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Abstract: The increase in ambient particulate matter (PM) is affecting not only our daily life but also
various industries. To cope with the issue of PM, which has been detrimental to the population of
megacities, an advanced demand response (DR) program is established by Korea Power Exchange
(KPX) to supplement existing policies in Korea. Ironically, however, DR programs have been launched
hurriedly, creating problems for several stakeholders such as local governments, market operators,
and DR customers. As an alternative, a method for predicting and categorizing the PM through deep
learning and fuzzy inference is suggested in this study. The simulation results based on Seoul data
show that the proposed model can overcome the problems related to current DR programs and policy
loopholes and can provide improvements for some stakeholders. However, the proposed model
also has some limitations, which require an in-depth policy consideration or an incentive system for
power generation companies.

Keywords: energy policy; demand-side management; demand response; fuzzy; deep-learning;
particulate matter

1. Introduction

A high content of ambient particulate matter (PM), classified as a Group 1 carcinogen by the World
Health Organization, has caused several problems in countries such as China, India, and Korea [1–5].
PM not only harms the human body, but also affects our daily life and the industrial sector. Studies have
reported premature mortality and short lifetime, with 1.2 to 2 million deaths per year in China due to
ambient PM [6–9]. Therefore, national efforts are required to alleviate the PM problem and significant
resources are being invested for air purification. Another representative example is Korea, which is
geographically very close to China. The Organization for Economic Co-operation and Development
(OECD) designated Korea as one of the countries with the poorest air quality [10]. Ultrafine dust
warnings have nearly doubled compared with the previous readings of 2017. Accordingly, the Ministry
of Environment in Korea has made significant efforts to manage fine dust, such as enacting a special
law on fine dust reduction and management [11].

Efforts to deal with high PM content are being actively made not only in terms of revamping
the national policy but also from academic aspects [12–20]. In Reference [12], studies on predicting
particulate matter with diameters that are generally 10 microns or less (PM10) using the artificial neural
network (ANN) technique were conducted. Some studies predicted and monitored the status of PM by
combining artificial intelligence (AI) techniques, such as the multi-layer perceptron (MLP) technique,
with an autoregressive integrated moving average (ARIMA), which is a statistical model [13,14].
The long short-term memory (LSTM) approach, which is an AI tool that enhances its accuracy by
taking into account the impact of time, has been considered in some studies to estimate the degree of
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PM or air pollution more accurately [15–17]. Others have used LSTM with neural networks (NNs) to
improve the error rate of PM prediction [18,19]. A dynamic ensemble technique, in which various
techniques are combined to improve the prediction performance, was suggested in Reference [20].

Fuzzy inference is mainly used to define the vagueness that does not follow a probability
distribution [21]. For example, it is used to predict the load or calculate the curtailment degree [21–23]
or predict the electricity price [24]. It is also used in conjunction with NNs to predict the electricity
demand more accurately [25,26]. Unlike the electricity price or demand, the ambient PM has a distinct
characteristic: PM is classified into bad, normal, and good categories depending on the degree of PM
concentration. For example, if the PM10 concentration is 80 ppm, it is classified as normal, but if it is
81 ppm, it is classified as bad based on the Korean standard. Intuitively, if 81 ppm is harmful to the
human body, a PM10 concentration of 80 ppm will have similar harmful effects. PM concentrations of
both 31 and 80 ppm belong to the normal group and both are not harmful according to the standard,
even though 80 ppm is very much closer to a concentration of 81 ppm, and this criterion has perplexed
decision-makers. Thus, Kim proposed a new criterion for PM classification by predicting weather
information in Korea through fuzzy inference [27].

The ambient PM has also affected the power industry. As some generators emit PM during
power generation, the power industry is not free from fine dust. To cope with fine dust, the Korean
Government has implemented a policy to limit the output of coal-fired power generators on days when
the fine dust concentration is expected to be at a bad level. As the Korean electricity market is operated
by a cost-based pool, to compensate for the amount of reduction in the output of coal-fired power
plants, which run on a base-load generator, a peak generator is used, resulting in a high wholesale
system marginal price (SMP). In response to the high SMP, the Korea Power Exchange (KPX), which is
an independent system operator in Korea, has modified the conventional DR program to a particulate
matter demand response (PMDR) program.

