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Abstract: The energy deficiency and environmental problems have motivated researchers to develop
energy conversion systems into a sustainable pathway, and the development of catalysts holds the
center of the research endeavors. Natural catalysts such as metalloenzymes have maintained energy
cycles on Earth, thus proving themselves the optimal catalysts. In the previous research results, the
structural and functional analogs of enzymes and nano-sized electrocatalysts have shown promising
activities in energy conversion reactions. Mo ion plays essential roles in natural and artificial catalysts,
and the unique electrochemical properties render its versatile utilization as an electrocatalyst. In this
review paper, we show the current understandings of the Mo-enzyme active sites and the recent
advances in the synthesis of Mo-catalysts aiming for high-performing catalysts.

Keywords: molybdenum; metalloenzymes; FDH; CODH; nitrogenase; homogeneous; heterogeneous
electrocatalysts; HER; OER

1. Introduction

Fixation of atmospheric nitrogen to ammonia has been promoted by the Haber–Bosch
process, and the capacitated mass production of foods accelerated the increase of the world
population [1,2]. The rapid growth of fossil fuel-based industry unavoidably increased
atmospheric CO2, and resultantly aggravated the global warming and climate crisis. To
suggest solutions for those anthropogenic issues and mitigate the current environmental
problems, scientific progress to convert fossil fuel-based energy systems toward sustainable
ways is keenly desired along with other social and economic efforts [3]. In the line of
scientific cognition, we review catalysts for energy conversion reactions including small
molecules such as CO2, N2, H2, and O2 as reactants or products. Numerous catalysts
have been developed in recent decades owing to the high interest in energy conversion
reactions [4–8]. Mo ion is found to be an essential component in biological catalysis [9], as
well as a very promising metal candidate among Earth-abundant metals for applications to
electrocatalysts and photocatalysts [4,10,11]. Herein, we review versatile utilization of Mo
ions in natural and synthetic catalysts.

Mo-containing homogeneous catalysts utilize both low- and high-valent Mo ions,
whereas metalloenzymes and their model complexes have high-valent Mo centers. Except
for FeMo-nitrogenase [12], Mo-enzyme active sites always use dithiolene ligation of the
molybdopterin (MPT) moiety to stabilize a Mo(IV/VI) ion during the redox reaction and
to assist electron transfer between metal and ligand [13]. Moreover, the chalcogenide
ligand and nearby amino acid play essential roles to determine the selective reactivity
of Mo active sites. Although enzyme mechanisms remain unclear despite significant
interests, ligand identity and coordination structures seem to be critical factors to deter-
mine catalytic activity. We can propose synthetic routes for the design of new Mo-based
catalysts from comparing structures, properties, and reactivities of metalloenzymes and
artificial catalysts [14]. Although relatively less studied, Mo-clusters have shown promising
electrocatalytic activities due to their intermediate behaviors between metal-coordination
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complexes and nanoparticle catalysts [15]. In the perspective of developing efficient elec-
trocatalysts, Mo-nanomaterials, which have shown remarkable electrocatalytic activities,
should be considered together. Preparation methods of Mo-nanomaterials determine their
catalytic activities, and proximal atoms and electronic conditions around Mo ions are
closely related to reactivities of surficial Mo ions [16,17].

2. CO2 Electrocatalysts

Considering current energy systems, a drastic diminution of fossil fuel consumption
seems unrealistic. However, continuous research for recycling anthropogenic CO2 will be
able to provide feasible solutions to current energy and climate issues. Among various
CO2 transformation methods, electrochemical conversion of CO2 may be an attractive way
to be conjugated with solar/electric energy conversion reactions [18]. Mo-enzymes of the
formate dehydrogenases [19] (Mo-FDH) and the carbon monoxide dehydrogenases [20]
(MoCu-CODH) are the most efficient CO2-catalysts on Earth, and their synthetic models
are known, albeit short of the enzyme activity [21]. Moreover, many homogeneous and
heterogeneous catalysts have been developed for CO2 conversion reactions.

2.1. Metalloenzymes with CO2 Reactivity
2.1.1. Formate Dehydrogenases

Formate dehydrogenases (FDHs) is a group of metalloenzymes that catalyze a re-
versible conversion of formate to CO2. The CO2 reactivity of the FDH active site has
obtained research interests because the enzyme functions near the potential of −420 mV vs.
NHE (Normal hydrogen electrode) scarcely requiring overpotential. It is known that the re-
action rate is varied by bacteria. Rhodobacter capsulatus FDH facilitates oxidation of formate
to CO2 at a rate of 36.5 s−1 and the reverse direction at a rate of 1.6 s−1 [22]. Desulfovibrio
desulfuricans FDH oxidized formate much more quickly at 543 s−1 and reduced CO2 at
46.6 s−1 [23]. The FDH reactivity is directly related to the active site structure, which has a
Mo center surrounded by two pyranopterin-conjugated dithiolene ligand, a chalcogenide
(hydroxide or sulfide) ligand, and SeCys amino acid as a sixth ligand (Figure 1). In addition,
additional roles of adjacent amino acids such as Arg and His seem to be important to assist
the FDH reaction by stabilizing reaction intermediates.

CO2 + 2e− + H+ � HCOO−, E
◦ ′ = −420 mV
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In 1997, Boyington and coworkers first reported the crystal structure of E. coli FDH [24].
Later, in 2006, Raaijmakers and coworkers reinterpreted the crystal structure and proposed
a reaction pathway of the FDH active site (Scheme 1) [25]. They suggested that SeCys is
reversibly bound to the Mo center during the redox reactions so that offers a vacant site
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to interact with substrates. Once formate bound to Mo6+ site, a proton migrated to His
residue, and CO2 was released along with the reduction of Mo6+/4+ site. If two electrons
were transferred to [4Fe4S] cluster, SeCys recombined at the Mo site. In the proposed
reaction, the sulfide ligand did not participate in the reaction.
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Scheme 1. A reaction pathway proposed by Raaijmakers.

Another reaction pathway including the role of sulfide ligand has been proposed
(Scheme 2). In 2011, Moura and coworkers suggested that the sulfide ligand assists the
reversible dissociation/association of Mo-SeCys bond on the basis of theoretical studies.
A probable Mo-S-SeCys intermediate could open a coordination site to interact with formate.
Once a proton migrated from formate to SeCys, a thiocarbonate intermediate was formed
with the dissociation of the S-SeCys bond, and adjacent Arg+ amino acid possibly stabilized
the negatively charged intermediate. The roles of nearby amino acids seemed to be critical
for the catalytic reaction at the active site [26,27].
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The same group proposed that a hydride transfer occurred in the conversion of
Mo(VI) = X and Mo(IV)-XH, and the formate oxidation would likely occur as an indirect
pathway [23]. In a substitution experiment of Mo-bound formate for isoelectronic azide,
the azide entered between Arg/His and Mo=S, not at the binding site of SeCys (Scheme 3).

Haumann and coworkers reported that the Mo=S bond length of the oxidized form is
~2.16 Å on the basis of X-ray absorption spectroscopy [28].

They suggested that Mo-SH possibly exists based on the Mo-S distance of ~2.4 Å
in the X-ray crystal structure and SeCys stays apart from the Mo center during the re-
action. They suggested a direct interaction of formate with Mo center based on X-ray
absorption spectroscopy. When azide entered in the Mo-SCys site of the oxidized form,
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the Mo-Cys bond distance decreased. Conversely, when azide was removed, the Mo-Cys
distance increased [29].
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The reaction mechanism of the FDH active site is a continuous research topic because
an in-depth understanding of the active site will lead to the development of efficient
electrocatalysts for CO2 conversion.

2.1.2. MoCu-Carbon Monoxide Dehydrogenases

In 2002, MoCu-carbon monoxide dehydrogenase (CODH) from Oligotopha carbox-
idovorans was found to catalyze the oxidation of CO to CO2 under aerobic conditions.
The enzyme exists as a dimer form of heterotrimer [30]. The hetero-trimer is composed
of 88.7 kDa L (809 residues), 30.2 kDa M (288 residues), and 17.8 kDa S (166 residues).
The L subunit contains molybdopterin-cytosine dinucleotide (MCD), and the M subunit
has a flavin adenine dinucleotide (FAD) cofactor. Two [2Fe-2S] clusters stay in the S sub-
unit [31]. As characterized by X-ray crystallography and extended X-ray absorption fine
structure (EXAFS), the MoCu-CODH active site is composed of a hetero-bimetallic cluster
of (MCD)MoVIO(µ2-S)-CuI(S-CYS), and the bent µ2-S bridge connects the Cu and Mo center
(Figure 2a) [32]. The resting state of the active site was characterized as a MoVI(O)2SCuI

core, and the catalytic oxidation possibly occurs with CO binding at the Cu center.
In 2002, Dobbek and coworkers reported the X-ray structure of the MoCu-CODH

with N-butylisocyanide, where the N-butylisocyanide entered between µ-S–Cu bond by
cleaving the bridging sulfide bond [31]. Accordingly, they suggested that CO would
interact with the active site in a similar way as the isoelectronic molecule as forming a
µ-thiocarbamate intermediate (Figure 2b).

However, Siegbahn and coworker suggested that CO binding to Cu is energetically
favored from the computational studies. Next, the Cu-CO likely experiences a nucleophilic
attack by the equatorial Mo=O to form a thiocarbamate intermediate, and CO2 can be
released with coordination by H2O (or –OH) (Figure 2c) [33].

The formation of a thiocarbamate intermediate was suggested previously, but Hof-
mann and coworkers claimed that a thiocarbamate intermediate is not relevant to the
MoCu-CODH catalytic cycle, because a thiocarbamate moiety is too stable to be involved
in the catalytic steps (Figure 2d) [34]. Hille and coworkers also proposed that the Cu-CO-
O-Mo bond is formed after CO insertion (Figure 2e). They emphasized the role of nearby
Glu763 residue to deprotonate H2O. A nucleophilic attack of –OH to the labile equatorial
Mo=O could promote the release of CO2 [30] The aerobic MoCu-CODH catalyzed CO
oxidation with kcat 93.3 s−1 at pH 7.2 condition [35].

