A, p).

If a framework is GWR (resp. globally GWR), then the frame-
work shape is (resp. globally) rigid and not deformable up to
translations and rotations of a given framework for E ̸= ∅

or up to translations, rotations and scalings for E = ∅. Fig. 3
shows several examples of GWR and non-GWR formations in
R2. The formations represented in Figs. 3(a), 3(b) and 3(d) are
GWR since they cannot be deformed (in Fig. 3(b), a deformed
formation by scaling is also regarded as a GWR formation). In
particular, the formation in Fig. 3(a) is globally GWR, and thus
its shape is globally determined up to translations and rotations.
The formation in Fig. 3(b) is not globally GWR but GWR since
it is rigid but the agent 4 (or agent 2) can be flipped over edge
(1, 3) while all angle constraints maintain the values. Similarly,
the formation in Fig. 3(d) is not globally GWR but GWR. On the
other hand, the formation represented in Fig. 3(c) is neither GWR
nor globally GWR since it can be deformed by a smooth motion
on a circle containing vertices 1, 3 and 4.

3.2. Generalized infinitesimal weak rigidity (GIWR)

We now introduce the concept of the generalized infinitesimal
weak rigidity which plays an important role in formation control
studied in this paper. To define the concept, we first introduce a
weak rigidity matrix with which we can check whether or not a
formation is rigid by an algebraic manner, i.e., rank condition of
the weak rigidity matrix.

We define the following weak rigidity function FW : χ → Rm+w

for χ ⊂ Rdn, where χ is well defined not to make a denominator
in Ah, h ∈ {1, . . . , w} zero, which describes constraints of edge
lengths and angles in a framework:

FW (p) =
[
∥z1∥2, . . . , ∥zm∥

2, A1, . . . , Aw

]⊤
∈ Rm+w. (1)

We then define the following weak rigidity matrix as the Jacobian
of the weak rigidity function:

RW (p) =
∂FW (p)

∂p
=

[
∂D
∂p
∂A

]
∈ R(m+w)×dn, (2)
∂p
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Fig. 3. Examples of GWR and non-GWR formations in R2 . The solid lines denote
distance constraints belonging to E , but the dashed lines which do not belong
to E are not distance constraints.

where D =
[
∥z1∥2, ∥z2∥2, . . . , ∥zm∥

2
]⊤

∈ Rm and A = [A1, A2,

. . . , Aw]⊤ ∈ Rw . Next, consider the constraints

∥pi − pj∥2
= constant, ∀(i, j) ∈ E, (3)

cos θ k
ij = constant, ∀(k, i, j) ∈ A. (4)

Then, the time derivative of (3) is given by

2
(
pi − pj

)⊤ (
vi − vj

)
= 0, ∀(i, j) ∈ E, (5)

and the time derivative of (4) is given as

(vk − vi)
⊤ P⊤

zki

zkj
∥zkj∥

+
z⊤

ki

∥zki∥
Pzkj

(
vk − vj

)
= 0, ∀(k, i, j) ∈ A, (6)

here vi is an infinitesimal motion of vertex i, and Pzki =
1

∥zki∥[
Id −

zkiz⊤ki
∥zki∥2

]
and Pzkj =

1
∥zkj∥

[
Id −

zkjz⊤kj
∥zkj∥2

]
. For both cases E ̸= ∅

and E = ∅, Eqs. (5) and (6) can be written in a matrix form as
ḞW =

∂FW (p)
∂p ṗ = RW (p)ṗ = 0. We here denote an infinitesimal

otion of (G,A, p) by δp if RW (p)δp = 0. The infinitesimal
otions include rigid-body translations and rotations when E ̸=

. If E = ∅ then the infinitesimal motions additionally include
scalings, that is, the motions include rigid-body translations, rota-
tions and scalings. We finally have the concept of the generalized
infinitesimal weak rigidity with the following definition of the
trivial infinitesimal motion.

Definition 6 (Trivial Infinitesimal Motion [21]). An infinitesi-
al motion of a framework (G,A, p) is called trivial if it cor-

esponds to a rigid-body translation or a rigid-body rotation
or additionally, when E = ∅, a scaling factor) of the entire
ramework.

efinition 7 (Generalized Infinitesimal Weak Rigidity (GIWR)). A
framework (G,A, p) is generalized infinitesimally weakly rigid
(GIWR) in Rd if all of its infinitesimal motions are trivial.

We next explore the properties of GIWR formations. For d =

2 case, it is already shown that the GIWR can be checked by
the rank condition of RW as in [21]. Therefore, we explore the
properties only for d = 3 case. We first express the trivial
infinitesimal motions in mathematical forms. For d = 3 case, we
4

define the rotational matrix Ji, ∀i ∈ {1, 2, 3} as

J1 =

[0 0 0
0 0 −1
0 1 0

]
, J2 =

[ 0 0 1
0 0 0

−1 0 0

]
, J3 =

[0 −1 0
1 0 0
0 0 0

]
. (7)

Note it always holds that x⊤Jix = 0, ∀i ∈ {1, 2, 3} for any vector
x ∈ R3. Referring to Lemma 1 in [30], we have that the vectors in
the following set, LR, are linearly independent.

LR = {1n ⊗ I3, (In ⊗ J1)p, (In ⊗ J2)p, (In ⊗ J3)p}, (8)

where (1n ⊗ I3) and (In ⊗ Ji)p, i ∈ {1, 2, 3} correspond to a rigid-
body translation and a rigid-body rotation of an entire frame-
work, respectively. We define a set LN for a rigid-body translation,
a rigid-body rotation and a scaling of a framework in R3 as

LN = {1n ⊗ I3, (In ⊗ J1)p, (In ⊗ J2)p, (In ⊗ J3)p, p}. (9)

The sets LR and LN can be regarded as the bases for d-dimensional
rigid transformations and similarity transformations of a for-
mation, respectively. Moreover, it is obvious that any linear
combination of the vectors in LR cannot be equal to span{p}
since a framework induced from span{LR} is embedded in the
3-dimensional group of rigid transformations, i.e., Special Eu-
clidean group SE(3), which means that rigid transformations
span{LR} cannot be equal to nonrigid transformations span{p}.
Hence, the vectors in the set LN are also linearly independent.

We state some notations to prove Lemmas 2 and 3 presented
in what follows. We first define a graph G′ as G′

= (V ′, E ′,A′)
induced from G in such a way that:

• V ′
= V ,

• E ′
= {(i, j), (i, k), (j, k) | (i, j) ∈ E ∨ (k, i, j) ∈ A},

• A′
= A.

For any edge (i, j) ∈ E ′, we consider a new associated relative
position vector z ′

ij, and set the order of the new relative position
vector as follows:

z ′
s = z ′

ij, ∀s ∈ {1, . . . , η}, η ≥ m,

where z ′
ij = pi − pj for all (i, j) ∈ E ′, and η = |E ′

|. The anew
defined relative position vector satisfies the following condition

z ′
u = zu, ∀u ∈ {1, . . . ,m}.

We denote a new associated column vector composed of relative
position vectors as z ′

=
[
z ′⊤

1 , z ′⊤

2 , . . . , z ′⊤

η

]⊤
∈ R3η . The oriented

incidence matrix H ′
∈ Rη×n of the induced graph G′ is the

{0, ±1}-matrix with rows indexed by edges and columns indexed
by vertices as follows:

[H ′
]si =

⎧⎨⎩
1 if the sth edge sinks at vertex i
−1 if the sth edge leaves vertex i
0 otherwise,

where [H ′
]si is an element at row s and column i of the matrix H ′.

Note that z ′ satisfies z ′
= H̄ ′p where H̄ ′ = H ′

⊗ Id. We are now
ready to define the following properties.

Lemma 1 ([21, Lemma 3.3]). Let J0 denote a rotational matrix

defined as J0 =

[
0 −1
1 0

]
in R2. For d = 2 case, it is satisfied

that span{1 ⊗ I2, (In ⊗ J0)p} ⊆ Null(RW (p)) and rank(RW (p)) ≤

2n − 3 if E ̸= ∅. In addition, for d = 2 case, it is satisfied that
span{1⊗ I2, (In ⊗ J0)p, p} ⊆ Null(RW (p)) and rank(RW (p)) ≤ 2n−4
if E = ∅.

Lemma 2. For d = 3 case, it is satisfied that, when E ̸= ∅

and E = ∅, span(LR) ⊆ Null(RW (p)) and span(LN ) ⊆ Null(RW (p)),

respectively.
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roof. This property is proved by a similar approach to Lemma 1.
hen E ̸= ∅, Eq. (2) can be written as

W (p) =
∂FW (p)

∂p
=

[
∂D
∂z′

∂z′
∂p

∂A
∂z′

∂z′
∂p

]
=

[
∂D
∂z′ H̄

′

∂A
∂z′ H̄

′

]
=

[
∂D
∂z′
∂A
∂z′

]
H̄ ′. (10)

hen, it is obvious that span{1n ⊗ I3} ⊆ Null(H̄ ′) ⊆ Null(RW (p))
ince span{1n} ⊆ Null(H ′). We next check whether RW (p)(In ⊗

i)p = 0 or not. H̄ ′(In ⊗ Ji)p, ∀i ∈ {1, 2, 3} can be of such form
¯ ′(In ⊗ Ji)p = (H ′

⊗ I3)(In ⊗ Ji)p = (H ′
⊗ Ji)p

= (IηH ′
⊗ JiI3)p = (Iη ⊗ Ji)(H ′

⊗ I3)p

= (Iη ⊗ Ji)z ′
=

⎡⎢⎣Jiz ′
1

...