However, the PMDR program has been improvised as a supplementary policy measure to
counter fine dust, and some problems have been encountered among interested parties such as local
governments, market operators, and DR customers. First, local governments could be lobbied by
power generation companies, and the role of the demand response market operator (DRMO), who is
in charge of KPX in Korea, is limited. Finally, the degree of market participation by DR customers is
unpredictable. As an alternative, we propose a methodology for predicting the ambient PM through
deep learning and fuzzy inference to expand the PMDR program. The main contributions of this study
are as follows:

• A novel model for PM prediction based on an ANN and regulations on the output limits of
coal-fired power generation using fuzzy inference.

• Feasible solutions to the currently implemented DR program (PMDR) based on the proposed model.
• Proposes a direction for policy reference for improving the DR market.

2. Particulate Matter Demand Response in Korea

2.1. Reorganization of the Demand Response Program in Korea

DR programs are generally divided into incentive-based and price-based. Incentive-based
programs can be further divided into classical and market-based [28]. The DR market has been in
operation since 2014 in Korea, and the market operation results are summarized in Section 2 of our
previous study [29]. The DR market has been operating under two representative programs: economic
DR and reliability DR. However, the DR market was reorganized in 2019 due to various demands on
the DR market in conjunction with various environmental and policy issues. The revised Korean DR
market is briefly described in Figure 1.
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Figure 1. Reorganization of the demand response (DR) program in Korea.

2.2. Workflow of PMDR

The PMDR marked with a red box in Figure 1 is the DR program mainly dealt with in this
study. Three stakeholders typically operate the current PMDR program: local government, a market
operator (MO), customers (in fact, a DR aggregator, an intermediary that connects customers and MO,
should also be considered; however, for convenience, only three stakeholders are considered in this
study). The role of each stakeholder in implementing the PMDR is as follows. First, the Korean Ministry
of Environment (KME) predicts the fine dust concentration level, and if the PM level exceeds the
upper limit standard, the “high-concentration fine dust emergency reduction measure (HERM)” will
be issued. Each local government monitors the Ministry of Environment’s forecast in real time through
the Air Korea website [30], and when the HERM is issued, the output of the coal-fired power generator
is limited to 80% of the original generation. Next, KPX, the MO in Korea, will open a PMDR to secure
resources to substitute for the reduced output. The amount of resources secured through the market
is same as the amount of deduction based on the administrative command of the local government.
Therefore, if KPX opens a PMDR market, customers will participate in the PMDR by bidding in the
day-ahead market. Figure 2 presents the flow of each stakeholder for PMDR participation.
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2.3. Limitations of Current PMDR Program

As mentioned in the introduction, the PMDR seems to have been established to counter policy
moves in an exceptional situation due to PM rather than a program executed to meet the requirements
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of the market. Therefore, some problems have surfaced given its hurried execution to overcome the
high SMP, hence we address the critical issues from the perspective of the stakeholders mentioned in
Section 2.2. (1) The possibility of lobbying the local governments by power generation companies:
Coal-fired power companies have an incentive to lobby the local governments with the privilege to
limit output reduction, as reduced output can affect their profits. (2) Limitation of the role of DRMO:
Existing DR market operators actively open the markets and have clear criteria for the opened markets.
However, in the market structures, shown in Figure 2, the PMDR operated by KPX is affected by
local governments’ decision-making, thus limiting their role to intermediaries rather than playing the
role of MO. (3) Bounded market participation of DR customers: As DR customers cannot predict the
opening of DR markets and may not have the capacity to participate in the DR markets, they simply
act as passive customers who only participate by receiving signals from day-ahead markets without
being able to establish a market participation strategy due to the opening of the DR market to address
the economic losses from the extant policy to handle the PM. Therefore, in this study, we propose a
measure that can quantify the degree of PMDR market opening based on the predicted value of the
fine dust through deep learning and fuzzy inference.