2.2. Structural Analogs of CO2 Enzymes
2.2.1. FDH Analogs

The high efficiency of the FDH enzyme spurs researchers to synthesize structural
analogs of the enzyme active site. Synthetic procedures for various dithiolene complexes
enabled modeling studies of the enzyme active site having the Mo-bis(dithiolene) moiety.
High-valent Mo(IV-VI)-bis(dithiolene) appeared to be highly reactive. Although the Mo
enzyme active site is protected by surrounding proteins, the air-sensitivity of high-valent
Mo in solution conditions makes the modeling study difficult. On the other hand, the
high reactivity could be a clue to the CO2 reactivity of the Mo site. Previous studies
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have revealed that the selective reactivity of Mo-bis(dithiolene) complexes is related to
auxiliary ligands.
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The Mo-FDH and W-FDH active sites have very similar coordination environments
except for the metal center, although their reaction conditions are different because of the
bacterial habitat. In 2012, Kim and Seo reported CO2 reactivity of the in-situ generated
[WIV(OH)(S2C2Ph2)2]− (2) [36] as an example of the functional model of the W-FDH ac-
tive site (Scheme 4) [25]. Complex 2 generated by hydrolysis of [WIV(OPh)(S2C2Ph2)2]−

(1) [37,38] showed the CO2 reactivity at mild condition, and it was suggested that a nucle-
ophilic attack of –OH to CO2 formed a W-(bi)carbonate intermediate. Although the model
complex did not show a catalytic activity, the plausible formation of a W-(bi)carbonate
intermediate was similar to the reactivity of the FDH active site [26]. They also reported
a stoichiometric reduction of CO2 to formate by [WIVO(S2C2Me2)2]2− (3) at 90 ◦C [39].
A W-carbonate intermediate was suggested as an intermediate before the CO2 reduction,
but the oxidized W complex was dimerized to [WV

2O2(µ-S)(µ-S2C2Me2)(S2C2Me2)2]2−

(4) at the high temperature as frustrating catalytic reaction (Scheme 4).
Fontecave and coworkers reported catalytic CO2 reduction by Ni-bis(dithiolene) com-

plex using a dithiolene derivative of quinoxaline-pyran-fused dithiolene (qpdt2−), which is
similar to the molybdopterin (MPT) structure of the FDH active site (Scheme 4) [40]. In 2018,
they used the qpdt2− ligand to prepare Mo complexes, MoIVO(qpdt)2 (5), [MoIVO(H-
qpdt)2]2− (6), and [MoVO(2H-qpdt)2]− (7), as the Mo-FDH models, and examined the
photocatalytic CO2 reduction activity [41]. The reduced forms of H-qpdt and 2H-qpdt had
similar oxidation states with the MPT. Using [Ru(bpy)3]2+ photosensitizer, 1,3-dimethyl-2-
phenyl-2,3-dihydro-1H-benzoimidazole as a sacrificial electron donor in the solution of
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triethanolamine and acetonitrile (1:5), and irradiation with a 300 W Xe lamp on the Mo
complex solutions afforded CO2-derivated products (CO and HCO2H) and H2. Complex
5 gave the CO2-reduction products with 19% and mostly H2 (81%). However, complex
6 increased the CO2-reduction yield to 47%, and complex 7 provided the CO2-reduction
products in the highest yield of 58% with over 100 turnover number (TON) for 68 h.
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Structural and functional analogs of the FDH active sites have been reported with rare
examples; however, the catalytic activities remain much less than the enzymes. Secondary
coordination ligands mimicking amino acids surrounding the enzyme active site would
give new catalyst designs to achieve similar activities as the enzyme.

2.2.2. MoCu-CODH Analogs

In 2020, Mougel and coworkers synthesized [(bdt)Mo(O)S2CuCN]2− (8) (bdt = ben-
zenedithiolate) as a MoCu-CODH model complex (Scheme 5) [42]. The Mo and Cu were
bridged by µ2-sulfide ligand as the enzyme active site, and a bdt ligand was used to model
the MPT. Complex 8 showed a catalytic reduction peak at E1/2 = −2.07 V vs. Fc+/Fc in
CO2-saturated acetonitrile. Controlled potential electrolysis (CPE) at −2.62 V vs. Fc+/Fc in
the presence of 0.1 M 2,2,2-trifluoroethanol (TFE) produced the reaction products of formate
(Faradaic efficiency (FE) = 69%), CO (8%) and H2 (19%). It was a rare example to describe
the MoCu-CODH model with the CO2 reduction activity, although the MoCu-CODH
enzyme previously showed only the CO oxidation activity [20].
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2.3. Synthetic Electrocatalysts for CO2 Reduction
2.3.1. Homogeneous Mo Complexes for CO2 Reduction

In 1978, Reichert and coworkers reported the CO2 reactivity of a dinuclear Mo2(OtBu)6
(9) [43]. Two CO2 molecules were reversibly inserted into the Mo-OtBu bonds to form
Mo2(O2COtBu)2(OtBu)4 (Scheme 6) (10). From the X-ray structure, the Mo-Mo triple bond,
bridged by two O2COtBu, was measured to be 2.241 Å. The CO2 insertion occurred in both
the solid and liquid states of the complex, and sublimation of the CO2 adduct at 100 ◦C
afforded back the complex 9 by releasing CO2.
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Scheme 6. CO2 reactivity of Mo2(OtBu)6 complex.

Metal ligand cooperation (MLC) is a useful method to fixate CO2. The trans-Mo(C2H4)2(PMe3)4
(11) reacted with CO2 under mild conditions [44], where CO2 was inserted into Mo-ethylene
bond to form a Mo-acrylate moiety in [Mo(H2CCHCO2H)(C2H4)(PMe3)2]2 (Scheme 7) (12).
The acrylate frequency was measured as 1500 cm−1 and the 13C NMR (Nuclear magnetic
resonance) chemical shift at 175–180 ppm. Complex 11 reacted with a stoichiometric
amount of CO2 under 1 atm to give 12, which could be converted back to 11 by treatment
of n-BuLi under H2 with concomitant LiO2CCH2CH3 product. In another MLC type
reaction, a PNP-amide-assisted CO2 fixation was shown with Mo(NO)(CO)(PNP) (13)
(PNP = N(CH2CH2PiPr2)2) [45]. Complex 13 converted stoichiometric amount of CO2 to
formate in the presence of Na[N(SiMe3)2] and additional base of DBU, Et3N (Scheme 7).
However, high pressure of CO2 (10 bar) and H2 (70 bar) was also required. The MLC
method effectively lowered the binding energy of CO2 to Mo complex, but the formation
of a highly stable ML-CO2 adduct rather prevented the catalytic cycle.
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Scheme 7. Metal ligand cooperation (MLC) complexes with CO2 reactivity.

Lau and coworkers utilized hetero-bimetallic systems of early/late transition metal ions
for electrocatalytic reactions. They synthesized (η5-C5H5)Ru(CO)(µ-dppm)Mo(CO)2(η5-C5H5)
(14) (Scheme 8) from a reaction of (η5-C5H5)Ru(dppm)Cl and Na[(η5-C5H5)Mo(CO)3] [46].
Complex 14 promoted catalytic CO2 reduction to formic acid at 120 ◦C with 43 TON per
catalyst for 45 h in benzene containing triethylamine base. Interestingly, the same complex
also promoted converse conversion of formic acid to CO2 and H2 at 80 ◦C. They suggested
a hydride-bridged bimetallic species is formed as a reaction intermediate on the basis of a
hydride detection at −17.16 ppm by 1H NMR spectroscopy.
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Scheme 8. Heterobimetallic (η5-C5H5)Ru(CO)(µ-dppm)Mo(CO)2(η5-C5H5) complex.

Minato and coworkers synthesized a series of Mo-silyl hydrido complexes of [MoH3
([Ph2PCH2CH2P(Ph)-C6H4-o]2(R)Si-P,P,P,P,Si)] (R = Ph (15a), C6F5 (15b), 4-Me2NC6H4
(15c), cyclohexyl (15d), and n-C6H13 (15e)) [47]. Silyl ligands with a strong trans effect
were employed to control the reactivity of the Mo center (Scheme 9) [48,49]. The RSi-Mo
could make an open coordination site at trans position to allow binding of electrophilic
molecules such as O2, CO2, and carboxylic acid. Under the reaction conditions of 2.0 M
of dimethylamine, 30 atm of CO2, and 20 atm of H2, complexes 15a–e catalyzed the CO2
hydration as producing N,N-dimethylformamide (DMF) and H2O. The catalytic conversion
of CO2 to DMF could be controlled by the Si-substituent. The complex 15a with a Si–phenyl
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moiety achieved 92 TON per catalyst, but complex 15b with Si–C6F5 showed only 1 TON.
Electron donating substituent increased TON of complexes as seen with 15c (TON = 130)
and 15e (110), because the stronger trans effect assisted binding of substrates to increase
the catalytic reactivity.
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Scheme 9. Mo-silyl hydrido complexes.

Redox-active ligand could assist central metal ions for reductive CO2 reactions. Tro-
vitch and coworkers have used bis(imino)pyridine ligand for hydrosilylations of ke-
tones [50]. They synthesized (κ6-P,N,N,N,C,P-Ph2PPrPDI)-MoH (17) (PDI = pyridine di-
amine) by a reduction of ((Ph2PPrPDI)MoI)I (16) with excess K/Hg (Scheme 10) [51]. Com-
plex 17 reacted with CO2 under 0.2 atm of CO2 condition, where CO2 was inserted into
Mo-H bond to form η1-formate-bound Mo(OC(O)H) species [52,53]. The Mo-formate 13C
NMR resonance appeared at 169.7 ppm and the infrared (IR) frequency was detected at
1625 cm−1. Complex 17 also promoted a catalytic conversion of HBPin to H3COBPin and
O(BPin)2 under 1 atm of CO2 as recording 40.4 h−1 turnover frequency (TOF) and 323 TON
with consuming 97% of HBPin. Distillation of H3COBPin in water for 24 h generated
MeOH, eventually producing 58% of MeOH starting from HBPin. They showed a potential
pathway to convert CO2 to methanol. Kubiak and coworkers used bipyridine (bpy) ligands
to prepare Mo-carbonyl complexes, Mo(bpy)(CO)4 (18a) and Mo(bpy-tBu)(CO)4 (18b) [54].
Complexes 18a and 18b showed electrocatalytic CO2 reduction activity in acetonitrile solu-
tion [55]. Complex 18a had a reversible redox couple at −1.58 V vs. SCE (saturated calomel
electrode) and an irreversible wave at −2.14 V vs. SCE, and catalyzed CO2 reduction
near the second reduction potential. Complex 18b shifted the reduction potential a bit
negatively to −2.20 V vs. SCE. The addition of 1.6 M of TFE into the reaction solutions
generated only CO product as recording 1.0 s−1 TOF with 18a and 1.9 s−1 with 18b.
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Scheme 10. Redox active ligand assisted Mo complexes.

