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Learning vector calculus techniques is one of the major hurdles faced by physics undergraduates.

However, beginners report various difficulties dealing with the index notation due to its bulkiness.

Meanwhile, there have been graphical notations for tensor algebra that are intuitive and effective in

calculations and can serve as a quick mnemonic for algebraic identities. Although they have been

introduced and applied in vector algebra in the educational context, to the best of our knowledge,

there have been no publications that employ the graphical notation to three-dimensional Euclidean

vector calculus, involving differentiation and integration of vector fields. Aiming for physics

students and educators, we introduce such “graphical vector calculus,” demonstrate its pedagogical

advantages, and provide a variety of exercises containing both purely mathematical identities and

practical calculations in physics. The graphical notation can readily be utilized in the educational

environment to not only lower the barriers in learning and practicing vector calculus but also make

students interested and self-motivated to manipulate the vector calculus syntax and, on their own,

heuristically comprehend the language of tensors. VC 2021 American Association of Physics Teachers.

https://doi.org/10.1119/10.0002142

I. INTRODUCTION

As an essential tool in all fields of physics, vector calculus is
one of the mathematical skills that physics undergraduates have
to be acquainted with. However, vector calculus with the index
notation can be challenging to beginners due to its abstractness
and bulkiness. They report various difficulties: manipulating
indices, getting lost, and being ignorant about how to proceed
in long calculations. Meanwhile, there have been graphical lan-
guages for tensor algebra such as Penrose graphical notation,1

birdtracks,2,3 and trace diagrams4 that are intuitive and effective
in calculations. Although they can be readily applied to three-
dimensional Euclidean vector calculus when combined with
Penrose’s17,18 graphical notation for vector differentiation, pub-
lications covering vector calculus in a graphical notation remain
absent to the best of our knowledge. Previous works3–9,55 only
dealt with linear “algebraic” calculations and did not consider
vector differential and integral “calculus.” In response to this,
for physics learners and educators, we introduce the “graphical
vector calculus,” advertise how easy and quick the graphical
notation can derive vector calculus identities, and provide prac-
tical examples in the physics context.

Pedagogical advantages of the graphical notation are
numerous. First of all, it evidently resolves the aforemen-
tioned difficulties of a beginner. It serves as an intuitive lan-
guage that is easy to acquire but does not lack any essential
elements of vector calculus compared to the ordinary index
notation. Next, students who are already acquainted with the
index notation would also benefit from learning the graphical
notation. The graphical notation will increase their virtuosity
in index gymnastics and promote the students to develop
concrete ideas of coordinate-free tensor algebra. In addition,
the graphical notation of vector calculus serves as an excel-
lent primer for graphical tools in modern physics such as

perturbative diagrams in quantum and statistical field theo-
ries as a conceptual precursor to Feynman diagrams. In fact,
a direct connection can be made with the use of birdtrack
notation for color amplitudes in quantum chromodynamics,
which comprises the first step of the modern schema of the
amplitude calculation.10–13 Further pedagogical and practical
benefits will be evident throughout the discussions in the
main sections and are summarized in the conclusion section.

Graphical notations for tensor algebra have a history span-
ning over a century.2 The basic idea can be traced back to the
late 19th century works on invariant theory that related invari-
ants to graphs.26–29 In the mid-20th century, diagrammatic
methods such as Levinson and Yutsis’s diagrams for 3n-j
symbols30,31 and Cvitanović’s birdtracks2,32,33 were devised
to conduct group-theoretical calculations and were applied to
quantum theory.3,10,34–36 According to Levinson,30 one of the
major motivations to develop such apparatus was “the
extreme inconvenience due to the bulkiness” of the ordinary
plaintext notation. On the other hand, Penrose1,37 devised a
graphical notation for tensor algebra and utilized it in tensors
and spinors in general relativity, theory of angular momentum
and spin networks, and twistor theory.17,18,38,54 As with
Levinson,30 one of his motivations was to simplify the com-
plicated equations and to effectively display the various inter-
relations that they have by visual reasoning;39 however, he
also intended to introduce the concept of “abstract tensor sys-
tem” by a coordinate-free notation that transparently retains
the full syntactic structures of tensor equations.1,17,18 The con-
cept of the abstract tensor system and the Penrose graphical
notation motivated the study of category theory and its graph-
ical language in algebraic geometry40–43 and served as a back-
ground43 to “language engineering” works to physics,44–46