3. Proposed Model for PM Prediction Based on Deep Learning and Fuzzy Inference

Figure 3 shows the overall schematic of the proposed model. First, the PM concentrations are
predicted using the weather data through a deep learning-based ANN. In the next step, the concentration
of the fine dust, which is the output of the prediction, is inputted to the fuzzy inference engine. The fuzzy
inference engine is based on the most commonly used Mamdani inference method. Finally, the limit
level of coal-fired power generation is derived as the ultimate output through defuzzification.
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3.1. PM Prediction through ANN

3.1.1. Training Data Selection

The weather data, which serve as input training data to predict the PM, are available on the Air
Korea website [30] and contains temperature, wind speed, wind direction, ozone (O3), carbon monoxide
(CO), and sulfur dioxide (SO2). The data for the year 2019 from Seoul and the MLP technique is used
for training. As mentioned in the introduction, more complex deep learning techniques may provide a
better prediction performance; however, the ultimate purpose of this study is not a high-performance
PM prediction, but a classification standard based on the fine dust concentration. Thus, if the prediction
is made within an acceptable error through the MLP technique, a more complex technique would be
unnecessary for this study.

3.1.2. Preprocessing

Figure 4 presents the observational data of the six parameters from the weather data in a year
referred to in Section 3.1.1.
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Figure 4. Raw weather data with (a) temperature, (b) wind speed, (c) wind direction, (d) ozone,
(e) carbon monoxide, and (f) sulfur dioxide in Seoul (2019).

The y-axis values are different for each parameter, and there are some outliers for each data
in Figure 4. Therefore, preprocessing processes, such as normalization and outlier elimination,
are required. Figure 5 shows the preprocessed data.

As shown in Figure 4, the y-values of each of the six data represent the value according to each
data type. However, different units of data are obstacles to learning, thus, we let all the data have a
mean of zero and a standard deviation of one through the standardization process. The result can be
observed in Figure 5. In addition, some outlier data were removed to have a relatively even value.
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(e) carbon monoxide, and (f) sulfur dioxide in Seoul (2019).

3.1.3. Hyper-Parameter Tuning

We require a process for tuning the hyper-parameters, such as the number of hidden layers,
learning rates, and number of neurons, to increase the prediction accuracy. The NN structure was
obtained by tuning these parameters by comparing the errors while varying these hyper-parameters
and the structure is presented in Table 1.

Table 1. Structure of the neural network (NN) after hyper-parameter tuning.

Layer (Type) Output
Shape # of Parameter

Dense (Dense) (None, 102) 714
Dense_1 (Dense) (None, 96) 9888
Dense_2 (Dense) (None, 1) 97

Total number of parameters: 10,669, Learning rate: 0.04, Loss:
0.1118.
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According to Table 1, there will be two hidden layers used for training, 102 and 96 neurons at the
hidden layer, and one neuron at the last output layer that receives the predicted result.

3.2. Fuzzy Inference Engine

In this study, a fuzzy inference engine is constructed using the Mamdani inference method,
one of the most commonly used techniques [31]. According to Reference [31], Mamdani inference
can be broadly classified into five steps: fuzzifying the input variables, applying the fuzzy operators,
applying implication methods, applying aggregation methods, and defuzzification. However, for a
more convenient approach, this study constructs a fuzzy inference engine in three stages: fuzzification,
rule evaluation, and defuzzification.

3.2.1. Fuzzification

In fuzzification, a membership function to classify the fine dust must be defined. Therefore, it is
necessary to examine the concentration of the fine dust classified by the Korean Environment Ministry
(KME) and accordingly define the membership functions. The criteria for classification based on the
fine dust concentration as published by the KME are listed in Table 2.

Table 2. Particulate matter (PM) classification criteria established by the Korea Ministry of Environment
(KME).

Linguistic Term (PM10) µg/m3 Linguistic Term (PM2.5) µg/m3

G Good 0–30 G Good 0–15
N Normal 31–80 N Normal 16–35
B Bad 81–150 B Bad 36–75

VB Very Bad 151+ VB Very Bad 76+

Based on the existing classification, the 81
(
µg/m3

)
concentration of PM10 is bad and considered

harmful to the human body, whereas the 79
(
µg/m3

)
concentration of PM10 is considered normal

despite the very small difference from 81 (µg/m3) and thus belongs to the same class as 31
(
µg/m3

)
.