Jiz ′
η

⎤⎥⎦ . (11)

From the viewpoint of Ah =
∥zki∥2+∥zkj∥2−∥zij∥2

2∥zki∥∥zkj∥
, (k, i, j) ∈ A, if Ah

onsists of z ′
a, z ′

b and z ′
c for a ̸= b ̸= c and a, b, c ∈ {1, . . . , η}

then almost all elements of ∂Ah
∂z′ are zero except for ∂Ah

∂z′a
, ∂Ah

∂z′b
and

∂Ah
∂z′c

. With reference to the form of ∂Ah
∂z′ as presented in Lemma 3.1

n [21], we have

∂Ah

∂z ′
H̄ ′(In ⊗ Ji)p =

∂Ah

∂z ′

⎡⎢⎣Jiz ′
1

...

Jiz ′
η

⎤⎥⎦
=

∂Ah

∂z ′
a
Jiz ′

a +
∂Ah

∂z ′
b
Jiz ′

b +
∂Ah

∂z ′
c
Jiz ′

c

= 0, (12)

where z ′
a
⊤Jiz ′

a = 0, z ′
b
⊤Jiz ′

b = 0 and z ′
c
⊤Jiz ′

c = 0 for all
i ∈ {1, 2, 3}. Thus, ∂A

∂z′ H̄
′(In ⊗ Ji)p = 0. We also have

∂D
∂z ′

H̄ ′(In ⊗ Ji)p =
∂D
∂z ′

⎡⎢⎣Jiz ′
1

...

Jiz ′
η

⎤⎥⎦
=
[
2D⊤ 0m,(3η−3m)

]⎡⎢⎣Jiz ′
1

...

Jiz ′
η

⎤⎥⎦
= 0, (13)

where D =diag(z ′
1, . . . , z ′

m) ∈ R3m×m, and 0m,(3η−3m) is a m ×

(3η − 3m) zero matrix. Using the above results, we have

RW (p)(In ⊗ Ji)p = 0, ∀i ∈ {1, 2, 3}, (14)

which implies that, when E ̸= ∅, span{(In ⊗ Ji)p} ⊆ Null(RW (p)),
∀i ∈ {1, 2, 3}.

If E = ∅, then RW (p) is of the form

RW (p) =
∂FW (p)

∂p
=

∂A
∂z ′

H̄ ′. (15)

Then, RW (p)p =
∂A
∂z′ H̄

′p =
∂A
∂z′ z

′. With reference to Lemma 3.1
n [21], the elements of ∂Ah

∂z′ are zero except for ∂Ah
∂z′a

, ∂Ah
∂z′b

and ∂Ah
∂z′c

,
nd we have the following result:

∂Ah

∂z ′
z ′

=
∂Ah

∂z ′

⎡⎢⎣z ′
1
...

z ′
η

⎤⎥⎦
=

∂Ah

∂z ′
a
z ′

a +
∂Ah

∂z ′
b
z ′

b +
∂Ah

∂z ′
c
z ′

c

=
∥z ′

a∥
2
− ∥z ′

b∥
2
+ ∥z ′

c∥
2

+
−∥z ′

a∥
2
+ ∥z ′

b∥
2
+ ∥z ′

c∥
2

2∥z ′
a∥∥z ′

b∥ 2∥z ′
a∥∥z ′

b∥

5

+
−2∥z ′

c∥
2

2∥z ′
a∥∥z ′

b∥

= 0. (16)

Thus, we have RW (p)p = 0, which implies that span{p} ⊆

Null(RW (p)). It also holds that, when E = ∅, span{1n ⊗ I3} ⊆

Null(RW (p)) and span{(In ⊗ Ji)p} ⊆ Null(RW (p)), ∀i ∈ {1, 2, 3} in
the same way as the case of E ̸= ∅. Consequently, the statement
is proved. □

Lemma 3. If E ̸= ∅, then rank(RW (p)) ≤ dn − d(d + 1)/2 for
framework (G,A, p) in Rd. On the other hand, if E = ∅, then

rank(RW (p)) ≤ dn− (d2 +d+2)/2 for a framework (G,A, p) in Rd.

Proof. For d = 2 case, it holds that rank(RW (p)) ≤ dn−d(d+1)/2
nd rank(RW (p)) ≤ dn − (d2 + d + 2)/2 when E ̸= ∅ and E = ∅,
espectively, from Lemma 1.

For d = 3 case, from Lemma 2, we have span(LR) ⊆ Null(RW (p))
hen E ̸= ∅, which implies that rank(RW (p)) ≤ dn − d(d + 1)/2
ince the vectors in LR are linearly independent. Similarly, when

= ∅, we have span(LN ) ⊆ Null(RW (p)), which implies that
ank(RW (p)) ≤ dn − (d2 + d + 2)/2 since the vectors in LN are
inearly independent. □

The following result shows the necessary and sufficient con-
ition for the GIWR.

heorem 1. A framework (G,A, p) with n ≥ 3 and E ̸= ∅ is
IWR in Rd if and only if the weak rigidity matrix RW (p) has rank
n− d(d+ 1)/2. In addition, a framework (G,A, p) with n ≥ 3 and
= ∅ is GIWR in Rd if and only if the weak rigidity matrix RW (p)
as rank dn − (d2 + d + 2)/2.

roof. For d = 2 case, the theorem was proved in Theorem 3.1
n [21]. We now prove it for d = 3 case.

From Lemmas 2 and 3, when E ̸= ∅, rank (RW (p)) = dn−d(d+

)/2 if and only if Null (RW (p)) = span(LR). Note that (1n⊗ Id) and
In ⊗ Ji)p, i ∈ {1, 2, 3} in LR correspond to a rigid-body translation
nd a rigid-body rotation of the entire framework, respectively.
herefore, for the case of E ̸= ∅, the theorem directly follows
rom Definition 7.

Similarly, when E = ∅, rank (RW (p)) = dn − (d2 + d + 2)/2 if
nd only if Null (RW (p)) = span(LN ). Since (1n ⊗ Id), (In ⊗ Ji)p, i ∈

1, 2, 3} and p in LN correspond to a rigid-body translation, a
igid-body rotation and a scaling of the entire framework, respec-
ively, the remainder of the theorem for the E = ∅ case directly
ollows from Definition 7. □

emark 2. Comparison with the relevant publications: As stated
n Lemmas 1 and 2, the trivial infinitesimal motions in terms
f RW correspond to translations, rotations and scalings when
onsidering no distance constraint whereas those motions related
o R̂w correspond to only a subset of the motions, i.e., translations
nd rotations without scaling motions, where R̂w denotes the
igidity matrix introduced in [20]. This difference is due to the fact
hat, in our work, inner products of inter-agent relative bearings,
.e., cosines of angles, are regarded as angle constraints whereas
nner products of inter-agent relative positions are considered as
ngle information in [20]. This fact can be checked from Lemma
.6 in [20]. Therefore, the type-1 weak rigidity theory is distinct
rom our work.

In [29], the angle rigidity theory is introduced, which is a
imilar concept to the weak rigidity theory in this paper when
o distance constraint is considered. The main difference be-
ween the work [29] and our work is that we deal with not
nly 2-dimensional cases but also 3-dimensional cases whereas
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he paper [29] only studies 2-dimensional cases. In addition, we
xplore global exponential convergence of 3-agent formations
hereas the paper [29] does not. Therefore, our work can include
he work in [29].

.3. Relationship between distance rigidity and GWR

This subsection shows that the proposed theory, i.e., weak
igidity theory, is necessary for the distance rigidity theory [5–8].
irst, let us denote a conventional framework without an angle
et by (G, p). We then reach the following result.

Proposition 1. If a conventional framework (G, p) is distance rigid,
lobally distance rigid and infinitesimally distance rigid in Rd, then
he framework (G,A, p) is GWR, globally GWR and GIWR in Rd,
respectively.

Proof. First, the assumption that (G, p) is distance rigid means
hat there exists a neighborhood B̄p ⊆ Rdn of p such that (G, q),
∈ B̄p, equivalent to (G, p) is congruent to (G, p) [5]. Then, since
he rigid shape of (G, p) is locally determined, it is obvious that
G,A, p) is strongly equivalent and congruent to (G,A, q), q ∈ B̄p
or any A. Therefore, (G,A, p) is GWR from Definition 4. In the
ame way, it can be shown that global distance rigidity implies
lobal GWR.
Next, consider the distance rigidity matrix RD defined as RD(p)
1
2

∂D
∂p . If (G, p) is infinitesimally distance rigid in Rd, then RD(p)

s of rank dn − d(d + 1)/2 [6,8]. With this fact, we can observe

rom the definition RW =

[
∂D
∂p
∂A
∂p

]
that there exists a nonzero

dn − d(d + 1)/2) × (dn − d(d + 1)/2) minor of RW . Moreover,
rom Lemma 3, we have that rank(RW (p)) ≤ dn − d(d + 1)/2 for
̸= ∅. Therefore, RW is of rank dn − d(d + 1)/2, which implies

hat (G,A, p) is GIWR from Theorem 1. □

Due to the angle constraints, the GWR theory is not sufficient
or the distance rigidity theory. The concept of ‘weak’ is induced
rom the fact that the GWR theory is a weaker condition than the
onventional distance rigidity theory.