such as diagrams in the tensor network of states47–52 or quan-
tum information and computing.43,44,53
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Based on the assets of this history of “graphicalism,” we con-
sider vector calculus, where vector differentiation comes into
play (see the supplementary material14 for a brief discussion on
vector integral calculus). The notations that we employ are
graphical notations for three-dimensional Euclidean vector alge-
bra and Penrose’s “differentiation balloon” notation, for which
introductions can also be found in a number of publications in
the literature.2,3,5,6,17,18,56 What are newly proposed in the cur-
rent work are graphical derivations and tricks of the vector cal-
culus in both mathematical and physical calculations. Also,
pedagogical values of the graphical notation are clearly demon-
strated, and exercises are provided in the supplementary mate-
rial. Overall, this paper will serve as a self-contained
educational material. We anticipate that this “user’s manual” of
graphical vector calculus we provide will lower the barriers in
learning and practicing vector calculus, as Feynman diagrams
did in quantum field theory.

II. GRAPHICAL VECTOR ALGEBRA

A. Motivation and basic rules

We have two vectors, ~A and ~B. We can make a scalar
from these two by the dot product. In the ordinary index
notation, we write ~B � ~A ¼ BiAi. Now, let us give an artistic
touch to it,

(1)

The “B-atom” and the “A-atom” are pairing their “electrons”
(repeated index i) to form a “covalent bond!” Analogous to
chemistry, depict a “shared electron pair” by a line connect-
ing two “atoms,”

(2)

Vectors ~A and ~B are each graphically represented as a box
with a line attached to it. The inner product is depicted by
connecting the two lines of the two boxes. Furthermore,
additional insight from this is that scalars will be graphically
represented as objects with no “external” lines. only
has an “internal” line; no lines are connected to the outside.
The bonded pair is isolated so that if the entire diagram is
put inside a black box, no lines will poke out from it. In other
words, scalars do not have free indices,

(3)

The basic observations here are summarized in Table I.
Meanwhile, for scalar multiplication, addition, and sub-

traction, we do not introduce new notational rules to repre-
sent them but just borrow the ordinary notation; that is, they
are denoted by juxtaposition and by “þ” and “–” symbols,

(4)

When two objects are juxtaposed, their relative position is

irrelevant, such as .

However, it should be noted that in Eq. (2), ~B is depicted as
a box with a line attached at its right side. It turns out that it is
okay not to care about which side a line stems from a box for
denoting vectors. A line can start from the left side, right side,
upper side, lower side, or anywhere from the box, as if it freely
“dangles” to be freely repositioned. For example,

(5)

and so on. It can be seen that an arbitrary rotation does not
affect the value of a graphical equation. Moreover, an arbi-
trary rearrangement of boxes also does not. For example, Eq.
(5) can be further deformed as follows:

(6)

So even if a diagram is drawn to look a little bit stiff,
remember that it is “dancing” freely behind the scene! Also,
a line can freely pass under boxes, as you can see in the sec-
ond equality in Eq. (6). In addition, intersections of lines
have no significance; think of them just overpassing each
other. When such an intersection occurs, we will always
draw it in a manner that no ambiguity arises if one follows
the “law of good continuation.” That is, “ ” is an overlap

of “ ” and “ ,” not “ ” and “ .”