However, there is a significant difference in the degree of harm to the human body. Therefore, instead of
such an ambiguous classification, a membership function is defined, as shown in Figure 6, to classify
the PM in proportion to the concentration reflecting the criteria in Table 2.
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If 76
(
µg/m3

)
of PM10 is classified as normal based on the existing classification method (Table 2),

it has a normal value of 0.4 and a bad value of 0.3 as per the classification based on the proposed
membership function. Likewise, 32

(
µg/m3

)
of PM2.5 has a normal value of 0.4 and a bad value of 0.4,

unlike the conventional classification, i.e., bad.
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3.2.2. Rule Evaluation

The rules must be evaluated to match the input and output membership functions. Thus, a total
of 16 rules are built in our proposed fuzzy inference engine.

• Rule 1: If PM10 = VB or PM2.5 = VB, then the coal generator limit level is high
• Rule 2: If PM10 = VB or PM2.5 = B, then the coal generator limit level is high
• Rule 3: If PM10 = VB or PM2.5 = N, then the coal generator limit level is medium
• Rule 4: If PM10 = VB or PM2.5 = G, then the coal generator limit level is medium
• Rule 5: If PM10 = B or PM2.5 = VB, then the coal generator limit level is high
• Rule 6: If PM10 = B or PM2.5 = B, then the coal generator limit level is medium
• Rule 7: If PM10 = B or PM2.5 = N, then the coal generator limit level is low
• Rule 8: If PM10 = B or PM2.5 = G, then the coal generator limit level is low
• Rule 9: If PM10 = N or PM2.5 = VB, then the coal generator limit level is high
• Rule 10: If PM10 = N or PM2.5 = B, then the coal generator limit level is low
• Rule 11: If PM10 = N or PM2.5 = N, then the coal generator limit level is zero
• Rule 12: If PM10 = N or PM2.5 = G, then the coal generator limit level is zero
• Rule 13: If PM10 = G or PM2.5 = VB, then the coal generator limit level is high
• Rule 14: If PM10 = G or PM2.5 = B, then the coal generator limit level is low
• Rule 15: If PM10 = G or PM2.5 = N, then the coal generator limit level is zero
• Rule 16: If PM10 = G or PM2.5 = G, then the coal generator limit level is zero

For example, in Section 3.2.1, 78
(
µg/m3

)
of PM10 and 36

(
µg/m3

)
of PM2.5 are evaluated by

rules 6, 7, 10, and 11. The accumulated evaluation result shows a medium (Rule 6) of 0.4, a low (Rules 7,
10) of 0.8, and a zero value of 0.4 (Rule 11).

3.2.3. Defuzzification

The ultimate goal of the MO is to define the upper limit level of a coal-fired power generator
proportional to the PM level. Therefore, the output membership function should be as much as the
attenuation level of the coal-fired power generation. Accordingly, the proposed output membership
function is as shown in Figure 7.
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Depending on the concentration of PM10 and PM2.5, the degree of the power generation limit is
determined by the rule proposed in Section 3.2.2, and the value is calculated using the well-known
centroid technique (also called the center of area) [31]. The algebraic expression of the center of area is:

sCOA =

∫
µA(s)·sds∫
µA(s)

(1)

where s is the output value, and µA(s) is the membership function of the aggregated fuzzy set A with
respect to s [31].

For example, 78
(
µg/m3

)
of PM10 and 36

(
µg/m3

)
of PM2.5 have an output of 34 by the calculation

process in (1).

sex
COA =

0.4 ∗ (40 + 50 + 60 + 70) + 0.8 ∗ (10 + 20 + 30) + 0.4 ∗ 0
0.4 ∗ 4 + 0.8 ∗ 3 + 0.4 ∗ 0

= 34 (2)

Likewise, if the predicted concentrations of PM10 and PM2.5 are added as input to the fuzzy inference
engine, we need to determine the quantitative value of the percentage of the upper limit output through
the defuzzification process.