.4. Generic property

In this subsection, we show that both GWR and GIWR are
eneric properties. First, we define two smooth manifolds as
wo sets M and M′ composed of points congruent to p and
roportionally congruent to p, respectively. If the affine span of
he configuration p is Rd (or equivalently p does not lie on any
yperplane in Rd), then M is d(d + 1)/2-dimensional and M′ is
d2+d+2)/2-dimensional, because M arises from the d(d−1)/2-
nd d-dimensional manifold of rotations and translations of Rd,
espectively, andM′ arises from d(d−1)/2-, d- and 1-dimensional
anifold of rotations, translations and scalings of Rd, respectively.
With the smooth map FW : χ → Rm+w for some properly

efined χ ⊂ Rdn, let r = max{rank( ∂FW
∂p ) | p ∈ Rdn

}. Then p ∈ Rdn

s a regular point of FW if rank( ∂FW
∂p ) = r , and a singular point

therwise. With reference to Proposition 2 in [5], if p is a regular
oint of FW then there exists a neighborhood Bp of p such that
−1
W (FW (p)) ∩ Bp is a (dn − r)-dimensional smooth manifold.
If p1, . . . , pn do not lie on any hyperplane in Rd when E ̸= ∅

then it follows from Lemma 3 that

rank(
∂FW
∂p

) = dn − Null(
∂FW
∂p

) ≤ dn − d(d + 1)/2. (17)

oreover, if p1, . . . , pn do not lie on any hyperplane in Rd when
= ∅ then, from Lemma 3, we have that

ank(
∂FW ) = dn − Null(

∂FW ) ≤ dn − (d2 + d + 2)/2. (18)

∂p ∂p

6

In particular, we have that if p is a regular point of FW then
rank(RW (p)) = dn− d(d+1)/2 in case of E ̸= ∅ or rank(RW (p)) =

dn− (d2 + d+ 2)/2 in case of E = ∅. We then have the following
lemma.

Lemma 4. Suppose that p is a regular point of FW and the affine
span of p1, . . . , pn is Rd. A framework (G,A, p) with E ̸= ∅ is GWR
in Rd if and only if rank(RW (p)) = dn − d(d + 1)/2. In addition,
a framework (G,A, p) with E = ∅ is GWR in Rd if and only if
rank(RW (p)) = dn − (d2 + d + 2)/2.

Proof. Let us consider the case of E ̸= ∅. We have the fact that
RW (p) has the maximum rank, i.e., rank(RW (p)) = dn−d(d+1)/2.
Then, F−1

W (FW (p)) ∩ Bp is d(d + 1)/2-dimensional. Thus, M and
F−1
W (FW (p))∩Bp have the same dimension, which implies that the
two sets agree near p. Consequently, F−1

W (FW (p)) ∩ Bp is the set
of q ∈ Rdn such that (G,A, q), q ∈ Bp, is strongly equivalent to
(G,A, p), and M is the set of q ∈ Rdn such that q is congruent to
p. Therefore, (G,A, p) is GWR in Rd as defined in Definition 4.

Similarly, when E = ∅, RW (p) is of the maximum rank,
i.e., rank(RW (p)) = dn− (d2 +d+2)/2. Therefore, F−1

W (FW (p))∩Bp
is (d2 + d + 2)/2-dimensional. Two sets M′ and F−1

W (FW (p)) ∩ Bp
have the same dimension, and this implies that the two sets agree
close to p. Consequently, F−1

W (FW (p))∩Bp is the set of q ∈ Rdn such
that (G,A, q), q ∈ Bp, is angle equivalent to (G,A, p), and M′ is
the set of q ∈ Rdn such that q is proportionally congruent to p.
Therefore, (G,A, p) is GWR in Rd as defined in Definition 4.

If (G,A, p) is GWR in Rd, then F−1
W (FW (p)) ∩ Bp and M are

coincident near p, which implies that F−1
W (FW (p))∩Bp and M have

the same dimension and rank(RW (p)) = r = dn − d(d + 1)/2
when E ̸= ∅ (resp. rank(RW (p)) = r = dn − (d2 + d + 2)/2 when
E = ∅). Hence, we can conclude that the framework (G,A, p) with
E ̸= ∅ (resp. E = ∅) is GWR in Rd if and only if rank(RW (p)) =

dn − d(d + 1)/2 (resp. rank(RW (p)) = dn − (d2 + d + 2)/2). □

In general, a generic point introduced in [31] is used to derive a
generic property; however, the notion of the generic point cannot
be applied to our work since it cannot describe an equation
involving angle constraints in a polynomial form. Thus, in this
paper, we do not make use of the notion of the generic point.
We next provide the following result to explore a relationship
between GWR and GIWR

Proposition 2 (Relationship between GWR and GIWR). Suppose a
framework (G,A, p), p = [p⊤

1 , . . . , p⊤
n ]

⊤
∈ Rdn, is in Rd and the

affine span of p1, . . . , pn is Rd. Then, the framework (G,A, p) is
GIWR in Rd if and only if p is a regular point of FW and (G,A, p)
is GWR in Rd.

Proof. If a framework (G,A, p) is GIWR, then it follows from
Theorem 1 that RW (p) is of rank dn − d(d + 1)/2 or dn − (d2 +

d + 2)/2, and thus p is a regular point. Moreover, with reference
to the proof of Lemma 4, we have that (G,A, p) is GWR in Rd.

If p is a regular point of FW and (G,A, p) is GWR in Rd, then
RW (p) has the max rank, i.e., dn−d(d+1)/2 or dn−(d2+d+2)/2,
from the proof of Lemma 4, which implies that the framework
(G,A, p) is GIWR from Theorem 1. □

We finally have the following result which shows that both
GWR and GIWR for a framework are generic properties.

Proposition 3 (Generic Property). If a framework (G,A, p) in Rd for
a regular point p of FW is GWR (resp. GIWR), then (G,A, q) in Rd for
any regular point q of FW is GWR (resp. GIWR).

Proof. First, if (G,A, p) is GIWR in Rd, then rank(RW (p)) is equal
to dn − d(d + 1)/2 or dn − (d2 + d + 2)/2. Moreover, it is clear
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hat (G,A, q) is also GIWR in Rd since q is a regular point and it
olds that RW (q) = RW (p).
Next, if a framework (G,A, p) is GWR and p is a regular point

f FW in Rd, then the framework (G,A, p) is GIWR in Rd from
roposition 2. Moreover, (G,A, q) is also GIWR, which implies
hat (G,A, q) is GWR from Proposition 2. □

. Application to formation control: local convergence of
-agent formations in Rd

We now apply the GWR theory to formation control prob-
ems. In this section, we particularly explore local stability on
-agent formations in Rd. This section aims to show local sta-
ility for minimally GIWR formations, and for non-minimally
IWR formations, where ‘local’ means ‘close to the desired for-
ation’. In distributed multi-agent systems, the gradient flow law

9,18,32,33] is a popular approach, and we make use of the
radient flow approach to stabilize rigid formation shapes in this
aper. We first rigorously define the concept of the minimally
IWR formation as follows.

efinition 8 (Minimally GIWR). A framework (G,A, p) is mini-
mally GIWR in Rd if the framework (G,A, p) is GIWR in Rd and
if no single distance or angle constraint can be removed without
losing its GIWR.

It is remarkable that if (G,A, p) is minimally GIWR in Rd

then rank(RW ) is exactly equal to the number of edge and angle
constraints in the case of E ̸= ∅ (or only angle constraints in the
case of E = ∅), i.e., rank(RW ) = m + w.

4.1. Equations of motion based on gradient flow approach

We assume that each agent is governed by a single integrator,
i.e.,
d
dt

pi = ṗi = ui, i ∈ V, (19)

here time t ∈ [0, ∞), and ui is a control input. Any entries in
i can be expressed by the relative position vectors of neighbors
f a gradient flow law is employed. Note our formation control
ystem makes use of the relative positions of neighbors as sensing
ariables, and the inter-agent distances and angles of neighbors
s control variables.
We define the following two column vectors composed of

zg∥2 and Ah:

c(p) =
[
. . . , ∥zgij∥

2, . . .
]⊤
(i,j)∈E

,

cc(p) =
[
. . . , Ahkij , . . .

]⊤
(k,i,j)∈A

. (20)

Similarly, d∗
c and c∗

c are defined as

d∗

c =
[
. . . , ∥z∗

g ∥
2, . . .

]⊤
, c∗

c =
[
. . . , A∗

h, . . .
]⊤

, (21)

where ∥z∗
g ∥

2 and A∗

h denote the desired values of ∥zg∥2 and Ah,
respectively, and both of them are constants. With the above
definitions, an error vector is defined as follows:

e(p) =
[
dc(p)⊤cc(p)⊤

]⊤
−
[
d∗⊤

c c∗⊤

c

]⊤
. (22)

The simple gradient flow law is employed to analyze a formation
control system as follows:

ṗ = u = −

(
∇

(
1
e⊤(p)e(p)

))⊤

. (23)

2 s

7

The control law can be expressed as

ṗ = u = −

(
∇

(
1
2
e⊤(p)e(p)

))⊤

= −R⊤

W (p)e(p)

= −
[
s⊤1 s⊤2 · · · s⊤n

]⊤
= −(E(p) ⊗ Id)p (24)

for si ∈ Rd, i ∈ {1, . . . , n} and E(p) ∈ Rn×n. In E(p), [E(p)]ij is an
element at row i and column j and [E(p)]ij is the coefficient of the
vector pj in si. According to the structure of (24), we can observe
that the matrix E(p) is symmetric (see an example (12) in [21]).
The formation control system (24) is Lipschitz continuous since
the system is continuously differentiable, which implies that the
solution of (24) exists globally. With (24), we have the following
error dynamics:

ė =
∂e
∂p

ṗ = RW (p)ṗ = −RW (p)R⊤

W (p)e. (25)

he controller for agent k in (24) can be written by

ṗk = − 2
∑
j∈N d

k

(
∥zkj∥2

− ∥z∗

kj∥
2) (pk − pj)

  
(j,k)∈E

−

∑
i,j∈N a

k

(
cos θ k

ij − cos
(
θ k
ij

)∗)( ∂

∂pk
cos θ k

ij

)
⊤

  
(k,i,j)∈A

−

∑
j,k∈N a

i

(
cos θ i

jk − cos
(
θ i
jk

)∗)( ∂

∂pk
cos θ i

jk

)
⊤

  
,

if ∃(i,j,k)∈A

(26)

here ∥z∗

kj∥ and
(
θ k
ij

)∗ are the desired values for ∥zkj∥ and θ k
ij ,

respectively, and N d
k = {j ∈ V | (j, k) ∈ E} and N a

k = {i, j ∈ V |

(k, i, j) ∈ A} denote the neighbor sets for agent k related to
distance and angle constraints, respectively. Therefore, it is clear
that the system is a distributed system since each agent requires
only local information. Moreover, according to the control system
(26), we need to define the following assumption for a sensing
topology.