B. Meet the Kronecker delta

The diagram for ~B � ~A can be interpreted from a different
perspective. The last diagram in Eq. (5) seems like two vec-

tors and “plugged into” a -shaped object,

(7)

Then, what does the -shaped object represent? It is a
“machine” that takes two vectors as input and gives a scalar;
it is the inner product “�,” or in the index notation, “dij” (cf.
the “machine” view of tensors61). Substituting lines into the
machine corresponds to contraction of indices,

(8)

Table I. Translation between the index language and the graphical language.

Index language Graphical language

An n-index quantity A box with n attached lines

The name of a quantity The character written inside the box

Pairing (contracting) two indices Connecting two ends of lines

Free indices External lines

Contracted (dummy) indices Internal lines
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(9)

In the second line, we turned on the “index markers” to avoid
confusion that which terminal of the line corresponds to the
indices i and j, respectively.

A comment should be made about the symmetry of the
Kronecker delta. The fact that dij ¼ dji is already reflected in
the design of the graphical notation, which is the appearance
of dij with the dancing rule of equivalent diagrams. In the
graphical notation, dij is an undirected line, so that there is
no way to distinguish its “left” and “right” terminals. For
instance, see the first equality of Eq. (5). If you want to write
this symmetry condition without “test vectors” substituted
in, observe the second form of ~B � ~A in Eq. (5) and the last
form in Eq. (6). It can be seen that

(10)

Turning on the index markers,15 we can write

(11)

and can write

(12)

The left-hand side assigns i to the left terminal of the
-shaped and j to the right terminal; the right-hand side

assigns i to the right terminal and j to the left terminal. Just
pretend for a moment that the index assigned to the left ter-
minal should be placed first when reading the -shaped in
Eq. (12) in the index notation; then, we have dij ¼ dji.

C. Meet the cross product machine

Now, move on to the next important structure, the cross
product. The cross product is a machine that takes two vec-
tors as input and gives a vector output. Hence, two lines are
needed for input and one line for output,

(13)

Do not forget the diagrams are dancing, and Eq. (13) just
shows three snapshots. There is an infinitude of possible con-
figurations in which ~A � ~B can be drawn. Also, note that the
third diagram is read as ~A � ~B as well as the first one. The
lines attached to the cross product machine ( ) should be
read counterclockwise from the core (the small dot) of the

machine: . The left and right arms of the cross product

machine are connected to ~A and ~B, respectively, in both the
first and third diagrams in Eq. (13), and so they are equivalent.
Continuous deformations do not affect the value of a diagram.

However, how about discontinuous deformations? In the
case of the inner product, yanking a twist, a discontinuous
deformation that yields a cusp during the process, did not
affect the value because the inner product is symmetric. The
cross product, however, is antisymmetric so that
~A � ~B ¼ �~B � ~A; therefore, when the two arms of the first
diagram in Eq. (13) are swapped—which is the third

diagram—and yanked, a minus sign pops out, as depicted in
Fig. 1. Kinesthetic imagery in which the lines of the cross
product machine are elastic but are particularly stiff near the
core might be helpful for intuitively remembering this. Do
not forget the minus sign. Yanking a twist is a discontinuous
“clank” process.

Note that in the case of a general object (tensor), the value
after swap-then-yanking its two arms is by no means related
to the original value, unless it bears symmetry or antisymme-
try with respect to permutation of the two indices.

D. Triple products

Having introduced the graphical notation for the cross
product, let us now graphically express triple product identi-

ties. First, a scalar triple product ~C � ð~A � ~BÞ can be drawn

by connecting the free terminals of and Eq. (13),

(14)

The cyclic symmetry of the scalar triple product is already
reflected in its graphical design: it looks the same under
threefold rotation,

(15)

This is the economy of graphical notations: redundant plain-
text expressions are brought to the same or at least mani-
festly equivalent diagram.