4. Simulation Results and Discussion

4.1. PM Prediction with Validation Data

A simulation is conducted to check whether the model proposed in Section 3 is suitable for the
new DR program. As the training was conducted through the data in Section 3.1 in 2019, the validation
will be carried out based on the data from Seoul in January and February 2020 (although data after
March were also accessible, we only used data from January and February, because the Covid-19
pandemic that affected the industry as a whole spread rapidly in Korea).

The prediction error rate is approximately 11%, which is not superior compared to previous
studies. However, as mentioned earlier, the results shown in Figure 8 meet our objective, which is the
classification of the predicted fine dust rather than focusing on very high performance. Figure 9 shows
a comparison of the predicted fine dust and the actual fine dust value.
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The output value of the PM concentration, shown in Figure 9, obtained through the prediction is
inputted to the fuzzy inference engine, as suggested in Section 3.2.
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4.2. Fuzzy Inference Engine

The Seoul Metropolitan Government-issued PM-related administrative announced the HERM
four times, i.e., on 3 January, 11 January, 19 January, and 15 February, and these results are shown
in Figure 10a. In contrast, Figure 10b shows the final output value obtained through the Mamdani
inference method suggested in Section 3.
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Under the existing system, the PMDRs should be invoked for four HERMs in Seoul. However,
the result (Figure 9) shows that there were days when the fine dust concentration was higher than the
days when the HERM was conducted. As already mentioned, this leads to difficulties in operating the
DR program because of institutional and policy loopholes. In contrast, the comparison of Figures 9
and 10b confirms that the proposed model can establish quantitative standards that can define the
degree of the upper limit of the output coal generation in proportion to the PM level. For example,
on the day the four HERMs were issued, although a 20% coal-fired power output limit was in place
compared to the previous one, it can be seen that on February 14 (x = 45 in Figure 10), the highest limit
of 70% was in place.

4.3. Proposed New DR Program Process

While PMDRs operated by the existing method (flow in Figure 2 by the result of Figure 10) showed
definite limitations, the simulation results (comparison of Figures 9 and 10b) show that the proposed
model can be supported on sufficient grounds to guarantee the vindication for opening a PMDR market
based on the PM pollution level. Consequently, Figure 11 shows the process of participating in the
new PMDR suggested in this study through the deep learning proposed in Section 3.1 and the fuzzy
inference proposed in Section 3.2.

It is also expected that customers will also be able to establish an optimal strategy for bidding in the
day-ahead market through the same mechanism if the PMDR program is implemented through these
clear criteria (Figure 11). The existing scheme (Figure 2) has made it very difficult for DR customers to
predict their participation in the DR program. In addition, if the PMDR can be operated independently
by the KPX and the market operator (MO), through the suggested model, the possibility of lobbying by
power generation companies, mentioned in Section 2.3, is expected to disappear.

However, the proposed model would have an upper output of 730% over a total of 28 days
(Figure 10b), whereas the previous method would have an upper output of approximately 400% over a
total of four days (Figure 10a). These results are conducive to recognizing the environment like previous
studies conducted due to a lot of interest in air pollution and environmental issues [32–35]; however,
it can be fatal to the coal-fired power generation operators due to an output limit of approximately
1.8 times greater than the existing program. As a result, new challenges may arise for which appropriate
solutions are required to avoid conflicting interests among stakeholders.
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5. Conclusions

A novel PM prediction model based on deep learning and fuzzy inference engine was proposed
to alleviate the problems of the current extended DR program in Korea. The proposed framework
consists of a deep learning phase that uses an MLP technique based on meteorological data to predict
PM10 and PM2.5 in Seoul, and a fuzzy inference engine phase, based on a Mamdani inference method
constructed with fuzzification, rule evaluation, and defuzzification, to which the predicted PM values
are inputted. In the process of fuzzification, a membership function based on the classification criteria
proposed by the KME to classify PM in Korea was created, which is expected to increase the objectivity
of fuzzification. The simulation results based on actual data from the Seoul Metropolitan Government
demonstrated the efficiency of the proposed model to address the problems in the current DR program.
Finally, we have presented an overall schematic (Figure 11) for the new DR program based on the
simulation results, and the newly proposed DR program is expected to solve the problems of each of
the stakeholders mentioned in Section 2.3.