Assumption 1. The sensing graph is characterized by an undi-
rected graph Gs = (Vs, Es) and agent k can measure relative
position vectors in terms of its neighbor set N s

k , where Vs = V ,
Es = {(i, j), (i, k), (j, k) | (i, j) ∈ E ∨ (k, i, j) ∈ A} and N s

k = {j ∈ V |

j, k) ∈ Es}.

The following result will be useful for next analysis, which
hows that if a differential equation Ẋ(t) = f (t, X) satisfies the
ollowing result then the rank of the solution X(t) is constant for
ll t ≥ 0 and Ẋ(t) is said to be rank-preserving.

emma 5 ([34, Lemma 2]). Let A(t) ∈ RM×M and B(t) ∈ RN×N

e a continuous time-varying family of matrices. Then, the following
ifferential equation

˙ (t) = A(t)X(t) + X(t)B(t), X(0) ∈ RM×N (27)

s rank-preserving.

We next show some properties of the formation control sys-
em with the gradient flow approach.

emma 6. Under the gradient flow law, the formation control

ystem designed in (24) has the following properties:
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(i) The controller is distributed.
(ii) The controller and measurement for each agent are indepen-

dent of any global coordinates. That is, only the local coor-
dinate system for each agent is required to measure relative
positions and to implement the control signals.

(iii) The centroid po =
1
n

∑n
i=1 pi is stationary. In the case of E =

∅, the centroid po and the scale ps =

√
1
n

∑n
i=1 ∥pi − po∥2 are

both invariant for all t ≥ 0.
(iv) Denote Cp =

[
p1 p2 · · · pn

]
∈ Rd×n. Then, rank

(
Cp(0)

)
= rank

(
Cp(t)

)
for all time t ≥ 0. Moreover, if Cp is of full row

rank, then all of pi, ∀i ∈ {1, . . . , n} do not lie on a hyperplane.
On the other hand, if Cp is not of full row rank, then there
exists a hyperplane containing all pi, ∀i ∈ {1, 2, . . . , n}.

(v) [Collision avoidance for the case of E = ∅] Let p∗
=

[p∗⊤

1 , . . . , p∗⊤
n ]

⊤
∈ Rdn denote the desired configuration.

Then, it is guaranteed that ∥pi(t)−pj(t)∥ > ζ for all t ≥ 0 and
i, j ∈ V if ∥p∗

i −p∗

j ∥−
√
n∥p(0)−(1n⊗po)∥−

∑n
l=1 ∥po−p∗

l ∥ >

ζ for ζ > 0.
(vi) If a framework (G,A, p(0)) with n = d + 1 vertices is

minimally GIWR in Rd and Cp(0) is of full row rank, then
(G,A, p(t)) is minimally GIWR in Rd for all t ≥ 0, i.e., rank
(RW (p(0))) = rank (RW (p(t))) for all t ≥ 0.

Proof. (i) This property is obvious from (24).
(ii) This property is proved in a similar way to Lemma 4 in [35].

First, let us denote a measurement in a global coordinate system
by (·)g . Observe the fact that there exists a rotation matrix Qk ∈

Rd×d such that pj = Qkp
g
j + v, where v denotes a translation vec-

tor. Then, we can express (26) in terms of the global coordinate
system as follows:

ṗgk =ug
k

=Q−1
k uk

= − 2Q−1
k

∑
j∈N d

k

(
∥zkj∥2

− ∥z∗

kj∥
2)g Qkz

g
kj

− Q−1
k

∑
i,j∈N a

k

(
cos θ k

ij − cos
(
θ k
ij

)∗)g
Qk

(
∂

∂pk
cos θ k

ij

)g⊤

− Q−1
k

∑
j,k∈N a

i

(
cos θ i

jk − cos
(
θ i
jk

)∗)g
Qk

(
∂

∂pk
cos θ i

jk

)
g⊤

  
for ∃(i,j,k)∈A

= − 2
∑
j∈N d

k

(
∥zkj∥2

− ∥z∗

kj∥
2)g zgkj

−

∑
i,j∈N a

k

(
cos θ k

ij − cos
(
θ k
ij

)∗)g ( ∂

∂pk
cos θ k

ij

)g⊤

−

∑
j,k∈N a

i

(
cos θ i

jk − cos
(
θ i
jk

)∗)g ( ∂

∂pk
cos θ i

jk

)
g⊤

  
,

for ∃(i,j,k)∈A

(28)

here we have used the fact that
∂

∂pk
cos(θ k

ij )

=
∂

∂pk

z⊤

ki

∥zki∥
zkj

∥zkj∥

=
z⊤

kj

∥z ∥

1
∥z ∥

(
Id −

zkiz⊤

ki

∥z ∥2

)
+

z⊤

ki

∥z ∥

1
∥z ∥

(
Id −

zkjz⊤

kj

∥z ∥2

)

kj ki ki ki kj kj

8

=
zg⊤

kj

∥zgkj∥
Q−1
k

1
∥zgki∥

(
Id − Qk

zgki
∥zgki∥

zg⊤

ki

∥zgki∥
Q−1
k

)

+
zg⊤

ki

∥zgki∥
Q−1
k

1
∥zgkj∥

(
Id − Qk

zgkj
∥zgkj∥

zg⊤

kj

∥zgkj∥
Q−1
k

)

=

(
∂

∂pk
cos θ k

ij

)g

Q−1
k , (29)

n the same way as the above result, it also holds that ∂
∂pk

cos(θ i
jk)

=

(
∂

∂pk
cos θ i

jk

)g
Q−1
k . Thus, we conclude the statement.

(iii) Since po =
1
n

∑n
i=1 pi =

1
n (1n ⊗ Id)⊤p ∈ Rd, the following

ime derivative holds:

˙
o
=

1
n
(1n ⊗ Id)⊤ṗ

= −
1
n
(1n ⊗ Id)⊤R⊤

W (p)e(p)

= −
1
n

([
∂D
∂z′
∂A
∂z′

]
H̄ ′(1n ⊗ Id)

)⊤

e(p) (30)

ince span(1n ⊗ Id) ⊆ Null(H̄ ′) ⊆ Null (RW (p)), RW (p)(1n ⊗ Id) = 0
nd this implies that ṗo = 0. Moreover, it also holds that ṗo = 0
or the case of E = ∅.

In the case of E = ∅, there is no constraint for the scale of the
iven framework. Note it holds that ps =

√
1
n

∑n
i=1 ∥pi − po∥2 =

p − 1n ⊗ po∥/
√
n. With the fact that ṗo = 0, we have

ṗs =
1

√
n
(p − 1n ⊗ po)⊤

∥p − 1n ⊗ po∥
ṗ. (31)

It holds that p⊤ṗ = − (RW (p)p)⊤ e(p) = 0 and (1n ⊗ po)⊤ṗ =

− (RW (p)(1n ⊗ po))⊤ e(p) = 0 since span(p) ⊆ Null(RW ) and
span(1n ⊗ po) ⊆ Null(H̄ ′) ⊆ Null (RW (p)). Therefore, ṗs = 0.
Hence, the statement is proved.

(iv) Since ṗ(t) = −(E(p) ⊗ Id)p(t), the vector differential
equation can be expressed as the following matrix differential
equation.

Ċp(t) = −Cp(t)E⊤(p(t)) ∈ Rd×n. (32)

rom Lemma 5, the matrix differential equation (32) is rank-
reserving for any finite time t ≥ 0.
If Cp is not of full row rank, then there exists a nontrivial

olution x such that C⊤
p x = 0. This implies that p⊤

1 x = p⊤

2 x =

· · = p⊤
n x = 0 and (p⊤

i −p⊤

j )x = z⊤

ij x = 0 for all i, j ∈ V and i ̸= j,
hich means that all of vectors zij are orthogonal to the vector
and further all of vectors zij lie on a hyperplane. Hence, there

exists a hyperplane containing all pi, ∀i ∈ {1, 2, . . . , n} if Cp is not
of full row rank.

(v) For any i, j ∈ V and t ≥ 0, we have the following equation

∥pi(t) − pj(t)∥ = ∥
(
pi(t) − p∗

i

)
−
(
pj(t) − p∗

j

)
+
(
p∗

i − p∗

j

)
∥

≥ ∥p∗

i − p∗

j ∥ − ∥pi(t) − p∗

i ∥ − ∥pj(t) − p∗

j ∥

≥ ∥p∗

i − p∗

j ∥ −

n∑
l=1

∥pl(t) − p∗

l ∥, (33)

here

p∗

i − p∗

j ∥ −

n∑
l=1

∥pl(t) − p∗

l ∥

= ∥p∗

i − p∗

j ∥ −

n∑
l=1

∥
(
pl(t) − po

)
+
(
po − p∗

l

)
∥

≥ ∥p∗

i − p∗

j ∥ −

n∑
∥pl(t) − po∥ −

n∑
∥po − p∗

l ∥
l=1 l=1
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≥ ∥p∗

i − p∗

j ∥ −
√
n∥p(t) − (1n ⊗ po)∥ −

n∑
l=1

∥po − p∗

l ∥. (34)

In the above inequality (34), it holds that
√
n∥p(t)− (1n ⊗ po)∥ ≥∑n

l=1 ∥pl(t) − po∥ by using the following inequality for positive
real numbers x1, . . . , xn.√

x21 + · · · + x2n
n

≥
x1 + · · · + xn

n
. (35)

ince ∥p(t)− (1n ⊗ po)∥ has the similar form to ps as given in the
roof of Lemma 6–(iii), the time derivative of ∥p(t) − (1n ⊗ po)∥
quals zero, and this follows that ∥p(t)−(1n⊗po)∥ is invariant for

all t ≥ 0. Here po is also invariant. Thus, if ∥p∗

i −p∗

j ∥−
√
n∥p(0)−

1n ⊗ po)∥ −
∑n

l=1 ∥po − p∗

l ∥ is greater than ζ for ζ > 0 at t = 0,
then ∥pi(t) − pj(t)∥ is also greater than ζ for all t ≥ 0.