As a side note, imagine what would it mean if the cross
product machine were naked, while it is fully dressed in Eq.
(14), which is �ijkCiAjBk in the index notation. As some read-
ers might already have noticed, another name for the cross
product machine is the Levi-Civita symbol, �ijk. It is a three-
terminal machine (three-index tensor) that is antisymmetric
in every pair of its arms (indices),

(16)

Next is the vector triple product. The BAC-CAB formula
translates into the graphical language as follows:

Fig. 1. A minus sign pops out with a “clank!” sound when you swap-then-

yank the two arms of a cross product machine. The plaintext equation corre-

sponding to this action is ~A � ~B ¼ �~B � ~A.
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(17)

This holds for arbitrary ~A; ~B, and ~C; thus, one can extract
the “bones” only,

(18)

Until now, all graphical equations followed from defining
rules of graphical representation. However, Eq. (18) is the
first—and indeed the only—nontrivial formula relating cross
product machines and Kronecker deltas. This is the most
important identity that serves as a basic “syntax” of our
calculations.

Equation (18) is by no means “new.” With the index
markers, it turns out that it is the well-known formula about
contracted two �ijk values,

(19)

�ijk�klm ¼ djmdil � djldim: (20)

However, the graphical way has multiple appealing points.
First, it naturally serves as a quick visual mnemonic for Eq.
(20). Also, in practical circumstances, the graphical form
avoids the bulkiness of dummy indices and significantly sim-
plifies the procedure of index replacement by dij. One does
not have to say “i to l and j to m” over and over in one’s
mind organizing the expanded terms. This makes a greater
difference in the calculation time as the equation involves
more operations and dummy indices (proof of the Jacobi
identity,14 for example). On the other hand, classification of
vector algebraic identities is immediate if they are written in
the graphical notation because it shows the (tensorial) struc-
ture of equations explicitly. One can recognize identical
structures within a single glance, as comprehension of visu-
als is much faster than that of texts. Some may argue that a
mere counting of the symbols “�” and “�” would also
reveal the structure of equations, at least for simple cases.
With the graphical notation, however, generating different
identities of the same structure is also straightforward; it is
accomplished by just attaching “flesh pieces” (vectors or
arbitrary multi-terminal objects16) to the “bone.” For
instance, one can easily write down the equations equiva-
lent to the BAC-CAB rule or the Jacobi identity.14

Knowing what fundamental rules that identities are rooted
in with being able to generate equivalent identities will
effectively promote concrete understandings of the struc-
ture of vector algebra.

III. GRAPHICAL VECTOR CALCULUS

Now, we come to graphical vector “calculus.” Here, we
are considering not just scalars and vectors, but “scalar

fields” f ð~rÞ; gð~rÞ; … and “vector fields” ~Að~rÞ; ~Bð~rÞ; …;
they depend on spatial coordinates or, equivalently, the posi-
tion vector ~r . In this section, “ð~rÞ” is omitted unless there is
an ambiguity whether or not there is a dependency on~r .

A. The basics

The first mission would be graphically representing
r ¼~eið@=@xiÞ :¼~ei@i, where ~ei and xi are the i� th
Cartesian basis vector and coordinate, respectively. r is not
only a “vector” (that is, it carries an index) but also a differ-
ential operator at the same time. Therefore, to accomplish
the mission, a notation that has one terminal and is capable
of representing the Leibniz property (the product rule of
derivatives) should be devised. The latter can be achieved by
an empty circle, which is reminiscent of a balloon. Things
inside the balloon are subjected to differentiation. The
balloon “eats” fg by first biting f only and then g only:

$ ðfgÞ0 ¼ f 0gþ fg0. To

“vectorize” this, we simply attach a single tail to it,

(21)

This “differentiation hook” design was previously sug-
gested by Penrose.17,18 However, he has not published how
to do the Euclidean vector calculus in three dimensions
using it. As you will see soon, it is powerful to distinguish
vector algebraic manipulations from the range of differenti-
ation when an index-free format is kept, while both are
denoted without distinction by parentheses in the ordinary
notation.