However, as already mentioned, there is a conflict of interest for power generation companies
when applying the proposed model between the environmental and economic market operation related
to the benefit of coal generators. Therefore, it is necessary to consider policy supplementation to
preserve the interests of coal-fired power generation companies or develop incentive systems through
the intervention of the Korea Electric Power Corporation (KEPCO) or the market operator KPX.

Furthermore, problems with the limitations of fuzzy inference can also arise. For example,
in Section 3.2.3, the statement to the question about whether 78

(
µg/m3

)
is indeed justified to have

a bad value of 0.4 should be answered as the limitation of the fuzzy inference, i.e., the difficulty of
objectification. In other words, this is just one of the alternative methods, and there is a possibility of
deriving a more reasonable membership function for optimized PMDR operation through the proposed
model. Thus, an optimized DR program from the viewpoint of MO and the DR customer is expected
to serve more relevant implications for the DR market operation.

Author Contributions: Conceptualization, J.R.; Data analysis, simulation, and methodology framework
development, J.R.; Writing, review, and editing, J.R. and J.K. Project management and supervision, J.K. All authors
have read and agreed to the published version of the manuscript.



Energies 2020, 13, 6393 13 of 14

Funding: This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)
and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20191210301930 and No.
20204010600340).

Conflicts of Interest: The authors have no conflict of interest to declare.

References

1. World Health Oraganization. Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths; International
Agency for Research on Cancer: Lyon, France, 2013.

2. Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [CrossRef]
3. Zanobetti, A.; Schwartz, J.; Samoli, E.; Gryparis, A.; Touloumi, G.; Peacock, J.; Anderson, R.H.; Le Tertre, A.;

Bobros, J.; Celko, M.; et al. The temporal pattern of respiratory and heart disease mortality in response to air
pollution. Environ. Health Perspect. 2003, 111, 1188–1193. [CrossRef]

4. Balakrishnan, K.; Dey, S.; Gupta, T.; Dhaliwal, R.S.; Brauer, M.; Cohen, A.J.; Stanaway, J.D.; Beig, G.; Joshi, T.K.;
Aggarwal, A.N.; et al. The impact of air pollution on deaths, disease burden, and life expectancy across the
states of India: The Global Burden of Disease Study 2017. Lancet Planet. Health 2019, 3, e26–e39. [CrossRef]

5. Singh, P.; Dey, S.; Chowdhury, S.; Bali, K. Early Life Exposure to Outdoor Air Pollution: Effect on Child Health in
India; Brookings India Working Paper Series; Brookings India: New Delhi, India, 2019.

6. Liao, X.; Tu, H.; Maddock, J.E.; Fan, S.; Lan, G.; Wu, Y.; Yuan, Z.K.; Lu, Y. Residents’ perception of air quality,
pollution sources, and air pollution control in Nanchang, China. Atmos. Pollut. 2015, 6, 835–841. [CrossRef]

7. Liu, X.; Zhu, H.; Hu, Y.; Feng, S.; Chu, Y.; Wu, Y.; Wang, C.; Zhang, Y.; Yuan, Z.; Lu, Y. Public’s health risk
awareness on urban air pollution in Chinese megacities: The cases of Shanghai, Wuhan and Nanchang.
Int. J. Environ. 2016, 13, 845. [CrossRef]

8. Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air
pollution: A review. Front. Public Health 2020, 8, 1–13. [CrossRef]

9. Eom, J.; Hyun, M.; Lee, J.; Lee, H. Increase in household energy consumption due to ambient air pollution.
Nat. Energy 2020. [CrossRef]

10. Institute for Health Metrics and Evaluation. State of Global Air/2017: A Special Report on Global Exposure to Air
Pollution and Its Disease Burden; Institute for Health Metrics and Evaluation: Seattle, WA, USA, 2017.

11. Ministry of Environment in Korea. Available online: http://eng.me.go.kr/eng/web/index.do?menuId=464&
firstItemIndex=Topics (accessed on 3 November 2020).