Bernskoetter and coworkers used tertiary amine pincer type ligands to prepare CO2
hydrogenation catalysts [56]. Reduction of (PNMeP)MoCl3 with Na(Hg) under ethylene
afforded (PNMeP)Mo(C2H4)2 (19), and the following oxidative C-H addition generated the
Mo-H species of (PNCH2P)MoH(C2H4)2 (20) (Scheme 11) [57]. Blowing 4 equiv. of CO2
into complex 20 gave the Mo-O2CH moiety in complex 21. Catalytic production of formate
was achieved by using LiOTF as cocatalyst and DBU base under 69 atm of H2 and CO2 (1:1
ratio) at 100 ◦C as recording 35 TON for 16 h.
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The low-valent Mo complexes have shown promising activities for CO2, but the
formation of relatively stable adducts or requirement of high-pressure conditions remain
issues to solve for efficient catalyst development.

2.3.2. Heterogeneous Mo-Containing CO2 Reduction Electrocatalysts

In 1986, Frese and coworkers reported the reduction of CO2 to methanol using Mo
electrode at the potential range of −0.57 to −0.67 V vs. SCE in CO2-saturated aqueous
media (0.05 M H2SO4, pH 4.2) [58]. As a result, 18 µmol of methanol was obtained for 40 h
with 50% FE together with 0.044 µmol of CO production.

MoS2 surface has shown CO2 reduction ability, but in general, the intrinsic properties
such as poor electrical conductivity and few active sites cause low electrocatalytic activity.
In 2014, Asadi and coworkers reported the layer-stacked MoS2 nanomaterial [59]. The
MoS2 surface conducted selective reduction of CO2 to CO in the presence of 4% 1-ethyl-
3-methylimidazolium tetrafluoroborate (EMIM-BF4) with a high reduction current of
65 mA/cm2 at −0.76 V vs. RHE (FE ~98%). The activity at a low overpotential (0.1 V) was
measured to be 25 times higher than Au nanoparticles. They reported vertically aligned
(VA) MoS2 had higher CO2 reactivity than bulk MoS2. The high catalytic performance was
due to the increased MoS2 edge site. In 2017, Salehi-Khojin and coworkers synthesized
VA-MoS2 with ~20 nm thickness by chemical vapor diffusion (CVD) method, and they
also studied the metal-doping effect for the CO2 reduction activity [60]. The 5% Nb-doped
VA-MoS2 began the CO2 reduction with onset overpotential of 31 mV, and it reached
237 mA/cm2 current density at −0.8 V vs. RHE. However, Ta-doped (3~18% Ta) VA-
MoS2 showed 98–68 mA/cm2 at −0.8 V vs. RHE, which was rather lower than a pristine
VA-MoS2 (121 mA/cm2).

Previously, Bi-deposited glassy carbon has shown a good catalytic activity for re-
duction of CO2 to CO because CO2

•− radical species are well stabilized on Bi site [61].
Interestingly, a formation of hetero-bimetallic MoBiSx (Mo/Bi 1:1) nanosheet showed dif-
ferent CO2 reduction product of methanol (FE 71.2%) with generation of side products of
methane (7.8%) CO (9.6%) H2 (11.4%) [62]. It was observed that, if the Bi ratio was raised,
the CO percentage increased. They explained that the further reduction process is probably
promoted by the synergistic effect with MoSx–catalytically active for the proton reduction.

Nano-sized Cu particles have shown CO2-to-hydrocarbon electrocatalytic reduction
activity [63]. The Cu-doping effect on the CO2 reactivity of MoS2 was studied by Yu and
coworkers [64]. Flower-like MoS2 was prepared by hydrothermal method, and the surface
was reacted with Cu(NO3)2·3H2O to give Cu/MoS2 composite with varying the Cu/Mo
ratio. Specific Cu ratio (12.76%) exhibited four times higher catalytic current density at
−1.7 V vs. SCE than a bare MoS2 as producing CO (FE = 35.19%), CH4 (17.08%), C2H4
(2.93%). The high Faradaic efficiency for CO2 reduction was because the surface-deposited
Cu enhanced the electronic conductivity and CO2 adsorption ability of MoS2.

Few active sites have been an issue for the preparation of MoS2 electrodes, thus,
synthetic methods are pursued to enlarge the MoS2 edge site area. Wang and coworkers
used zeolitic imidazolate frameworks to prepare hollow MoS2 nanostructure, which effec-
tively enlarged the exposed MoS2 edge area. The edge-exposed MoS2 was supported by
N-doped carbon to improve electron transfer, which gave two times higher current density
(34.31 mA/cm2 at −0.7 V vs. RHE) and 1.4 times higher FE (CO2-to-CO 93% FE) compared
to MoS2 [65]. The N-doped carbon served as efficient conductive support, because the more
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electronegative N atom decreases electron density at nearby carbon sites by improving
electron transfer at the electrode surface. An enhanced surface electron transfer to MoS2
edge could lower the energy barrier for the formation of CO2 reduction intermediates on
the catalytic site [66]. Zhu and coworkers prepared N-doped MoS2 nanosheets on N-doped
carbon nanodots (N-MoS2@NCDs) through a solvothermal method [66]. N-MoS2@NCDs
loaded on glassy carbon electrode exhibited high catalytic activity for the CO2 reduction to
CO as recording 36 mA/cm2 at −0.9 V vs. RHE (90% FE).

The selection of electrolytes is also a critical factor to improve CO2 reduction effi-
ciency. EMIM-BF4 electrolyte was shown to increase selectivity for CO product from CO2
reduction [59]. Salehi-Khojin and coworkers reported that the use of a hybrid electrolyte of
choline chloride/KOH was also effective to improve the CO2 reduction selectivity of the
MoS2 electrode [67]. Using the choline chloride/KCl buffer instead of EMIM-BF4 afforded
1.5 times higher current density at −0.25 V vs. RHE. The high catalytic activity was related
to an accumulation of small size K+ ion on the MoS2 surface, which allowed exposure of
the MoS2 edge site.

Xie and coworkers devised MoS/Se alloy monolayer to induce poor overlapping
of frontier orbitals, which was helpful to enhance the surface activity for the CO2 reduc-
tion [68]. The MoS/Se alloy monolayer improved CO production efficiency with 45%
FE at −1.15 V vs. RHE compared to MoS2 (17%) and MoSe2 (31%) monolayer. On the
other hand, in the report by Han and coworkers, the replacement of the chalcogenide with
phosphide gave different CO2 reduction products. MoP nanoparticle as supported by
In-doped porous carbon (In-PC) converted CO2 to formic acid as recording 43.8 mA/cm2

at −2.2 V vs. Ag/AgNO3 with 97% FE [69].
In a rare example, a Mo-cluster has shown promising photocatalytic CO2 reduction

ability under visible light illumination. Hexanuclear [Mo6Br14]2− clusters [70] immobilized
on graphene oxide [71] showed photocatalytic CO2 reduction to methanol. High nuclearity
transition metal cluster of [Mo6Xi

8La
6]2− (Xi = inner, La = apical) enabled visible light

activities due to delocalized valence electrons overall metal centers [72,73]. The catalytic
CO2 reduction activities of the Mo-based electrocatalysts are compared in Table 1.

Table 1. Compared CO2 reduction catalytic efficiencies of Mo-based electrocatalysts.

Catalyst FE Current Density CO2 Reduction
Product (Major) Ref.

Mo electrode 50% - Methanol [58]

layer-stacked MoS2 ~98% −65 mA/cm2 at −0.76 V vs. RHE CO [59]

5% Nb-doped VA-MoS2 82% −237 mA/cm2 at −0.8 V vs. RHE CO [60]

Ta-doped VA-MoS2 - −98~68 mA/cm2 at −0.8 V vs. RHE CO [60]

MoBiSx nanosheets 71% −12.1 mA/cm2 at −0.7 V vs. SHE Methanol [62]

MoS/Se monolayer 45% −43 mA/cm2 at −1.15 V vs. RHE CO [68]

Cu-doped MoS2 85% −17 mA/cm2 at −1.7 V vs. SCE CO [64]

NCMSH 93% −34.31 mA/cm2 at −0.7 V vs. RHE CO [65]

MoS2 nanoflake
(choline chloride) 93% −315 mA/cm2 at −0.8 V vs. RHE CO [67]

N-MoS2@NCDs 90% −36 mA/cm2 at −0.9 V vs. RHE CO [66]

MoP@In-PC 97% −43.8 mA/cm2 at −2.2 V vs. Ag/AgNO3 Formic acid [69]

2.4. FDH-Electrode Biohybrid

Formate dehydrogenase (FDH) is the most efficient electrocatalyst for interconversion
between CO2 and formate. There have been research interests in the enzyme activity
under electrochemical conditions as adsorbed on an electrode surface, or as free in solution.
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FDHs are classified as two types of NADH-dependent and metal (Mo or W)-dependent
enzymes (NADH = nicotinamide adenine dinucleotide). The bio-electrochemical set-ups
of NADH-dependent Candida boidinii (CbFDH) have been reported to show selective CO2
reduction to formate [74–79], where the regeneration efficiency of NADH was critical to
improving the catalytic system.

Metal-dependent FDH has been studied as attached to an electrode surface. Hirst and
coworkers showed reversible interconversion between CO2 and formate by Escherichia coli
FDH (EcFDH) as adsorbed on a graphite-epoxy electrode [80]. The reversible redox current
for the CO2/formate conversion was observed during the cyclic voltammetry scans, and
the formate oxidation became favored at higher pH within 6–8 range. Controlled potential
electrolysis at −0.6 V vs. SHE produced only formate product with 101.7 ± 2.0% FE.

Redox-active polymer could enhance electron transfer between FDH and electrode.
Milton and coworkers used cobaltocene-functionalized polyallylamine (Cc-PAA) to pro-
mote electron transfer between EcFDH and glassy carbon electrodes [81]. The electroenzy-
matic CO2 reduction was detected at −0.66 V vs. SHE close to the Cc/Cc+ redox couple of
−0.576 V vs. SHE. Bulk electrolysis at −0.66 V vs. SHE using 50 mM NaHCO3 as the CO2
source provided formate production with FE 99 ± 5%, but the FE dropped to 65% after
continuous electrolysis for 12 h.

Bio-hybrid system gives a synthetic vision to develop electrocatalysts with high
selectivity and efficiency, although low current density and limited catalytic sites remain as
limitations for scale-up. In addition, a hybrid of molecular catalysts with electrode surface
would be an alternative method to obtain well-performing catalysts. Ligand design and
synthesis are other difficulties, but the conjugation of coordination complexes by electrode
surface can provide chances to modify surface reactivity and efficiency of electrocatalysts.