(vi) This proof is motivated by Theorem 4.4 in [20]. Let us first
consider RW (p(0)) =

[
r1 r2 · · · rσ

]⊤
=
[
c1 c2 · · · cn

]
at t = 0, where ri ∈ Rdn, i ∈ {1, . . . , σ }, cj ∈ Rσ×d, j ∈ {1, . . . , n},
nd σ = m + w. We define a set N

′

l of neighbors of vertex l as
N

′

l = {i, j ∈ V | (l, i) ∈ E ∨ (l, i, j) ∈ A}. If a framework (G,A, p)
with n = d + 1 vertices is minimally GIWR, then each agent has
exactly d neighbors, i.e., |N

′

l| = n − 1 = d.
Let a framework (G,A, p(0)) with n = d + 1 vertices be

minimally GIWR, and let Cp(0) be of full row rank. Suppose that
the framework (G,A, p(t∗)) is not GIWR at specific time t∗ > 0.
Then, RW (p(t∗)) does not have full row rank, and further there
exists a nonzero vector τ =

[
τ1 τ2 · · · τσ

]⊤
∈ Rσ such that

τ⊤RW (p(t∗)) = τ1r⊤1 +τ2r⊤2 +· · ·+τσ r⊤σ = 0 (or equivalently τ1r1+
τ2r2+· · ·+τσ rσ = 0). Since τ⊤RW (p(t∗)) = τ⊤

[
c1 · · · cn

]
= 0,

τ⊤cl = τ⊤ ∂FW
∂pl

= 0 for all l ∈ {1, 2, . . . , n}. Note that each entry
or the weak rigidity matrix RW is composed of inter-neighbor
elative position vectors from a framework (G,A, p). From the
act that ∂FW

∂pl
consists of z ′⊤

lk (t
∗) for k ∈ N

′

l and τ⊤cl = 0, there
must exist at least one case from l = 1 to l = n such that z ′⊤

lk (t
∗)

for k ∈ N
′

l are linearly dependent.
With |N

′

l| = n − 1 = d, we can denote an oriented incidence
matrix Hl associated with the vertex l (for example, see Fig. 4),
where Hl ∈ Rd×(d+1) for all l ∈ {1, . . . , n}. We define a matrix
El(t∗) composed of z ′⊤

lk (t
∗) for k ∈ N

′

l as El(t∗) = HlC⊤
p (t∗) ∈

Rd×d. We can state El(t∗) as El(t∗) =
[
· · · , z ′

lk(t∗), . . .
]⊤. Consider

El(t∗)x = 0 for any nontrivial x ∈ Rd and l ∈ {1, . . . , n}, then
either the equality C⊤

p (t∗)x = 0 or the equality z ′⊤

ij x = 0, ∀i, j ∈ V ′

holds. The equality z ′⊤

ij x = 0, ∀i, j ∈ V ′ means that all of vectors
z ′

ij are orthogonal to the vector x, and further all of vectors z ′
ij

lie on a hyperplane. Thus, the equality z ′⊤

ij x = 0 cannot hold
as proved in Lemma 6–(iv). The equality C⊤

p (t∗)x = 0 cannot
also hold since Cp(t∗) has the full row rank for all t ≥ 0 as
proved in Lemma 6–(iv). Hence, Null (El(t)) = ∅ and the rank of
El(t∗) equals d. However, there exists at least one case such that
z ′⊤

lk (t
∗) for k ∈ N

′

l are linearly dependent, and this follows that
rank (El(t∗)) < d. This conflicts with rank (El(t∗)) = d. Hence, we
can conclude that (G,A, p(t)) is minimally GIWR for all t ≥ 0 if
(G,A, p(0)) with n = d + 1 vertices is minimally GIWR and Cp(0)
is of full row rank. □

Assumption 2. In formation control problems addressed in this
paper, it is assumed that any two agents at the initial time are
sufficiently far from each other to not make any collision between
agents with reference to Lemma 6–(v).
9

Fig. 4. Example of subgraphs for Hl when n = 4. The dashed lines indicate the
removed edges. The graphs have the same vertex set but do not have the same
edge set.

4.2. Exponential stability of minimally GIWR formations with n
agents in Rd

We first explore the stability of minimally GIWR formations
with n agents in Rd. In this subsection, we assume that the
desired formation is minimally GIWR, which is relaxed in the next
subsection.

Theorem 2. Suppose that the desired formation is minimally GIWR
and the control system (24) follows Assumption 1. If any initial for-
mation is close to the desired formation, then the error system (25)
has an exponentially stable equilibrium at the origin, and the initial
formation locally exponentially converges to the desired formation
shape.

Proof. We first define the potential function V (e) as V (e) =
1
2 e

⊤e
which is also the Lyapunov function candidate. We also define a
sub-level set Ψ as Ψ = {e | V (e) ≤ ϵ} for ϵ > 0 such that all
formations in the set Ψ are minimally GIWR close to the desired
formation.

With Eq. (25), the derivative of V (e) along a trajectory of e is
calculated as

V̇ (e) = e⊤ė = −e⊤RW (e)R⊤

W (e)e = −∥R⊤

W (e)e∥2. (36)

ince the formation in the set Ψ is minimally GIWR, the weak
igidity matrix has the full row rank. Therefore, since rank
RW (e)R⊤

W (e)
)

= rank (RW (e)), RW (e)R⊤

W (e) is of full rank and
w(e)R⊤

w(e) is positive definite (all eigenvalues of Rw(e)R⊤
w(e) are

ositive). Moreover, this implies

˙ (e) ≤ −λ∥e∥2, (37)

here λ denotes the minimum eigenvalue of Rw(e)R⊤
w(e). The

nequality (37) indicates that V̇ < 0 for e ∈ Ψ \ {0}. Thus, the
rigin of the error system (25) is asymptotically stable near the
esired formation. Also, since V =

1
2 e

⊤e, the following inequality
olds.

˙ (e) ≤ −2λV (e), (38)

nd it follows by Gronwall–Bellman Inequality [36, Lemma A.1]
hat V (e(t)) ≤ V (e(0))exp(−2λt). Therefore, the error system
(25) has an exponentially stable equilibrium at the origin, and
the solution of (24) exists and is finite as t → ∞. By the



S.-H. Kwon and H.-S. Ahn Systems & Control Letters 146 (2020) 104800

D
r

a
c
c
e

4
R

n
t
s

(
r
G
F
i
m
a
d
c
e
(
t
P
h
P
f

L
n

[

f

w
f
t
e
f
f

t

Fig. 5. Example of framework decomposition of a non-minimally GIWR frame-
work. The dashed lines indicate virtual edges which do not belong to E , Ē and Ẽ .
istance and angle constraints are denoted by dij, (i, j) ∈ E and θ k

ij , (k, i, j) ∈ A,
espectively.

bove result, the control law (24) guarantees that p exponentially
onverges to a fixed point. The initial formation in the set Ψ is
lose to the desired formation. Hence, the initial formation locally
xponentially converges to the desired formation shape. □

.3. Stability on non-minimally GIWR formations with n agents in
d

In this subsection, we explore the stability in the case of
on-minimally GIWR formation systems with n agents in Rd. To
his end, we make use of a linearization approach of perturbed
ystems motivated by [3,37].
We denote a minimally GIWR sub-framework induced from

G,A, p) by (Ḡ, Ā, p), where Ḡ = (V, Ē). We also denote the
emaining part of (G,A, p) except (Ḡ, Ā, p) by (G̃, Ã, p), where
˜ = (V, Ẽ), Ẽ = E \ Ē and Ã = A \ Ā (see an example in
ig. 5). Let σ denote the sum of cardinalities of edges and angles,
.e., σ = m + w. Then, σ̄ and σ̃ are defined as σ̄ = |Ē| + |Ā| =

¯ + w̄ = dn − d(d + 1)/2 (or dn − (d2 + d + 2)/2 when E = ∅)
nd σ̃ = |Ẽ| + |Ã| = m̃+ w̃ = σ − σ̄ , respectively. Moreover, we
enote the sub-vector ē ∈ Rσ̄ whose entries are those entries in e
orresponding to edges and angles in (Ḡ, Ā, p), and ẽ ∈ Rσ̃ whose
ntries are those entries in e corresponding to edges and angles in
G̃, Ã, p). We denote the permutation matrix P =

[
P̄⊤ P̃⊤

]
such

hat
[
ē ẽ

]⊤
= P⊤e or equivalently ē = P̄e and ẽ = P̃e, where

∈ Rσ×σ , P̄ ∈ Rσ̄×σ and P̃ ∈ Rσ̃×σ . The permutation matrix
as properties such that P̄P̄⊤

= Iσ̄×σ̄ , P̃P̃⊤
= Iσ̃×σ̃ , P̄P̃⊤

= 0σ̄×σ̃ ,
¯⊤P̄ + P̃⊤P̃ = Iσ×σ and e = P̄⊤ē + P̃⊤ẽ. We now show that ẽ is a
unction of ē locally.

emma 7. Let a framework (G,A, q) be the desired formation, and
on-minimally GIWR. Then, there (locally) exists a smooth function
10
f : ē(q) → R(σ−σ̄ ) such that ẽ(q) = f (ē(q)) close to (G,A, q).
Furthermore, it holds that f (ē) = 0 if and only if ē = 0.