12. Oprea, M.; Popescu, M.; Dragomir, E.G.; Mihalache, S.F. Models of particulate matter concentration
forecasting based on artificial neural networks. In Proceedings of the 2017 9th IEEE International Conference
on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS),
Bucharest, Romania, 21–23 September 2017; pp. 782–787. [CrossRef]

13. Xu, Y.; Lan, S. Additive Calibration Model for the Monitoring Data of PM2.5 and PM10 Based on ARIMA and
Multiple Linear Regression. In Proceedings of the 2019 International Conference on Economic Management
and Model Engineering (ICEMME), Malacca, Malaysia, 6–8 December 2019.

14. Kalate Ahani, I.; Salari, M.; Shadma, A. Statistical models for multi-step-ahead forecasting of fine particulate
matter in urban areas. Atmos. Pollut. Res. 2019, 10, 689–700. [CrossRef]

15. Park, J.-H.; Yoo, S.-J.; Kim, K.-J.; Gu, Y.-H.; Lee, K.-H.; Son, U.-H. PM10 density forecast model using long
short term memory. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and Future
Networks (ICUFN), Milan, Italy, 4–7 July 2017; pp. 576–581.

16. Kang, S.; Kim, N.; Lee, B. Fine Dust Forecast Based on Recurrent Neural Networks. In Proceedings of
the 2019 21st International Conference on Advanced Communication Technology (ICACT), PyeongChang,
Korea, 17–20 February 2019.

17. Dua, R.D.; Madaan, D.M.; Mukherjee, P.M.; Lall, B.L. Real Time Attention Based Bidirectional Long
Short-Term Memory Networks for Air Pollution Forecasting. In Proceedings of the 2019 IEEE Fifth
International Conference on Big Data Computing Service and Applications (BigDataService), Newark, CA,
USA, 4–9 April 2019.

http://dx.doi.org/10.1016/j.atmosenv.2007.09.003
http://dx.doi.org/10.1289/ehp.5712
http://dx.doi.org/10.1016/S2542-5196(18)30261-4
http://dx.doi.org/10.5094/APR.2015.092
http://dx.doi.org/10.3390/ijerph13090845
http://dx.doi.org/10.3389/fpubh.2020.00014
http://dx.doi.org/10.1038/s41560-020-00698-1
http://eng.me.go.kr/eng/web/index.do?menuId=464&firstItemIndex=Topics
http://eng.me.go.kr/eng/web/index.do?menuId=464&firstItemIndex=Topics
http://dx.doi.org/10.1109/IDAACS.2017.8095195
http://dx.doi.org/10.1016/j.apr.2018.11.006


Energies 2020, 13, 6393 14 of 14

18. Tsai, Y.-T.; Zeng, Y.-R.; Chang, Y.-S. Air Pollution Forecasting Using RNN with LSTM. In Proceedings of the
2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive
Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12–15 August 2018.

19. Li, T.; Hua, M.; Wu, X. A Hybrid CNN-LSTM Model for Forecasting Particulate Matter (PM2.5). IEEE Access
2020, 8, 26933–26940. [CrossRef]

20. Bueno, A.; Coelho, G.P.; Bertini, J.R. Dynamic ensemble mechanisms to improve particulate matter forecasting.
Appl. Soft Comput. 2020, 91, 106123. [CrossRef]

21. Li, W.; Zhou, J.; Xie, K.; Xiong, X. Power System Risk Assessment Using a Hybrid Method of Fuzzy Set and
Monte Carlo Simulation. IEEE Trans. Power Syst. 2008, 23, 336–343.

22. Omran, N.G.; Filizadeh, S. Location-Based Forecasting of Vehicular Charging Load on the Distribution
System. IEEE Trans. Smart Grid. 2014, 5, 632–641. [CrossRef]

23. Qela, B.; Mouftah, H.T. Peak Load Curtailment in a Smart Grid via Fuzzy System Approach. IEEE Trans.
Smart Grid. 2014, 5, 761–768. [CrossRef]

24. Gu, C.; Yang, W.; Song, Y.; Li, F. Distribution Network Pricing for Uncertain Load Growth Using Fuzzy Set
Theory. IEEE Trans. Smart Grid 2016, 7, 1932–1940. [CrossRef]