3. Nitrogen Fixation

Nitrogen is an essential element in the metabolism of living organisms and one of
the major elements that make up the body. The only way to take atmospheric N2 into
organisms is via the nitrogen fixation process [82,83]. In a symbiotic relation, plants feed
nitrogen-fixing bacteria with sugars as a reducing equivalent to perform the reduction of
N2 to NH3, which is in return absorbed by plants. Although nature performs the process
very efficiently, the direct N2 reduction has been one of the challenges in the research
area of synthetic catalysts [84]. The industrial Haber–Bosch process takes charge of global
ammonia production, but this process occupies 1% of annual fossil fuel consumption
and 3% of annual CO2 emission because of the production conditions demanding high
pressure and high temperature [85,86]. Mild reaction conditions are highly craved to
decrease the consumption of the limited energy resources as well as anthropogenic CO2
emission [87,88]. There exist many research efforts to elucidate the mechanism of the natural
catalytic system, nitrogenase, by investigating the structural features and synthetic model
complexes [89–91]. In addition, heterogeneous catalysts were developed for nitrogen
reductions, and bio-hybrid catalysts were studied in a way of attaching nitrogenase to an
electrode surface.

3.1. Nitrogenase

In the 1960s, X-ray structure of the FeMo-nitrogenase active site was obtained, and
thereafter the structural features and the relation with the enzyme reactivity have been
studied to elucidate the nitrogen reduction process [92–94]. The N2 reduction is a series of
electrochemical reactions requiring overall 6e−/6H+ input. The FeMo-cofactor facilitates
the nitrogen reaction, and the co-existing P cluster is in charge of the electron-transfer
steps. The FeMo cluster is buried under the enzyme protein to selectively promote the
multi-electron reduction process (Figure 3).

N2 + 8H+ + 16MgATP+ 8e− → 2NH3 + H2 + 16MgADP + 16Pi
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The FeMo-cofactor has a double-cubane type of Mo7Fe7S cluster, where each cubane
is bonded by a carbide (C4−) center and a Mo atom is positioned at an end of the
cluster [95–97]. Although the reaction mechanism remains obscure in the research of
N2 reduction catalysts, both the Fe and Mo sites have been considered as the active sites for
the nitrogen reactions. In the current review, we focus on the Mo-based model complexes.

3.2. Structural Analogs of Nitrogenase

In 1978, Holm and coworkers synthesized [Mo2Fe6S8] (22) cluster as a model of
the FeMo-nitrogenase through a self-assembly method [98,99]. Later, in 1982, the same
group reported a cubane-type structure of [MoFe3S4] (23) by removing a Mo ion from
[Mo2Fe6S8], [100,101] which showed very similar EXAFS data as the original FeMo-
cofactor [102]. In 1993, Coucouvanis and coworkers synthesized a citrate-stabilized
[MoFe3S4] (24), similar to the homocitrate-coordinated FeMo-nitrogenase [103]. In addition,
[(Tp)MoFe3S4Cl3]1− (25) cluster was synthesized using hydrotrispyrazolylborate(Tp) ligand
as a model of homocitrate [104]. Along with the structural modeling of the FeMo-cofactor,
Mo-based complexes were studied for the catalytic N2 reduction [105–107] (Scheme 12).
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3.3. Synthetic Electrocatalysts for N2 Reduction
3.3.1. Homogeneous Mo Complexes for N2 Reduction

In 1988, Hidai reported examples of converting N2 to silylamines using zero-valent
Mo coordinated by phosphine ligands, cis-Mo(N2)2(PMe2Ph)4 (26) and Mo(N2)2(dpe)2 (27)
(Scheme 13) [108]. Complex 26 produced 23.7% N(SiMe3)3 under optimized conditions of
N2 using Me3SiCl and Na (or Li) as reductant, whereas complex 27 showed less activity
of 9.7% conversion yield under the same condition. The monodentate phosphine made a
more active Mo site than the bidentate phosphine. Even though the conversion yield was
low, it gave early examples of Mo-phosphine catalysts for N2 conversion reactions.
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In 2003, Yandulov and Schrock used a high-valent Mo(III-IV) ion stabilized by a
tetradentate triamidoamine ligand for the reduction of N2 to NH3 [109]. The coordi-
nation of a hexaisopropylterphenyltriamido amine (HIPT) ligand to Mo(IV) ion gave
[HIPTN3N]MoCl, where the six hexaisopropylterphenyl groups sterically enclosed the
Mo active site [110]. The bulky ligand system prevented dimerization of the complex by
conserving the single Mo center [106,111]. Unlike the FeMo-cofactor, the Mo complex was
coordinated by organic N donors, but the reactivity study of [HIPTN3N]MoIII(N2) (28)
species provided implemental results to understand an N2 reduction process (Scheme 13).
Using a proton source of [(2,6-lutidinium)(BArF)] and decamethyl chromocene as a re-
ductant, complex 28 generated 7.56 equiv. of NH3 per a Mo ion and 63% yield per a
reductant, which was comparable to that of FeMo-nitrogenase (75% NH3, 25% H2) [112].
They proposed an N2 reduction mechanism catalyzed by a single Mo site based on spectral
data and X-ray crystal structures of intermediates. X-ray crystal structures and spectral
data characterized the nitrogen reaction intermediates such as Mo(N2), Mo-N=NH, [Mo=N-
NH2]+, Mo≡N, [Mo=N-NH3]+, [Mo=NH]+, [Mo-NH3]+, and MoNH3, which suggested the
N2 reduction pathway including 6e−/6H+ processes [113–117]. In the proposed pathway,
protons bind to one nitrogen to release the first NH3, and the next protonation occurs
on the remaining nitrogen to produce the second NH3 (Scheme 14). Their studies gave a
research basis for a Mo-based N2 reduction process [118].
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In 2011, Nishibayashi and coworkers tried to improve the N2 reduction activity
of Mo complexes by utilizing redox-active ligands. They modified the Hidai complex
(26) with ferrocenyl diphosphine ligand to prepare trans-Mo(N2)2(depf)2 (29)
(depf = diethylphosphinoferrocene) [119]. Complex 29 performed the silylamine pro-
duction under 1 atm of N2 at room temperature using Na and Me3SiCl. Me3SiCl formed
Me3Si· radical in the presence of Na reductant, and a Me3Si· radical derived the N2 reaction
to produce N(SiMe3)3 (226 equiv. per a Mo atom for 200 h). Acid post-treatment of the
produced silylamine afforded NH3. The same group used other redox-active PNP type
ligands for Mo catalysts [120]. Reduction of the [MoCl3(PNP)] species with Na/Hg under
N2 formed an N2-bridged di-Mo complex [Mo(N2)2(PNP)]2(µ-N2) (30a–c) (Scheme 13).
Subsequent reaction with 4 equiv. of HBF4·OEt2 and pyridine generated a Mo-hydrazide
species, and further reaction with [LutH]OTf produced NH3 (23.2 equiv. of NH3 per a
catalyst). The reaction mechanism was explained similarly as proposed by Schrock, where
one nitrogen site receives 3e−/3H+ to release NH3 and subsequent 3e−/3H+ reaction
of the remaining Mo(N) generates (Scheme 15). In the screening of reductants of Cr-Cp
(E1/2 = −0.88 V vs. Ag/Ag+ in MeCN), Co-Cp (E1/2 = −1.15 V), Cr-Cp* (E1/2 = −1.35 V)
and proton sources such as [LuTH]OTf (pKa 14.4 in MeCN), pyridinium trifluoromethane-
sulfonate (pKa 12.6), and HOTF (pKa 2.6), the Nishibayashi complex exhibited the N2
reduction activity with Co-Cp and Cr-Cp*, but not with Cr-Cp [121]. The complex showed
the best performance with the combinatory use of Co-Cp and [LuTH]OTf.
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The electronic property of the pyridine ligand affected the catalytic reaction rate by
modulating Mo–N≡N–Mo bond strength [122]. In comparison with the v(NN) frequency
(1944 cm−1) of unmodified pyridine (30a), the para-substitution with a phenyl group
increased the frequency to 1950 cm−1 (30b), whereas the methoxy group decreased to
1932 cm−1 (30c). The relative bond strength was reflected in the N2 reduction reactivity of
catalysts. Complex 30a provided 21–23 equiv. of NH3 production, but 30c with the electron-
donating methoxy substituent induced the highly efficient NH3 formation (34 equiv. per
catalyst) by accelerating the protonation step. Similar to the P cluster of the nitrogenase,
the substitution of a redox-active ferrocene assisted the catalytic reaction (30d–g) [123].
Ferrocene-attached Mo complexes showed a similar v(NN) stretching frequency as the
complex 30a but increased the NH3 production to 37 equiv. per catalyst. Although
unmodified ferrocene did not affect the NN bond strength, modification of the ferrocene
with ethyl or phenyl groups caused the slight shift of the v(NN) value indicating electronic
connectivity through the chemical bonds. The v(NN) value was measured as 1939 cm−1

with the ethyl-ferrocene and 1951 cm−1 with the phenyl-ferrocene. Consistent with the
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electron-donating effect, the ethyl-ferrocene resulted in 30 equiv. of NH3 formation per
catalyst, which was higher than 10 equiv. of NH3 of the phenyl-ferrocene.