Proof. This proof is motivated by Proposition 1 in [37]. (i)
For the 2-dimensional case, we first denote a rotation matrix

S(x) such that S(x) =
1

∥x∥

[
x2 −x1
x1 x2

]
for a nonzero vector x =

x1 x2
]⊤

∈ R2. The equality S(x)x =
[
0 ∥x∥

]⊤ always holds.
We denote a vector ς : p → Rσ̄ with σ̄ = 2n − 3 when E ̸= ∅ in
R2 such as:

ς (p) =
[
∥z21∥ (S(z21)z31)⊤ · · · (S(z21)zn1)⊤

]⊤
. (39)

Since the rotation matrix does not change a magnitude of a
vector, we see that ∥zj1∥2

= ∥S(z21)zj1∥2 and ∥zij∥2
= ∥S(z21)zi1 −

S(z21)zj1∥2, and further ς (p) includes all information on the rela-
tive vectors z21, z31, . . . , zn1. Thus, any entry in ẽ is composed of
entries in ς (p). Moreover, there exists a function f̃e : Rσ̄

→ R(σ−σ̄ )

such that ẽ = f̃e(ς (p)). Similarly, there exists a function f̄e : Rσ̄
→

Rσ̄ such that ē = f̄e(ς (p)).
In the same way, for the case of E = ∅ in R2, we can define a

vector ς : p → Rσ̄ with σ̄ = 2n − 4 such that

ς (p) =
[
(S(z21)z31)⊤ (S(z21)z41)⊤ · · · (S(z21)zn1)⊤

]⊤
. (40)

Then, with the fact in [38, Lemma 11], it is obvious that there
exist ẽ = f̃e(ς (p)) and ē = f̄e(ς (p)).

The derivative of ē at q, i.e., ∂ ē(p)
∂p

⏐⏐⏐
p=q

is the weak rigidity matrix

of (Ḡ, Ā, q). Then, rank
(

∂ ē(p)
∂p

⏐⏐⏐
p=q

)
= σ̄ since (Ḡ, Ā, q) is mini-

mally GIWR. Thus, with the fact that ∂ ē(p)
∂p

⏐⏐⏐
p=q

=
f̄e(ς (p))
∂ς (p)

∂ς (p)
∂p

⏐⏐⏐
p=q

rom ē = f̄e(ς (p)), it holds that rank
(

f̄e(ς (p))
∂ς (p)

⏐⏐⏐
p=q

)
≥ σ̄ by the

rank property. Since f̄e(ς (p))
∂ς (p)

⏐⏐⏐
p=q

is an σ̄ × σ̄ matrix, we can see

that f̄e(ς (p))
∂ς (p)

⏐⏐⏐
p=q

is of full rank and f̄e(ς (p))
∂ς (p)

⏐⏐⏐
p=q

is nonsingular. Hence,

from the inverse function theorem, there is an open set W ⊂ Rσ̄

containing ς (q) such that f̄e has a smooth inverse f̄ −1
e : f̄e(W) →

W . Then, the following equality holds.

f̄ −1
e (f̄e(ς (p))) = ς (p), ς (p) ∈ W, (41)

hich implies that f̄ −1
e (f̄e(ς (p))) = f̄ −1

e (ē) = ς (p). Since ẽ =

˜e(ς (p)), the equality ẽ = f̃e(f̄ −1
e (ē)) holds. Therefore, we can say

hat there exists a smooth function f : ē(q) → R(σ−σ̄ ) such that
˜(q) = f (ē(q)) close to (G,A, q). In addition, since P̃e = ẽ =

˜e
(
f̄ −1
e (ē)

)
= f̃e

(
f̄ −1
e

(
P̄e
))

= f
(
P̄e
)
and e = 0 at the desired

ormation (G,A, q), it holds that f (0) = 0.
(ii) For the 3-dimensional case, let us consider rotation ma-

rices Sx1 (x) and Sx2 (x) rotating a vector x =
[
x1 x2 x3

]⊤
∈ R3

about x1 and x2 axes into x1x3-plane and x1x2-plane, respectively,
as follows:

Sx1 (x) =

⎡⎢⎢⎢⎣
1 0 0
0 x3√

x22+x23
−

x2√
x22+x23

0 x2√
x22+x23

x3√
x22+x23

⎤⎥⎥⎥⎦ ,

Sx2 (x) =

⎡⎢⎢⎢⎣
x1√
x21+x23

0 x3√
x21+x23

0 1 0
−

x3√
x21+x23

0 x1√
x21+x23

⎤⎥⎥⎥⎦ . (42)
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e then have

x1 (z21)z21 =

[
z(1)21 0

(
z(2)21

)2
+

(
z(3)21

)2√(
z(2)21

)2
+

(
z(3)21

)2
]⊤

= z̄21, (43)

x2 (z̄21)z̄21 =
[
∥z21∥ 0 0

]⊤
= ˇ̄z21, (44)

here z21 =
[
z(1)21 z(2)21 z(3)21

]⊤
∈ R3. We also have

x1 ( ˇ̄z31) ˇ̄z21 =
[
∥z21∥ 0 0

]⊤
, (45)

x1 ( ˇ̄z31) ˇ̄z31 =

[
ˇ̄z(1)31 0

(
ˇ̄z(2)31

)2
+

(
ˇ̄z(3)31

)2√(
ˇ̄z(2)31

)2
+

(
ˇ̄z(3)31

)2
]⊤

, (46)

here ˇ̄z31 = Sx2 (z̄21)Sx1 (z21)z31 =
[
ˇ̄z(1)31

ˇ̄z(2)31
ˇ̄z(3)31

]⊤
∈ R3. With

the facts of (45) and (46), we can denote a vector ς : p → Rσ̄

with σ̄ = 3n − 6 when E ̸= ∅ in R3 such that

ς (p) =[
∥z21∥ ˇ̄z(1)31

(
ˇ̄z(2)31

)2
+

(
ˇ̄z(3)31

)2√(
ˇ̄z(2)31

)2
+

(
ˇ̄z(3)31

)2 (
S̄z41

)⊤
· · ·

(
S̄zn1

)⊤]⊤

, (47)

here S̄ = Sx1 ( ˇ̄z31)Sx2 (z̄21)Sx1 (z21). ς (p) includes all information
n the relative vectors z21, z31, . . . , zn1. Since the rotation matri-
es do not change a magnitude of a vector, any entry in ẽ is a
unction composed of entries in ς (p), and further there exists a
unction f̃e : Rσ̄

→ R(σ−σ̄ ) such that ẽ = f̃e(ς (p)). Moreover, there
xists a function f̄e : Rσ̄

→ Rσ̄ such that ē = f̄e(ς (p)). In the
ame manner, for the case of E = ∅ in R3, we can define a vector
: p → Rσ̄ with σ̄ = 3n − 7 such that

(p) =

[
ˇ̄z(1)31

(
ˇ̄z(2)31

)2
+

(
ˇ̄z(3)31

)2√(
ˇ̄z(2)31

)2
+

(
ˇ̄z(3)31

)2 (
S̄z41

)⊤
· · ·

(
S̄zn1

)⊤]⊤

. (48)

Then, with reference to [38, Lemma 11], there exist ẽ = f̃e(ς (p))
and ē = f̄e(ς (p)). The rest of this proof is proved in the same way
as the 2-dimensional case. □

We denote R̄W ∈ Rσ̄×dn as the weak rigidity matrix for the sub-
framework (Ḡ, Ā, p), and R̃W ∈ Rσ̃×dn as the weak rigidity matrix
for the sub-framework (G̃, Ã, p). Then, it holds that R̄W = P̄RW
nd R̃W = P̃RW . From the fact that ē = P̄e and e = P̄⊤ē+ P̃⊤ẽ, we
ave

˙̄ = P̄ė = P̄
∂e
∂p

ṗ = −P̄RWR⊤

W e

= −P̄RWR⊤

W (P̄⊤ē + P̃⊤ẽ)

= −R̄W R̄⊤

W ē − R̄W R̃⊤

W ẽ. (49)

From Lemma 7, the equality (49) can be rewritten as

˙̄e = −R̄W R̄⊤

W ē − R̄W R̃⊤

W f (ē), (50)

which locally holds only around the desired formation. It also
holds that R̃W =

∂ ẽ
∂p =

∂ ẽ
∂ ē

∂ ē
∂p =

∂ f (ē)
∂ ē

∂ ē
∂p =

∂ f (ē)
∂ ē R̄W . Therefore,

e can consider the error system (50) as a perturbed system. We
hen reach the following theorem.

heorem 3. Under the gradient flow law (24) and Assumption 1,
the perturbed error system (50) for a non-minimally GIWR formation
has an exponential stable equilibrium at the origin.

Proof. Note that R̃W =
∂ ẽ
∂p =

∂ f
∂ ē

∂ ē
∂p = F R̄W , where F =

∂ f
∂ ē gk(ek).

We define a neighborhood set Ψ around ē = 0 as Ψ = {ē ∈ Rσ̄
|

∥ē∥2 < ϵ} for ϵ > 0. Then, the remainder of this proof is similar
to Theorem 3 in [3]. □
 m
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5. Application to formation control: almost global conver-
gence of 3-agent formations in R2

This section aims to provide analysis for almost global stability
on special cases of minimally GIWR 3-agent formations in R2.
In this section, we also use the control system (24) as discussed
in Section 4.1. We first classify all equilibrium points to explore
the stability of the system (24) with a set P composed of all
equilibrium points defined as P = {p ∈ R2n

| R⊤

W e = 0} as
follows:

P∗
= {p ∈ R2n

| e = 0}, (51)

Pi = {p ∈ R2n
| R⊤

W e = 0, e ̸= 0}, (52)

where P∗ and Pi denote the sets for desired equilibria and in-
correct equilibria, respectively. Both of P∗ and Pi constitute the
set of all equilibria, i.e., P = P∗

∪ Pi. An equilibrium point
p̄ = [p̄⊤

1 , . . . , p̄⊤
n ]

⊤
∈ R2n is called incorrect equilibrium point if

p̄ belongs to Pi.