25. Sulandari, W.; Subanar; Lee, M.H.; Rodrigues, P.C. Indonesian electricity load forecasting using singular
spectrum analysis, fuzzy systems and neural networks. Energy 2020, 190, 116408. [CrossRef]

26. Chen, P.-C.; Kezunovic, M. Fuzzy Logic Approach to Predictive Risk Analysis in Distribution Outage
Management. IEEE Trans. Smart Grid 2016, 7, 2827–2836. [CrossRef]

27. Kim, P.W. Operating an environmentally sustainable city using fine dust level big data measured at individual
elementary schools. Sustain. Cities Soc. 2018, 37, 1–6. [CrossRef]

28. Albadi, M.H.; El-Saadany, E.F. A summary of demand response in electricity markets. Electr. Power Syst. Res.
2008, 78, 1989–1996. [CrossRef]

29. Ryu, J.; Kim, J. Non-Cooperative Indirect Energy Trading with Energy Storage Systems for Mitigation of
Demand Response Participation Uncertainty. Energies 2020, 13, 883. [CrossRef]

30. Airkorea. Available online: https://www.airkorea.or.kr/eng (accessed on 3 November 2020).
31. Wang, C. A Study of Membership Functions on Mamdani-Type Fuzzy Inference System for Industrial

Decision-Making. Master‘s Thesis, Lehigh University, Bethlehem, PA, USA, 2015.
32. Bungău, C.C.; Prada, I.F.; Prada, M.; Bungău, C. Design and Operation of Constructions: A Healthy Living

Environment-Parametric Studies and New Solutions. Sustainability 2019, 11, 6824. [CrossRef]
33. Gerber Machado, P.; Rodrigues Teixeira, A.C.; Mendes de Almeida Collaço, F.; Hawkes, A.; Mouette, D.

Assessment of Greenhouse Gases and Pollutant Emissions in the Road Freight Transport Sector: A Case
Study for São Paulo State, Brazil. Energies 2020, 13, 5433. [CrossRef]

34. Liu, Z.; Chen, X.; Cai, J.; Baležentis, T.; Li, Y. The Impact of “Coal to Gas” Policy on Air Quality: Evidence from
Beijing, China. Energies 2020, 13, 3876. [CrossRef]

35. Roh, M.; Jeon, S.; Kim, S.; Yu, S.; Heshmati, A.; Kim, S. Modeling Air Pollutant Emissions in the Provincial
Level Road Transportation Sector in Korea: A Case Study of the Zero-Emission Vehicle Subsidy. Energies 2020,
13, 3999. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2020.2971348
http://dx.doi.org/10.1016/j.asoc.2020.106123
http://dx.doi.org/10.1109/TSG.2013.2282773
http://dx.doi.org/10.1109/TSG.2013.2289922
http://dx.doi.org/10.1109/TSG.2016.2518175
http://dx.doi.org/10.1016/j.energy.2019.116408
http://dx.doi.org/10.1109/TSG.2016.2576282
http://dx.doi.org/10.1016/j.scs.2017.10.019
http://dx.doi.org/10.1016/j.epsr.2008.04.002
http://dx.doi.org/10.3390/en13040883
https://www.airkorea.or.kr/eng
http://dx.doi.org/10.3390/su11236824
http://dx.doi.org/10.3390/en13205433
http://dx.doi.org/10.3390/en13153876
http://dx.doi.org/10.3390/en13153999
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Particulate Matter Demand Response in Korea 
	Reorganization of the Demand Response Program in Korea 
	Workflow of PMDR 
	Limitations of Current PMDR Program 

	Proposed Model for PM Prediction Based on Deep Learning and Fuzzy Inference 
	PM Prediction through ANN 
	Training Data Selection 
	Preprocessing 
	Hyper-Parameter Tuning 

	Fuzzy Inference Engine 
	Fuzzification 
	Rule Evaluation 
	Defuzzification 


	Simulation Results and Discussion 
	PM Prediction with Validation Data 
	Fuzzy Inference Engine 
	Proposed New DR Program Process 

	Conclusions 
	References