The Nishibayashi type PNP-Mo catalysts began the N2 reduction in the N2-bound
Mo state after a halide abstraction step. They recently reported the presence of iodide
ligand rather improved the catalytic activity because of the electron-withdrawing property.
PNP-MoI3 complexes (31a–d) were synthesized with phosphine ligands varied by different
substituents such as isopropyl, tert-butyl, adamantyl, and phenyl groups (Scheme 16) [124].
The P(tert-butyl)2 group gave the highest NH3 production. The catalytic activity was
further examined by changing the para-position of pyridine with MeO, Me, Ph, Fc, and
Rc (32a–e) with keeping the P(tert-butyl)2 moiety of PNP ligand. At the time, the para-Ph
substituent showed the highest activity of 90 equiv. of NH3 production, which was much
higher than the case of para-MeO substituent [125]. The trend was opposite from the case
of N2-bridged dinuclear Mo complexes. Complex 31b exhibited a maximum 415 equiv.
of NH3 production per catalyst, which was 35 times higher activity than the N2-bridged
Mo2 complex. Furthermore, they examined the effect of PCP-type carbene ligands of
1,3-bis((di-tert-butylphosphino)methyl)benzimidazol-2-ylidene (PCP-1), 1,3-bis(2-(di-tert-
butylphosphino)ethyl)imidazol-2-ylidene (PCP-2) [126] (Scheme 16). The PCP-1-Mo (33)
produced 100 equiv. of NH3 per catalyst, but the PCP-2-Mo (34) showed a low reactivity
of 1.6 equiv. of NH3 per catalyst. The identity of the reducing agent and proton source
also affected the nitrogen reduction activity of Mo catalysts. Complex 33 showed the high
activity when used together with SmI2 and H2O (or ethylene glycol) instead of CoCp*
and [LutH]OTf. The combinatory use of SmI2 and ethylene glycol resulted in turnover
frequency (TOF) of 7000 h−1 for the NH3 generation, and the condition using H2O as a
proton source slightly decreased TOF to 6800 h−1 [127]. Using ethylene glycol as a proton
source produced 22% (relative to a reductant) of H2 as a side product, but H2O reduced the
ratio to ~2%. The optimized condition using H2O and SmI2 increased the NH3 productivity
of complex 33 to 4350 equiv. per catalyst and TOF to 112.9 min−1, which was close to the
nitrogenase activity of 40–120 min−1 [128].
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3.3.2. Heterogeneous Mo-Containing N2-Reduction Electrocatalysts

Nitrogen reduction catalysts should deliver protons selectively to a bound nitrogen on
their active sites, because the thermodynamic potential of a competitive proton reduction is
relatively low. For this, the intrinsic property of an active metal center is an important factor
to determine the N2 reduction reactivity of catalysts. Novel transition metals have shown
nitrogen reactivities, but their limited reserves and high-cost issues are obstacles for their
industrial scale-up as catalysts [129–135]. Earth-abundant metals are promising alternatives
for nitrogen catalysts. Mo ions as the forms of MoS2, MoO3, MoN, Mo2N, and Mo2C were
proven to be active for the N2 reduction. The specific affinity of Mo ion to nitrogen has been
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reported in the previous experiments [136,137]. In addition, the utilization of mixed metal
elements could increase N2 reactivity and promote electron-transfer by tuning surface
energy states.

The N2 reactivity seems to be varied by Mo crystal orientation. Wang and coworkers
reported that Mo(110) plane has higher reactivity with N2 than other planes of (200) and
(211) [138]. They prepared four types of Mo electrodes of Mo-foil, Mo-A-R, Mo-D-R-1h, and
Mo-D-R-5h through electrodeposition, and Mo-D-R-5h showed the highest (110) orientation
ratio based on XRD patterns [139–141].

Outermost Mo is an active site, but the reactivity and mechanism are determined by
supporting elements. Sun and coworkers studied different reactivities of Mo, conjugated
by O, S, and N atoms, by comparing MoO3, MoS2, and MoN [142–144]. Edge sites of
Mo chalcogenides are known to be active for N2 reaction. MoN surface has shown ~0.2
lower overpotential than Mo chalcogenides. It is possibly understood that as a surface
Mo-N is reduced to NH3, an empty Mo site facilitates subsequent N2 adsorption and
reduction process.

Conductive support was also an important component to improve the electrocatalytic
performance of MoS2, because the large conductive surface area supports more MoS2 active
area as well as increases surficial electrical conductivity. Tian and coworkers achieved
significant improvement of FE (10.94% at –0.3 V vs. RHE) of MoS2 using Ti3C2 MXene [145].
The catalytic efficiencies and reaction rates of the Mo-based electrocatalysts are compared
in Table 2.

Table 2. Faradaic efficiencies, NH3 formation rates of different Mo-based catalysts.

Catalyst FE NH3 Formation Rate Ref.

(110)-oriented Mo nanofilm 0.72% 3.09 × 10−11 mols−1cm−2 at −0.49 V vs. RHE [138]

MoO3 nanosheets 1.9% 4.80 × 10−10 mols−1cm−2 at −0.5 V vs. RHE [142]

MoN nanosheets 1.15% 3.01 × 10−10 mols−1cm−2 at −0.3 V vs. RHE [143]

MoS2 1.17% 8.08 × 10−11 mols−1cm−2 at −0.5 V vs. RHE [144]

1T-MoS2@Ti3C2 10.94% 30.33 µg h−1mg−1
cat. at −0.3 V vs. RHE [145]

3.4. Nitrogenase-Electrode Biohybrid

In general, synthetic modeling studies focus on enzyme active sites, but protein
structure should be an important factor to control the enzyme reaction. Even a small
mutation of a nearby amino acid could distort the entire enzyme reactivity. For example,
the substitution of a nearby β-98Tyr amino acid to β-98His deactivated the N2 reduction
ability of the mutated FeMo-nitrogenase [146]. However, a reduction of hydrazine (N2H2)
to NH3 still occurred in the mutated FeMo-nitrogenase. Interestingly, the mutation by
β-98His improved electron-accepting ability from an un-natural reducing agent to promote
reductions of azide (N3

−) or nitrite (NO2
−) to NH3 [147]. Using electron mediators such as

polyaminocarboxylate-ligated Eu [126] and polyallylamine (PAA) polymer-CoCp2 [148]
further improved reduction efficiencies. Rather in the presence of Fe-protein, without
using an additional electron mediator, electron transfer between Fe-protein and FeMo-
cluster became slow. Badalyan and coworkers showed experimentally that electron transfer
between FeMo-cluster and Fe protein is the rate-determining step by calculating reaction
rate constants using cyclic voltammetry data [149].

King and coworkers made a biohybrid system by attaching FeMo-nitrogenase to CdS
nanorods for applications to a photocatalytic reduction of N2 to NH3 [128]. In the biological
reaction, electron transfer steps from the P cluster to the FeMo-cluster require 16ATP
(Em = −0.42 V) (ATP = adenosine triphosphate). In the bio-hybrid system, irradiation of
CdS nanorod with 405 nm wavelength generated excited electrons with−0.8 eV, which was
transferred to the FeMo-nitrogenase to proceed with the N2 reduction reaction. The TOF
was 75 min−1 and the NH3 production rate was 315 ± 55 nmol(mg MoFe protein−1)min−1,
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which was 63% less activity compared to the enzyme activity with the presence of Fe protein
and ATP. Upon using nitrogenase inhibitors such as acetylene, CO, and H2 [150–152], the
enzyme activity became silent excluding a possible N2 reduction by CdS only.

Biohybrid of FeMo-nitrogenase with electrode enabled the enzyme to function in the
absence of ATP, and thereby provided ways to study the enzyme reaction out of intracellular
conditions. In future research, new biohybrid designs are required to decrease overpotential
for the N2 reduction as well as to develop methodologies for the transformation of N2 to
useful molecules.

4. H2 Evolution

The proton reduction is always a competitive reaction in the electrocatalytic reductions
of CO2 and N2, because the 2H+/H2 reduction is thermodynamically favored. However,
on the other hand, hydrogen molecules can be used as the simplest energy carrier for solar
or electric energy conversion and storage [153]. Due to the importance, various transition
metal-based electrocatalysts were developed for H2 evolution [154–156].

4.1. Homogeneous Mo Complexes for H2 Evolution

Nature does not use Mo metal for metabolic hydrogen reactions of H2 evolution and
splitting, but hydrogenase active site inspired ligand design for Mo complexes. It was
shown that anionic cyclopentadienyl (Cp) ligand has a similar electronic property as
the Ni ligation sphere of the [NiFe]-hydrogenase active site [157]. Felton and Donovan
reported that [(η5-C5H5)Mo(CO)3]2 (Scheme 17) (35) complex promoted the reduction
of acetic acid in acetonitrile with 0.9 V overpotential [158]. Fan and Hu utilized poly-
hapto ligands to prepare Mo-carbonyl complexes of (η3-C3H5)Mo(CO)2(CH3CN)2Br (36),
(η3-C3H5)Mo(CO)2(dppe)Br (37), (η5-C5H5)Mo(CO)3I (38), and (η5-C5H5)Mo(CO)2PPh3I
(39) (Scheme 17) [159]. Complex 36–39 showed similar reactivities of the halide dissociation
during the cyclic voltammetry in MeCN solution and also exhibited similar catalytic activity
of 16–27 TON for 5 h for the reduction of trifluoroacetic acid as requiring ~1 V overpotentials.
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Hydrodesulfurization utilizes Mo-sulfides as a catalytic surface [160]. Similar to
the MoS2 active site, Mo-sulfide moiety has been synthesized in the Mo coordination
environment. DuBois and coworkers used Cp ligand to obtain a sulfide bridged dinuclear
Mo complex, [(η5-C5H5)Mo(µ-S)]2(µ-S2CH2) (Scheme 17) (40). Complex 40 facilitated
reduction of p-cyanoanilinium tetrafluoroborate at −0.7 V vs. Fc+/Fc in MeCN solution
containing 0.3 M of Et4NBF4 electrolyte [161]. Controlled-potential electrolysis at −0.96 V
vs. Fc+/Fc generated 10.6 mol of H2 gas per catalyst with 98 ± 5% FE. The catalytic
activity was compared using different proton sources such as triflic acid (pKa = 2.6 in
MeCN), p-cyanoanilinium tetrafluoroborate (7.6) and p-cyanoanilinium tetrafluoroborate
(9.6). Higher pKa of the proton source shifted the proton reduction potential to the negative
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direction. Kinetic studies suggested that the elimination of H2 from the catalytic site is the
rate-determining step.

Chang and coworkers synthesized the Mo(S2) moiety in a pentadentate polypyridyl
Mo complex [(κ5-PY5Me2)MoS2]2+ (42) (PY5Me2 = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine)
from a reaction of [(κ5-PY5Me2)Mo((κ1-CF3SO3)](CF3SO3) (41) with S8 (Scheme 18) [162].
Complex 42 generated H2 in acetate buffer (pH 3) at the onset potential of −0.58 V vs.
SHE. Controlled potential electrolysis at −0.83 V overpotential produced H2 gas with
~100% FE and 280 mol/s TOF. Albeit less active than 42, Complex 41 also showed catalytic
activity to produce H2 gas in 0.6 M phosphate buffer (pH 7) requiring 0.52 V overpotential.
Controlled potential electrolysis at 0.64 V overpotential produced H2 gas as 1600 mol/h
TOF per catalyst. Complex 41 also produced H2 gas in seawater at the onset potential of
−0.81 V vs. SHE with 1200 mol/h TOF at −1.40 V vs. SHE. [163].
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Streb and coworkers observed that partial substitution of terminal disulfide in [Mo3S13]2−

by H2O to [Mo3S7(H2O)x](2−x)− increased the catalytic activity. Instead, the substitution of
terminal disulfide with halides to [Mo3S7×6]2− (X = Cl, Br) decreased significantly the HER
activity [164]. They suggested that, if terminal disulfide is protonated, energetically stable
and catalytically inactive species are formed. It looks critical the formation of a vacant
coordination site on a terminal Mo to generate catalytically active Mo-H.