5.1. Analysis of the incorrect equilibria

We show in this subsection that the system (24) at any incor-
rect equilibrium point p̄ is unstable. We first explore what cases
occur at the incorrect equilibria.

Lemma 8. In the case of three-agent formations, incorrect equilibria
take place only when the three agents are collinear.

Proof. From the viewpoint of a minimally GIWR formation
composed of three agents, there are only three formation cases:
the first one is a formation with one angle constraint and two
distance constraints; the second one is that with two angle con-
straints and one distance constraint; the third one is that with
only two angle constraints. Each example for the three cases is
illustrated in Figs. 1(a)–1(c), respectively.

Let N
′

l denote a set of neighbors of vertex l by N
′

l = {i, j ∈

V | (l, i) ∈ E ∨ (l, i, j) ∈ A}. If a framework (G,A, p) with
n = 3 vertices is minimally GIWR, then each agent has exactly
two neighbors, i.e., |N

′

l| = 2. In the weak rigidity matrix RW ,
all elements are composed of inter-neighbor relative position
vectors, i.e., ∂FW

∂pl
consists of z ′⊤

lk1 and z ′⊤

lk2 for k1, k2 ∈ N
′

l. Thus, at
he incorrect equilibria, the following form holds:
′⊤

lk1 = clz ′⊤

lk2 , k1, k2 ∈ N
′

l, (53)

where cl ∈ R is a coefficient. This implies that incorrect equilibria
take place only when the three agents are collinear for 3-agent
formations in R2.

We next show an example with a formation in Fig. 1(a). For the
case of the formation with one angle constraint and two distance
constraints as shown in Fig. 1(a), Eq. (24) can be written as

ṗ1 = −2z12e12 − 2z13e13 − α⊤e123, (54a)

ṗ2 = 2z12e12 − β⊤e123, (54b)

ṗ3 = 2z13e13 − γ ⊤e123, (54c)

where eij = ∥zgij∥
2

− ∥z∗
gij∥

2, (i, j) ∈ E , e123 = Ah123 − A∗

h123
,

α =
∂

∂p1
cos θ1

23, β =
∂

∂p2
cos θ1

23 and γ =
∂

∂p3
cos θ1

23. In the
incorrect equilibrium set Pi, Eq. (54c) is calculated as

z12 =

(
∥z12∥
∥z13∥

cos θ1
23 − 2∥z12∥∥z13∥

e13
e123

)
z13

⏐⏐⏐⏐
p∈Pi

(55)

t follows from (55) that p1, p2 and p3 must be collinear. Eqs. (54a)
nd (54b) also give us similar results. Therefore, the three agents
ust be collinear. The formation shape of the three agents falls
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Fig. 6. Three formation forms which can occur at the incorrect equilibria.
o
t
R
T

J

a

nto one of three cases as depicted in Fig. 6. Two cases illustrated
n Figs. 1(b) and 1(c) also give us similar results to the case of
ig. 1(a). □

Next, to analyze the stability at the incorrect equilibria, we
inearize the system (24). One can observe the following negative
acobian J(p) of the system (24) with respect to p:

(p) = −
∂

∂p
ṗ

= RW (p)⊤RW (p) + E(p) ⊗ I2

+

∑
(k,i,j)∈A

eAh

(
(I3 ⊗ p1)

∂

∂p
C1 + (I3 ⊗ p2)

∂

∂p
C2

+ (I3 ⊗ p3)
∂

∂p
C3

)
, (56)

where p =
[
p⊤

1 p⊤

2 p⊤

3

]⊤
∈ R6, eAh = Ahkij − A∗

hkij
, and Cl ∈ R3

for l ∈ {1, 2, 3} denotes a vector composed of entries of lth
column associated with eAh in E(p) (see an example (17) in [21]).
If J(p) has at least one negative eigenvalue at the incorrect equi-
librium point p̄, then the system at p̄ is unstable. In order to check
this fact, we first reorder columns of J(p), which does not have an
effect on any eigenvalue of J(p). We make use of a permutation
matrix T which reorders columns of matrix such that

RWT =
[
Rx Ry

]
= R̄,

PlT =
[
Plx Ply

]
= P̄l,

∂

∂p
ClT =

[
Clx Cly

]
= C̄l, (57)

where Pl = (I3 ⊗ p⊤

l ) ∈ R3×6 for l ∈ {1, 2, 3}. In (57), Ru ∈ Rσ×3,
Plu ∈ R3×3 and Clu ∈ R3×3 for u = x, y denote matrices whose
columns are composed of the columns of coordinate u in the
matrix RW , Pl and ∂

∂pCl, respectively. The formation is minimally
IWR, thus σ = 3. It is remarkable that TT⊤

= I holds since
is a permutation matrix. With the permutation matrix T , the
ermutated matrix J̄(p) is given by

J̄(p) =T⊤J(p)T

=R̄⊤R̄ + I2 ⊗ E(p) +

∑
(k,i,j)∈A

(
P̄⊤

1 C̄1 + P̄⊤

2 C̄2 + P̄⊤

3 C̄3
)
eAh

=

[
J̄11 J̄12
J̄21 J̄22

]
, (58)

where

J̄11 =R⊤

x Rx + E(p) +

∑
(k,i,j)∈A

(P1xC1x + P2xC2x + P3xC3x)eAh ,

J̄12 =R⊤

x Ry +

∑
(k,i,j)∈A

(
P1xC1y + P2xC2y + P3xC3y

)
eAh ,

J̄21 =R⊤

y Rx +

∑
(k,i,j)∈A

(
P1yC1x + P2yC2x + P3yC3x

)
eAh ,

¯22 =R⊤

y Ry + E(p) +

∑
(k,i,j)∈A

(P1yC1y + P2yC2y + P3yC3y)eAh .

ote that the stability of an equilibrium point is independent of
rigid-body translation, a rigid-body rotation and a scaling of an
ntire framework since relative distances and subtended angles
12
nly matter. Therefore, without loss of generality, we suppose
hat p̄ lies on the x-axis since they are collinear. Then, we have
y = 0, P1y = 0, C1y = 0, P2y = 0, C2y = 0, P3y = 0 and C3y = 0.
hen, J̄(p̄) is of the form

¯(p̄) =

[
J̄11(p̄) 0
0 E(p̄)

]
. (59)

The following results show that the system (24) at p̄ is unstable.

Lemma 9. Let p̄ be in the incorrect equilibrium set Pi. Then, E(p̄)
has at least one negative eigenvalue.

Proof. We first define α, β and γ as α =
∂

∂pk
cos θ k

ij , β =
∂

∂pi
cos θ k

ij

nd γ =
∂

∂pj
cos θ k

ij , and let αpk , αpi and αpj denote coefficients of
pk, pi and pj in α, respectively. Similarly, βpk , βpi , βpj , γpk , γpi and
γpj are denoted. Then, from the structure of the matrix E, we can
have the following equation in case of E ̸= ∅ for a configuration
p̂ = [p̂⊤

1 , . . . , p̂⊤
n ]

⊤
∈ R2n.

p̂⊤
[E(p̄) ⊗ Id]p̂

=2
∑
(i,j)∈E

eij(p̄)∥p̂i − p̂j∥2

+

∑
(k,i,j)∈A

eAh (p̄)
(
p̂⊤

k p̂kαp̄k + p̂⊤

k p̂iαp̄i + p̂⊤

k p̂jαp̄j

+ p̂⊤

i p̂kβp̄k + p̂⊤

i p̂iβp̄i + p̂⊤

i p̂jβp̄j

+ p̂⊤

j p̂kγp̄k + p̂⊤

j p̂iγp̄i + p̂⊤

j p̂jγp̄j

)
=2

∑
(i,j)∈E

eij(p̄)∥p̂i − p̂j∥2
−

∑
(k,i,j)∈A

eAh (p̄)
(
∥p̂k − p̂i∥2βp̄k

+ ∥p̂k − p̂j∥2αp̄j + ∥p̂i − p̂j∥2γp̄i

)
, (60)

where eij(p̄) = ∥z(p̄)ij∥2
− ∥z∗

ij∥
2, eAh (p̄) = Ahkij

⏐⏐
p=p̄

− A∗

hkij
,

βp̄k =
−1

∥z̄ki∥∥z̄kj∥
+

(
∥z̄ki∥2

+ ∥z̄kj∥2
− ∥z̄ij∥2

2∥z̄ki∥∥z̄kj∥

)
1

∥z̄ki∥2 ,

αp̄j =
−1

∥z̄ki∥∥z̄kj∥
+

(
∥z̄ki∥2

+ ∥z̄kj∥2
− ∥z̄ij∥2

2∥z̄ki∥∥z̄kj∥

)
1

∥z̄kj∥2 ,

γp̄i =
1

∥z̄ki∥∥z̄kj∥
,

z̄ij = p̄i − p̄j and it holds that αp̄i = βp̄k , αp̄j = γp̄k and βp̄j = γp̄i ,
and it also holds that αp̄k + αp̄i + αp̄j = 0, βp̄k + βp̄i + βp̄j = 0 and
γp̄k + γp̄i + γp̄j = 0. In the case of E = ∅, we have

p̂⊤
[E(p̄) ⊗ Id]p̂

= −

∑
(k,i,j)∈A

eAh (p̄)
(
∥p̂k − p̂i∥2βp̄k + ∥p̂k − p̂j∥2αp̄j + ∥p̂i − p̂j∥2γp̄i

)
.