Eisenberg and coworkers used dithiolene ligands to obtain Mo-sulfides moiety in
MoL2(bdt)2 (43a–g) (bdt = benzene-1,2-dithiol) (Scheme 19) [11]. Two-electron reduction of
complexes 43a–e in MeCN/H2O (9:1) solution dissociated isonitrile ligands to generate
Mo(bdt)2, which was the active species for the catalytic HER. Complexes 43a–g also showed
photochemical HER in MeCN/H2O solution under the conditions of using [Ru(bpy)3]Cl2
as a photosensitizer, 0.2 M ascorbic acid (pH 4) as an electron donor. Complexes 43a gave
the highest TON of 520 for 24 h than other complexes (<475 TON).
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Moly-oxo complexes have shown interesting proton reduction activities. Zhan and
coworkers synthesized cis di-oxo Mo complex, [MoVIL(O)2] (Scheme 20) (44) (L = 2-
pyridylamino-N,N-bis(2-methylene-4-methoxy-6-tertbutylphenol)ion) [165]. Complex 44
promoted proton reduction at 0.25 M phosphate buffer (pH 7) recording 360 mol/h TOF
(907 mV overpotential). Next, fluorine-substitution of [MoL’(O)2] (Scheme 20) (45) (L’ = 2-
pyridylamino-N,N-bis(2-methylene-4,6-difluorophenol)ion) gave higher TOF of 756 mol/h
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(89% FE) at −1.61 V vs. Ag/AgCl in mixed acetonitrile/water (2:3) solution containing
phosphate buffer (pH 6) [166].
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Kim and coworkers reported the proton reactivity of [MoO(S2C2Ph2)2]2− (46) in MeCN
solution. Treatment of protons (p-toluenesulfonic acid) with complex 46 in MeCN pro-
cessed dehydration of the complex to give [Mo(MeCN)2(S2C2Ph2)2] (47) (Scheme 21) [167].
Complex 47 had poor solubility in polar solvents, and the fast dehydration of 46 pre-
vented the use as an electrocatalyst. However, modification of the dithiolene ligand
could make Mo ion function as HER electrocatalyst. Fontecave and coworkers utilized
quinoxaline–pyran-fused dithiolene (qpdt2−), analogous to the molybdopterin (MPT),
to prepare (Bu4N)2[MoO(qpdt)2] (48) (Scheme 22) [168]. The qpdt2− ligand assisted the
Mo-oxo site to catalyze HER. Electrocatalytic proton reduction of trifluoroacetic acid was
detected at−0.55 V vs. Ag/AgCl, and TOF of 1030 s−1 was obtained at−1.3 V vs. Ag/AgCl
(FE 86% for 3 h). Complex 48 also facilitated photocatalytic HER with [Ru(bpy)3]2+ in 0.1 M
ascorbic acid (pH 4) as recording TON 500 for 15 h.
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4.2. Heterogeneous Mo-Containing H2-Evolution Electrocatalyst

In 2005, Norskov and coworkers calculated the free energy of atomic hydrogen bond-
ing (∆G◦H) to MoS2 surface and compared it with other catalysts such as enzymes (FeMo
cofactor and NiFe hydrogenase) and metal surfaces of Au, Pt, Ni, and Mo [169]. Density
functional theory (DFT) calculation results suggest that Ni and Mo bind strongly to atomic
hydrogen; however, since the next proton/electron transfer steps are thermodynamically
uphill, the H2–releasing step becomes slow as making those metals not suitable for HER.
Interestingly, the metalloenzymes of FeMo-nitrogenase and NiFe-hydrogenase using Ni
and Mo elements had similar hydrogen-binding energy (∆G◦H ~ 0) as Pt. Plane MoS2 was
inactive for HER, but the edge of MoS2 had a bit positive ∆G◦H ~ 0.1 eV in a suitable range
for HER. Graphite-supported MoS2 with enlarged edge area showed electrocatalytic HER
with 0.1–0.2 V overpotential.
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Chorkendorff and coworkers could modify the MoS2 edge area by varying sintering
temperature (Figure 4a) [170]. The MoS2 prepared from 400 ◦C sintering had a longer
edge length than another case of 550 ◦C sintering, and accordingly showed a higher HER
current density of 3.1 × 10−7 A/cm2 compared to 1.3 × 10−7 A/cm2 of the latter. Albeit
lower than the Pt electrode, the MoS2 edge exhibited higher current density than other
common metal elements. They also showed photocatalytic HER activity of mixed MoSx
surface as deposited on Ti|n+p-Si photocathode [171]. The MoSx was electrodeposited on
Ti-protected n+p-Si electrode by cyclic voltammetry (CV) scans at 0.137–1.247 V vs. RHE.
The MoSx|Ti|n+p-Si photocathode showed HER activity above 0.33 V vs. RHE under the
illumination of red light.

The electrodeposition method seems to be not suitable to produce a large number of
catalysts, and unstable species may not persist during cyclic voltammetry scans. Hu and
coworkers reported that unsaturated MoSx provides a more active site for HER [172]. They
prepared MoSx film by electro-polymerization method (Figure 4b), which exhibited higher
catalytic activity than MoS2 single crystal and MoS2 nanoparticles. They explained that
is because amorphous MoSx increases sulfur defects at the surface [173]. The same group
investigated the effects of growth mechanism and catalyst mass, but they reported that the
catalyst mass dominantly affected the catalytic efficiency (Figure 4c) [174].

Mo sulfur clusters have shown similar active sites as MoS2. Chorkendorff and cowork-
ers adsorbed cubane type [Mo3S4]4+ cluster to highly oriented pyrolytic graphite [175].
[Mo3S4]4+ cluster showed similar overpotential as MoS2 nanoparticle. Even higher TOF
of 0.07 s−1 was measured than 0.02 s−1 of MoS2 nanoparticle, but it was unstable during
successive potential scanning.

Bensenbacher and coworkers synthesized [Mo3S13]2− nanocluster by a wet chemical
method of (NH4)6Mo7O24 and ammonium polysulfide [176]. [Mo3S13]2− showed HER
activity at 0.1 V onset potential and 0.18 V overpotential at 10 mA/cm2 (TOF 3 s−1). Li
and coworkers synthesized Mo3S13 film by electrodeposition, which showed a higher
catalytic rate and lower overpotential by ~40 mV than Mo3S13 film prepared by drop-
casting of (NH4)2Mo3S13·2H2O [177]. The increased electrical conductivity enhanced
catalytic efficiency. Xu and coworkers improved HER efficiency by attaching [Mo3S13]2−

to highly conductive reduced graphene oxide-carbon nanotube (rGO-CNTs) aerogels,
which recorded a lower overpotential by 74 mV than pure [Mo3S13]2− [178]. Wu and
coworkers reported that dimeric [Mo2S12]2− cluster slightly improved the HER activity by
recording 0.16 V overpotential at 10 mA/cm2 (TOF ~3 s−1) compared to [Mo3S13]2− [179]
They reported hydrogen adsorption free energy 4Gads(H) of [Mo2S12]2− (−0.05 eV) is
closer to zero than other surfaces such as [Mo3S13]2− (−0.08 eV), MoS2 (0.08 eV), and
Pt(111)(−0.09 eV).

Min and coworkers reported HER activity of [Mo3S13]2− using [Ru(bpy)3]Cl2 and
ascorbic acid under visible light (≥420 nm). Initial TOF of 335 h−1 was measured, but it
had a problem of gradual decomposition [180]. The photocatalytic stability of [Mo3S13]2−

was improved by Zang and coworkers [181]. They encapsulated [Mo3S13]2− in ethidium
bromide covalent organic frameworks (EB-COFs). The COF-encapsulation did not decrease
significantly the catalytic activity relative to a free [Mo3S13]2− cluster. Mo3S13@EB-COF
maintained photocatalytic HER for 8 h by recording 21,465 µmol g−1 h−1 rate, furthermore
which showed the stable catalytic performance during the recycling test of 4 times of
5 h experiment.

Artero and coworkers studied the structure and reaction mechanism of amorphous
MoSx (α-MoSx), which had polymer-based on [Mo3S13]2− cluster sharing disulfide lig-
and [182]. They suggested that the reaction of terminal disulfide with proton and electron
releases HS− to generate unsaturated MoIV active site.

Octahedral molybdenum clusters are red near-IR phosphorescent emitters and showed
high photocatalytic HER activity. Feliz and coworkers studied the catalytic performance
of the (TBA)2[Mo6Bri

8Fa
6] (TBA = tetra-n-butylammonium) cluster in aqueous solution

in the presence of triethylamine (TEA) [183]. The catalytic activity of the {Mo6Bri
8}4+
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cluster unit was enhanced by the in situ generation of the [Mo6Bri8Fa
5(OH)a]2− and

[Mo6Bri
8Fa

3(OH)a
3]2− and [Mo6Bri

8(OH)a
6]2− species. In the same work, the cluster

unit was coordinatively immobilized onto graphene oxide (GO) surfaces. The resulting ma-
terial, (TBA)2Mo6Bri

8@GO, enhanced the cluster stability in a water/MeOH mixture and
under photoirradiation. Its catalytic performance was superior to that of GO, it decreased
with respect to that of the molecular cluster complex. The TOF values with respect to atomic
molybdenum were 5 × 10−6 s−1 and 3 × 10−4 s−1 for the heterogeneous and the homoge-
neous materials, respectively. Recently, the (TBA)2[Mo6Ii

8(O2CCH3)a
6] was also coordina-

tively immobilized onto GO to give (TBA)2Mo6Ii
8@GO [184]. To assure the cluster stability

of the cluster units under photocatalytic conditions, both materials were tested in vapor
water photoreduction. Even after longer radiation exposure times, the catalysts remained
stable and recyclability of both catalysts was demonstrated. The TOF of (TBA)2Mo6Ii

8@GO
is three times higher than that of the microcrystalline (TBA)2[Mo6Ii

8(O2CCH3)a
6], in agree-

ment with the better accessibility of catalytic cluster sites for water molecules in the gas
phase. In the framework of the study of the photocatalytic properties of the {Mo6I8}4+

cluster units, one of the most emissive octahedral metal clusters, [Mo6Ii
8(OCOC2F5)a

6]2−,
was immobilized onto graphene sheets through pyrene-containing organic cations as
supramolecular linkers [185]. These non-covalent interactions enhanced the photocatalytic
activity of the nanocomposite by 280% with respect to the molecular cluster and graphene
counterparts. The improvement of the H2 production activity is attributed to the synergetic
effect between graphene and the hybrid cluster complex because graphene facilitates the
charge-separation activity and enhances electron transfer of the cluster photocatalyst.