(61)

Suppose that E(p̄) is positive semidefinite. Then, we have
p̂⊤

[E(p̄) ⊗ Id]p̂ ≥ 0 for any configuration p̂ ∈ R2n. Consider the
desired configuration p∗

= [p∗⊤

1 , . . . , p∗⊤
n ]

⊤
∈ R2n in P∗. With the

fact that the equality (60) and p̄⊤
[E(p̄) ⊗ Id]p̄ = 0, the following

equation holds.

p∗⊤
[E(p̄) ⊗ Id]p∗

∗⊤
¯

∗
¯
⊤

¯ ¯
=p [E(p) ⊗ Id]p − p [E(p) ⊗ Id]p
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∥
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=2
∑
(i,j)∈E

eij(p̄)∥p∗

i − p∗

j ∥
2
− 2

∑
(i,j)∈E

eij(p̄)∥p̄i − p̄j∥2

−

∑
(k,i,j)∈A

eAh (p̄)
(
∥z∗

ki∥
2βp̄k + ∥z∗

kj∥
2αp̄j + ∥z∗

ij∥
2γp̄i

)
+

∑
(k,i,j)∈A

eAh (p̄)
(
∥z̄ki∥2βp̄k + ∥z̄kj∥2αp̄j + ∥z̄ij∥2γp̄i

)
=2

∑
(i,j)∈E

eij(p̄)∥p∗

i − p∗

j ∥
2
− 2

∑
(i,j)∈E

eij(p̄)∥p̄i − p̄j∥2

−

∑
(k,i,j)∈A

eAh (p̄)
(
∥z∗

ki∥
2βp̄k + ∥z∗

kj∥
2αp̄j + ∥z∗

ij∥
2γp̄i

)
+

∑
(k,i,j)∈A

eAh (p̄)
∥z̄ki∥2

+ ∥z̄kj∥2
− ∥z̄ij∥2

2∥z̄ki∥∥z̄kj∥

(2∥z∗

ki∥∥z
∗

kj∥

∥z̄ki∥∥z̄kj∥

)

−

∑
(k,i,j)∈A

eAh (p̄)
∥z̄ki∥2

+ ∥z̄kj∥2
− ∥z̄ij∥2

2∥z̄ki∥∥z̄kj∥

(2∥z∗

ki∥∥z
∗

kj∥

∥z̄ki∥∥z̄kj∥

)
= − 2

∑
(i,j)∈E

|eij(p̄)|2 −

∑
(k,i,j)∈A

|eAh (p̄)|
2
(2∥z∗

ki∥∥z
∗

kj∥

∥z̄ki∥∥z̄kj∥

)

+

∑
(k,i,j)∈A

eAh (p̄)
∥z̄ki∥2

+ ∥z̄kj∥2
− ∥z̄ij∥2

2∥z̄ki∥∥z̄kj∥

(2∥z∗

ki∥∥z
∗

kj∥

∥z̄ki∥∥z̄kj∥

−
∥z∗

ki∥
2

∥z̄ki∥2 −
∥z∗

kj∥
2

∥z̄kj∥2

)
, (62)

where z∗

ij = p∗

i − p∗

j and it holds that ∥z̄ik∥2βp̄k + ∥z̄jk∥2αp̄j +

z̄ij∥2γp̄i = 0. It follows from Lemma 8 that the incorrect
equilibrium point p̄ lies on the 1-dimensional space. Thus,(

∥z̄ki∥2+∥z̄kj∥2−∥z̄ij∥2

2∥z̄ki∥∥z̄kj∥

)2
=
(
cos θ k

ij

)2⏐⏐⏐
p=p̄

= 1, which implies that

Ah (p̄)
(

∥z̄ki∥2
+ ∥z̄kj∥2

− ∥z̄ij∥2

2∥z̄ki∥∥z̄kj∥

)
= 1 −

(
cos θ k

ij

)⏐⏐
p=p∗

(
cos θ k

ij

)⏐⏐
p=p̄

≥ 0. (63)

oreover, it holds that
(

2∥z∗ki∥∥z
∗
kj∥

∥z̄ki∥∥z̄kj∥
−

∥z∗ki∥
2

∥z̄ki∥2
−

∥z∗kj∥
2

∥z̄kj∥2

)
= −

(
∥z∗ki∥
∥z̄ki∥

−
∥z∗kj∥

∥z̄kj∥

)2
≤ 0. Therefore, we have p∗⊤

[E(p̄) ⊗ Id]p∗ < 0 when
̸= ∅. Similarly, when E = ∅, it also holds that p∗⊤

[E(p̄) ⊗

Id]p∗ < 0. However, this conflicts with p̂⊤
[E(p̄) ⊗ Id]p̂ ≥ 0 for

any configuration p̂. Hence, we have the statement. □

Theorem 4. The system (24) at any incorrect equilibrium point p̄
is unstable.

Proof. Since J̄(p̄) is of the form (59), if E(p̄) has at least one
negative eigenvalue then J̄(p̄) also has at least one negative eigen-
value. From Lemma 9, we know that E(p̄) has at least one negative
eigenvalue and the matrix J̄(p̄) also does. Since eigenvalues of
J̄(p̄) and J(p̄) are the same, J(p̄) also has at least one negative
igenvalue. Hence, the system (24) at any incorrect equilibrium
oint p̄ is unstable. □

.2. Almost global stability on 3-agent formation in R2

This subsection shows that if a configuration p does not belong
o Pi then p does not approach Pi as time goes on. Finally, this
ubsection provides the main result of the almost global stability
n 3-agent formations in R2.

emma 10. Let p(0) denote an initial formation. If p(0) given by
he gradient flow law (24) does not belong to the set of incorrect
quilibria, P , then p(t) does not approach P for any time t ≥ 0.
i i
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Proof. For a 3-agent formation in R2, an incorrect equilibrium
point p̄ always lies on a hyperplane, i.e., rank(Cp̄(t)) < d from
Lemma 8. Additionally, the linearized version of the system (24),
i.e., negative Jacobian J(p), at an incorrect equilibrium point p̄
has at least one negative eigenvalue from Theorem 4. Hence, this
property is proved straightforward by a similar approach to the
proof of Theorem 2 in [34]. □

Theorem 5. Under the control system (24) and Assumption 1, if a
framework (G,A, p(0)) with n = 3 is minimally GIWR and p(0) is
not in the incorrect equilibrium set Pi in R2, then p(0) exponentially
converges to a point in the desired equilibrium set P∗.

Proof. We define a Lyapunov function candidate as V (e) =
1
2 e

⊤e.
Notice that V (e) ≥ 0 with V (e) = 0 if and only if e = 0 and V is
radially unbounded. The time derivative of V (e) along a trajectory
of e is calculated as

V̇ = e⊤ė = −e⊤RWR⊤

W e = −∥R⊤

W e∥2. (64)

e know that V̇ ≤ 0, V̇ is equal to zero if and only if R⊤

W e = 0.
From Theorem 4, Lemma 10 and the assumption that p(0) /∈ Pi, it
follows that e → 0 asymptotically fast and the error system (25)
has an asymptotically stable equilibrium at the origin.

From p(0) /∈ Pi, the initial positions do not lie on the
1-dimensional space, i.e., Cp(0) is of full row rank. Then, from
Lemma 6–(vi), rank (RW (p(0))) = rank (RW (p(t))) for all t ≥ 0
in Rd. It follows from p(0) /∈ Pi and Lemma 6–(vi) that RWR⊤

W is
positive definite for all t ≥ 0. Henceforth, Eq. (64) satisfies

V̇ ≤ −λ(RWR⊤

W )∥e∥2,

where λ denotes the minimum eigenvalue of RWR⊤

W along this
trajectory. Moreover, since V =

1
2 e

⊤e, the following inequality
holds.

V̇ (e) ≤ −2λV (e), (65)

nd it follows by Gronwall–Bellman Inequality [36, Lemma A.1]
hat V (e(t)) ≤ V (e(0))exp(−2λt). Therefore, e → 0 exponentially
ast and the error system (25) has an exponentially stable equi-
ibrium at the origin, which in turn implies that p → p∗ for all
initial positions outside the set Pi, where p∗ is the desired forma-
tion. Hence, we conclude that the formation control system (24)
almost globally exponentially converges to the desired formation
in P∗. □

6. Conclusion

This paper studied the GWR theory and stability for the for-
mation control system based on the GWR theory in the 2- and
3-dimensional spaces. Based on the GWR theory, we can de-
termine a rigid formation shape with a set of pure inter-agent
distances and angles. In particular, with using the rank condi-
tion of the weak rigidity matrix, we can conveniently examine
whether a formation shape is rigid or not. We also showed that
both GWR and GIWR for a framework are generic properties, and
the GWR theory is necessary for the distance rigidity theory. We
then applied the GWR theory to the formation control with the
gradient descent flow law. As the first result of its applications,
we proved the local exponential stability for GIWR formations in
the 2 and 3-dimensional spaces. Finally, for 3-agent formations
in the 2-dimensional space, we showed the almost global expo-
nential stability of the formation control system. Readers who are
interested in simulation examples on the formation control can
refer to the preprint version [38].

As a future work, we first aim to extend the GWR based
formation control to GWR based flocking control with the double-
integrator model. We expect that a flocking control system based
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n the GWR theory can be developed in a similar way as the
locking control with the distance rigidity theory [39,40]. We then
xpect that a rigid cooperative manipulation scheme as stud-
ed [41] can be developed with the proposed rigidity theory in
his paper. A rigid point set registration [42] is also of our interest
s a future work. To the best of our knowledge, a rigid point set
egistration has been studied with global information and cen-
ralized schemes. We expect that the GWR theory can contribute
o a distributed scheme for the rigid point set registration with
nly local information.
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