Lana-Villarreal and coworkers reported photocatalytic HER activity of Mo3S7 cluster
as immobilized on TiO2 surface [186]. Functionalized bipyridyl ligand of Mo3S7Br4(diimino)
cluster enabled adsorption of the cluster on TiO2 surface. The immobilized Mo3S7 cluster
decreased the HER overpotential by 0.3 V as recording 1.4 s−1 TOF. Despite the moderate
catalytic activity, it gave an example to immobilize molecular cluster on electrode surface.

Fabrication of hetero-metal chalcogenides was an effective method to improve catalytic
activities of Mo-based electrode materials. Doping of metal promoters possibly improves
the intrinsic activity of unsaturated Mo sites. The electrocatalytic effect of Cu/Mo hetero-
metals was examined by Tran and coworkers [187]. Cu2MoS4 was synthesized by the
solvothermal reaction of [Cu(CH3CN)](BF4) and (NH4)2[MoS4], and the obtained Cu2MoS4
crystals were stable under air for weeks.

Both MoS2 and CoSe2 were active for HER, and the synergistic effect of combined
MoS2 and CoSe2 was examined by Gao and coworkers [188]. MoS2/CoSe2 showed the
HER activity close to commercial Pt/C. Interaction of the first-row transition metal Co with
S could form S2− and S2

2− states, which possibly assisted MoS2 growth.
MoSe2 was relatively less studied compared to MoS2. Since the atomic hydrogen

adsorption energy was measured to be lower with MoSe2 than that of MoS2, MoSe2 also
showed an efficient HER activity [189]. Sasaki and coworkers improved corrosion stability
of Ni/Mo-alloy by NiMoNx nanosheet, where metal stabilizing effect of nitride possibly
improved the stability [190]. Mo phosphide (MoP) is a known hydrodesulfurization
catalyst. Jaramillo and coworkers compared catalytic HER activity of crystalline MoP and
molybdenum phosphosulfide (MoP/S) [191]. Both the MoP and MoP/S were active for
HER, but MoP/S showed the higher electrocatalytic activity than MoP.

Electrocatalytic HER activities of commercial MoB and Mo2C have been reported [192].
Two electrode materials showed similar catalytic activity and were usable under both acidic
and basic conditions, exhibiting similar activity and durability in continuous electrolysis
for 48 h.

Leonard and coworkers reported the synthesis of various Mo-carbide materials such as
α-MoC1−x, β-Mo2C, η-MoC, and γ-MoC with different stacking sequences, and compared
their HER activities [193]. The β-Mo2C, η-MoC, and γ-MoC had similar hexagonal crystal
structure, but the stacking sequence of β-Mo2C was ABAB, η-MoC was ABCABC, and
γ-MoC was AAAA packing. α-MoC1-x had a cubic structure as ABCABC stacking sequence.



Catalysts 2021, 11, 217 22 of 34

The β-Mo2C showed the highest HER activity, and the catalytic activities of the others were
obtained in the order of: γ-MoC > η-MoC > α-MoC1−x. The γ-MoC showed stable catalytic
activity with −1.95 mA/cm2 at −340 mV vs. RHE in the continuous electrolysis for 18 h.

Nakanishi and coworkers reported the synthesis of Mo carbonitride (MoCN) nano-
material [194]. The reaction of Na2MoO4 with diaminopyridine (DAP) in acidic condition
gave DAP-bound Mo oxide, which was polymerized by NaHCO3/(NH4)2S2O8 as emitting
CO2 gas. The CO2 emission step formed nano-sized (PDAP)-2H+/MoO4

2− (PDAP = poly-
diaminopyridine) complex causing a high density of the catalytically active site. Finally,
the polymer was pyrolyzed at 800 ◦C to become MoCN nanomaterial (Figure 4f). MoCN
nanomaterial showed the HER activity above −0.05 V vs. RHE and reached 10 mA/cm2 at
−0.14 V vs. RHE in sulfuric acid (pH 1) solution. MoCN nanomaterial had electrocatalytic
stability during 1000 CV scans between −0.35 and 0.2 V vs. RHE.

Yu and coworkers used hybrid phosphorous-doped nanoporous carbon (PC) and RGO
to support MoO2 [195]. MoO2@PC-RGO had a carbon skeleton, which prevented aggrega-
tion of catalytically active MoO2 nanoparticles. Additionally, the synergistic combination
of PC and RGO assisted to enhance the catalytic activity.
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The use of adhesives for power-deposition on electrode generally lowers catalytic
efficiency, so nickel foam (NF) has been used to prepare self-supported electrode. Huang
and coworkers used NF to support Mo2N/CeO2 hetero-nanoparticles (Figure 4d) [196].
CeO2 was coated on NF by hydrothermal method, and the CeO2-fabricated NF was covered
by Mo2N with varying amounts of (NH4)4Mo7O24·4H2O (0.02, 0.04, 0.05, 0.06 mmol)
precursor by solvothermal method. Post-annealing at 500 ◦C for 5 h under NH3 atmosphere
afforded Mo2N/CeO2@NF. The synthetic condition using 0.05 mmol Mo source gave the
best HER activity. Mo2N/CeO2@NF-0.05 sample showed smaller overpotential than
commercial 20 wt% Pt/C. The high catalytic activity was probably because electronic
interaction between Mo2N and CeO2 lowers the energy barrier for hydrogen intermediate
formation (Figure 4e). The catalytic efficiencies of the above Mo-based HER electrocatalysts
are compared in Table 3.
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Table 3. Compared catalytic efficiencies of Mo-based HER electrocatalysts.

Catalyst Onset Potential Overpotential Tafel Slope
(mV/dec)

Exchanged
Current Density

(A/cm2)
Ref.

MoS2 nanoparticles - - 55~60 1.3 × 10−7 [170]

[Mo3S4]4+ cluster −0.2 V vs. NHE - 120 2.2 × 10−7 [175]

MoSx|Ti|n+p-Si
photocathode 0.33 V vs. RHE - 39 - [171]

MoS3–CV - 200 mV at −15 mA/cm2 40 1.3 × 10−7 [172]

amorphous MoS3 - 200 mV at −4.8 mA/cm2 42 - [173]

MoS2+x film - 170 mV at −20 mA/cm2 - - [174]

MoSe2 nanosheets −0.15 V vs. RHE 290 mV at −10 mA/cm2 101 - [189]

MoSe2|RGO −0.05 V vs. RHE 115 mV at −10 mA/cm2 69 - [189]

Cu2MoS4 135 mV (onset) 95 4.0 × 10−5 [187]

MoS2/CoSe2 −11 mV vs. RHE 68 mV at −10 mA/cm2 36 7.3 × 10−5 [188]

NiMoNx nanosheet −78 mV vs. RHE - 35.9 2.4 × 10−4 [190]

commercial MoB 100 mV (onset) 55 1.4 × 10−6 [192]

commercial Mo2C 100 mV (onset) 56 1.3 × 10−6 [192]

MoP/S - 90 mV at −10 mA/cm2 50 2.0 × 10−4 [191]

MoP - 117 mV at −10 mA/cm2 50 5.0 × 10−5 [191]

γ-MoC −0.24 V vs. RHE
(at 0.18 mA/cm2) - 121.6 3.2 × 10−6 [193]

Mo carbonitride −0.05 V vs. RHE - 46~51 - [194]

MoO2@PC-RGO 0 V vs. RHE 64 mV at −10 mA/cm2 41 4.8 × 10−4 [195]

Mo2N/CeO2@NF-0.05 - 26 mV at −10 mA/cm2 37.8 - [196]

[Mo3S13]2− nanocluster 180 mV at −10 mA/cm2 40 [176]

Mo3S13 film −130 mV vs. RHE 200 mV at −10 mA/cm2 37 [177]

[Mo3S13]2− attached at
(rGO-CNTs) aerogels

−110 mV vs. RHE 179 mV at −10 mA/cm2 60.2 [178]

dimeric [Mo2S12]2−

cluster 161mV at −10 mA/cm2 39 [179]

5. Heterogeneous Mo-Containing O2-Evolution Electrocatalysts

Water splitting is an ideal method for the conversion of electric and solar energy to the
chemical bond energy of dihydrogen. However, oxidation of water to O2, the counterpart
reaction of H2 evolution, is kinetically slow, which decreases the overall efficiency of the
water-splitting reaction. Since oxygen evolution reaction (OER) is a multi-electron process
demanding large overpotential, efficient electrocatalysts are highly desired. RuO2 is a
benchmark catalyst for the OER, but the high cost and easy decomposition to RuO4 are
drawbacks of using Ru. Research efforts have been made to develop Earth-abundant
metal-based electrocatalysts with high-performance and durability, and, among those,
Mo-containing electrocatalysts have shown promising OER activities.

MoS2 edge site is also known to be active for the OER, and, thus, various synthetic
methods were developed to enlarge the edge site area. Mohanty and coworkers investi-
gated the OER activity of MoS2 quantum dots [197]. The MoS2 quantum dot compounds
(MSQDs) of 2–5 nm size were synthesized without aggregation through single-step hy-
drothermal reaction using (NH4)2MoS4) precursor (Figure 5a,b). Repeating linear sweep
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voltammetry (LSV) scans up to 50 cycles increased the OER current density, because the
electrochemically active surface area of MSQDs was enlarged with the potential scans.

Direct growing methods, useful to increase contact, conductivity, and electron transfer,
are generally applied to prepare OER electrocatalysts. In 2016, Yan and Lu prepared a
porous MoS2 microsphere on nickel foam (NF) [198]. The MoS2 on NF showed a higher
catalytic rate (105 mV/dec Tafel slope) than commercial RuO2 on NF (127 mV/dec) and
20% Pt/C (150 mV dec−1). Cui and coworkers synthesized mesoporous MoO2 nanosheets
on NF [199]. The mesoporosity of MoO2 enlarged the active surface area and slightly
improved the catalytic activity than that of compact MoO2.

Boride increases a reverse electron transfer to the metal site, which accordingly in-
creases electron density on the catalytic site. Gupta and coworkers synthesized ternary
Co-Mo-B hetero-metal nanocomposite, which gave enhanced OER activity [200].

Li and coworkers used a well-defined Cu nanowire to deposit Ni/Mo-alloy cata-
lyst [201]. Alkaline anodization and subsequent cathodic reduction process modified the
surface of Cu foam. A mixture of Ni(SO3NH2)2 and Na2MoO4 were electrodeposited on
the Cu nano-scaffold to obtain Ni-Mo/Cu nanowire. The Ni-Mo/Cu nanowire exhibited
comparable OER activity with commercial Pt/C(RuO2) on Cu foam.

Yang and coworkers examined the synergistic effect of trimetallic FeCoMo nanocom-
posite for the OER test [202]. Amorphous FeCoMo nanocomposite was synthesized as a rod-
like shape by hydrolysis of a mixture of CoCl2·6H2O, FeCl3·6H2O and (NH4)6Mo7O24·4H2O,
hexamethylene tetramine at 90 ◦C. The existence of high-valent Mo6+ was characterized
by Raman spectroscopy. In situ X-ray absorption near edge structure (XANES) showed
that Mo6+ tends to attract electrons from 3d transition metals, which possibly promoted
the OER process.

Gao and coworkers prepared a bifunctional catalyst using MoS2 HER catalyst and
Ni3S2 OER catalyst (Figure 5c–e) [203]. MoS2−Ni3S2 heteronanorods on NF afforded
higher OER activity than Ni3S2/NF and MoS2/NF.

The bimetallic system enables manipulation of electronic structure and gives abundant
active sites, but a synthesis of pure phase is difficult. Lan and coworkers could make pure-
phase bimetallic Co/Mo carbides using mesoporous carbon substrate (Figure 5f) [204].
Transition metal carbide also gave the high catalytic activity because of the good electrical
conductivity, metallic property, and chemical stability.

Ni oxyhydroxide is an active site for OER, but the low stability decreases the catalytic
efficiency. Shen and coworkers increased the stability by fabricating MoFe:Ni(OH)2/NiOOH
nanosheet and studied synergistic effect [205].

Ma and coworkers synthesized one-dimensional MoO2-Co2Mo3O8@C nanorods with
the enlarged catalytic surface area [206]. The ZIF-67 MOF was attached to MoO3 nanorods
to form MoO3@ZIF-67, and subsequent hydrothermal reaction at 700 ◦C gave MoO2-
Co2Mo3O8@C nanorods (containing Co/Mo in 9.1/10.5% ratio). The organic ligand of
ZIF-67 was carbonized into carbon, which served as a reductant to reduce excess MoO3 to
MoO2. The MoO2-Co2Mo3O8@C nanorods showed similar activity as the benchmark RuO2.

Yang and coworkers studied the OER activity of Ni2Mo3N hetero-metal nitride [207].
They reported that an amorphous surface oxygen-rich activation layer (SOAL) was gen-
erated on Ni2Mo3N nanoparticle surface by applying high oxidative potential in alkaline
conditions. The computational study suggested that SOAL could increase the OER activity,
because the conjugation of Ni-nitrides active sites and the secondary Mo-electron pump
promoted the catalytic reaction.

Jiang and coworkers reported the synergistic effect of Co3Mo alloy nanoparticles as at-
tached to nanoporous Cu skeleton [208]. They synthesized Mo-doped Co3O4 nanoflakes on
CuO/Cu skeleton by electro-oxidation (EO) at 1.57 V vs. RHE. The EO Co3Mo/Cu showed
lower OER onset overpotential than Ir/C supported by nanoporous Cu. Since Co3Mo/Cu
also acted as a highly active HER catalyst, they composed a water electrolysis set-up by
Co3Mo/Cu cathode and EO Co3Mo/Cu anode. The Co3Mo/Cu-based electrolyzer showed
overall water splitting delivering a current density of 100 mA/cm2 at 1.62 V vs. RHE. The
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water-splitting system acted more efficiently than Pt/C/Cu-Ir/C/Cu set-up (Figure 5g,h).
The catalytic efficiency parameters of the Mo-based OER electrocatalysts are compared
in Table 4.

Catalysts 2021, 11, x FOR PEER REVIEW 26 of 35 
 

 

conditions. The computational study suggested that SOAL could increase the OER activ-
ity, because the conjugation of Ni-nitrides active sites and the secondary Mo-electron 
pump promoted the catalytic reaction. 

Jiang and coworkers reported the synergistic effect of Co3Mo alloy nanoparticles as 
attached to nanoporous Cu skeleton [208]. They synthesized Mo-doped Co3O4 nanoflakes 
on CuO/Cu skeleton by electro-oxidation (EO) at 1.57 V vs. RHE. The EO Co3Mo/Cu 
showed lower OER onset overpotential than Ir/C supported by nanoporous Cu. Since 
Co3Mo/Cu also acted as a highly active HER catalyst, they composed a water electrolysis 
set-up by Co3Mo/Cu cathode and EO Co3Mo/Cu anode. The Co3Mo/Cu-based electrolyzer 
showed overall water splitting delivering a current density of 100 mA/cm2 at 1.62 V vs. 
RHE. The water-splitting system acted more efficiently than Pt/C/Cu-Ir/C/Cu set-up (Fig-
ures 5g, 5h). The catalytic efficiency parameters of the Mo-based OER electrocatalysts are 
compared in Table 4. 

 

 
Figure 5. (a, b) HRTEM images of MSQCs [197]; (c) EDS and elemental mapping of MoS2-Ni3S2 het-
eronanorods [203]; (d) polarization curves and (e) Tafel slopes of NF, Ni3S2/NF, MoS2-Ni3S2 

HNRs/NF, and Pt/C on NF and MoS2/NF [203]; (f) overpotentials of IrO2 and Co/Mo carbides 
(Co6Mo6C2/NCRGO with different Co/Mo ratios 1:1, 2:1, 3:1) at 10 mA/cm2 [204]; (g) polarization 
curves of EO Co3Mo/Cu, EO Co/Cu, EO Cu, and Ir/C/Cu (Inset: SEM image of EO Co3Mo/Cu) [208]; 
and (h) polarization curves for electrocatalytic water splitting of nanoporous Co3Mo/Cu and EO 
Co3Mo/Cu electrodes, nanoporous NiFe/Cu and EO NiFe/Cu electrodes and Pt/C/Cu and Ir/C/Cu, 
Inset: Comparison of current density at 1.65 V [208]. Reproduced from Refs. [197, 203,204] with per-
mission from copyright American Chemical Society and Ref. [208] with permission from copyright 
2020 Hang Shi et al. 

 
 
Table 4. Onset potentials, overpotentials, Tafel slopes Mo-based OER catalysts. 

 

Catalyst Current density 
(mA/cm2)  

Overpotential  Tafel slope 
(mV/dec) 

Ref. 

MoS2 on NF 20 310 mV  105 [198] 

Mesoporous MoO2 
nanosheets on NF 

10 260 mV  54 [199] 

Co-Mo-B 10 320 mV  56 [200] 

Ni-Mo/Cu nanowire 20 280 mV  66 [201] 

Figure 5. (a,b) HRTEM images of MSQCs [197]; (c) EDS and elemental mapping of MoS2-Ni3S2 heteronanorods [203]; (d) po-
larization curves and (e) Tafel slopes of NF, Ni3S2/NF, MoS2-Ni3S2 HNRs/NF, and Pt/C on NF and MoS2/NF [203]; (f) over-
potentials of IrO2 and Co/Mo carbides (Co6Mo6C2/NCRGO with different Co/Mo ratios 1:1, 2:1, 3:1) at 10 mA/cm2 [204];
(g) polarization curves of EO Co3Mo/Cu, EO Co/Cu, EO Cu, and Ir/C/Cu (Inset: SEM image of EO Co3Mo/Cu) [208];
and (h) polarization curves for electrocatalytic water splitting of nanoporous Co3Mo/Cu and EO Co3Mo/Cu electrodes,
nanoporous NiFe/Cu and EO NiFe/Cu electrodes and Pt/C/Cu and Ir/C/Cu, Inset: Comparison of current density at
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Table 4. Onset potentials, overpotentials, Tafel slopes Mo-based OER catalysts.

Catalyst Current Density
(mA/cm2) Overpotential Tafel Slope (mV/dec) Ref.

MoS2 on NF 20 310 mV 105 [198]

Mesoporous MoO2 nanosheets on NF 10 260 mV 54 [199]

Co-Mo-B 10 320 mV 56 [200]

Ni-Mo/Cu nanowire 20 280 mV 66 [201]

FeCoMo nanocomposite 10 277 mV 27.74 [202]

MoS2-Ni3S2 heteronanorods 10 249 mV 57 [203]

bimetallic Co/Mo carbides 10 260 mV 50 [204]

MoFe:Ni(OH)2/NiOOH nanosheet 100 280 mV 47 [205]

MSQDs-AC 10 370 mV 39 [197]

MoO2-Co2Mo3O8@C nanorods 10 320 mV 88 [206]

Ni2Mo3N hetero-metal nitride 10 270 mV 59 [207]

EO Co3Mo alloy nanoparticles 164 350 mV 82 [208]

6. Conclusions

This review summarizes Mo-containing metalloenzymes and their model complexes,
homogeneous and heterogeneous catalysts under categories of reactivities with CO2, N2,
H2, and O2. Compared to the Mo enzymes, catalytic activities of synthetic systems remain
at a low-efficiency level. Thus, continuous research efforts in synthetic and theoretical
perspectives are requested to achieve high-performing catalysts. The revealed Mo-enzyme



Catalysts 2021, 11, 217 26 of 34

structures enabled synthetic research on the enzyme reactivities, and concomitant the-
oretical studies gave an in-depth understanding of the enzyme mechanism. However,
previously proposed mechanisms need further supports by synthetic experiments, and
spectroscopic research on living cells still has limitations; thus, more active modeling
studies are required.

Along with the modeling studies, new catalysts by ligand design should be developed
to find an optimal condition to prepare active Mo ion. Ligand design for a low-valent
Mo ion to function under lower gas pressure is pursued. Examples of homogeneous
catalysts using high-valent Mo ions are relatively rare. Mimicking the enzyme active
site partially or conceptually could provide synthetic ideas to develop both low- and
high-valent Mo-based catalysts. In addition, catalytic stability of the Mo complex is a
prerequisite for commercialization. Utilization of hetero-metallic surface is a method of
preventing deactivation of catalytic sites as well as providing synergistic effects. Another
method would be to use polymer or organic scaffold for regulating access of reagents
into a catalytic site, which is similar to the enzymatic strategy to protect the active site by
surrounding it with polypeptide chains.
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