The Leibniz rule, Eq. (21), can be applied regardless of
the operand type.19 For instance, a vector can be fed to r,

(22)

Here, visual reasoning comes earlier, naturally suggesting
the concept “r~A” without reference to coordinates (before
we attach index markers). This is one of the instances where
the graphical notation intuitively leads students to enter the
world of tensors with its coordinate-free nature unspoiled.

Equation (22) can be physically or geometrically mean-
ingful, but it frequently appears in a particular encoding:
divergence and curl.20 They are obtained when we let the
two tails of Eq. (22) “interact” with each other with the
machines we have seen in Sec. II,
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(23)

A final note: the differentiation applies only to boxes, not
lines. It is because dij and �ijk are all constants. So one can
freely rearrange the balloons (differentiation) relative to con-
necting lines and cross product machines regardless of how
they are entangled with each other. A helpful imagery is that
the balloon membrane is impermeable to boxes but does
not care whether lines or cross product machines pass
through.

B. First derivative identities

Finally, we will now show how easy deriving vector cal-
culus identities is with the graphical notation. Essential
examples are demonstrated; the remaining identities are
worked in the supplementary material14 as exercises,

1. $ � ð~A3~BÞ.
From the diagrams for the cross product (Eq. (13)) and the

divergence of a vector field (Eq. (23)), r � ð~A � ~BÞ can be
easily represented graphically. The a Leibniz rule Eq. (21)
can then be applied to give

(24)

The second term is a contraction of and , which

is ~B � ðr � ~AÞ. The first term is a contraction of

, which is ð�r � ~BÞ �~A.

Thus, we obtain ~B � ðr � ~AÞ � ~A � ðr � ~BÞ. We do not need
to memorize the tricky minus sign or look up a vector iden-
tity list all the time. All we need to do is just to doodle the
diagrams and see what happens,

2. $3ð~A3~BÞ.
r� ð~A � ~BÞ can readily be written in a graphical form

from the diagrams for the cross product (Eq. (13)) and a curl
of a vector field (Eq. (23)). The formula is rather complex-

looking: r� ð~A � ~BÞ ¼ ðr � ~BÞ ~A þ ð~B � rÞ~A � ðr � ~AÞ~B
�ð~A � rÞ~B. While proving this in the index notation, you
may frown at equations to recognize which indices corre-
spond to which epsilon and delta; it is much neater in the
graphical notation. The proof proceeds by applying

the Leibniz rule, Eq. (21), and the “ ” identity,

Eq. (18),

(25)

Translating back to the ordinary notation gives the desired
result. Note that the second term in the bottom line translates

into ð~B � rÞ~A since is the derivative “modified” by

~B: it “~B-likely” differentiates (� � �), that is, the directional

derivative with respect to ~B; Bi@i(� � �).

3. $ð~A � ~BÞ.
Finally, we will demonstrate graphical reasoning for the

notorious vector calculus identity: rð~A � ~BÞ. The formula is
given by Eq. (28). It is perhaps the most complicated among
all vector calculus identities. However, a bigger problem is
that it is not clear how to massage rð~A � ~BÞ into smaller
expressions. In the graphical notation, one can see the moti-
vation of each step more transparently. Start from the dia-
gram for rð~A � ~BÞ,

(26)

We aim to express Eq. (26) in tractable terms; we must,
therefore, transform it into vectorial terms that can be writ-
ten in a coordinate-free manner in the ordinary notation
(such as divergence, curl, or directional derivatives).21

The second term on the right-hand side is identical to the
first term if A is substituted to B and B is substituted to A;
therefore, we may work on the first term first and then sim-
ply do the substitution to obtain the result for the second
term.

The central observation that guides us is that if the first

term were , it could be written as ð~B � rÞ~A. Then,

interchanging two lines is readily possible by ,

(27)

In the second line, the upper cross product machine is
“clanked.” Finally,

rð~A � ~BÞ ¼ ð~B � rÞ~A þ ~B � ðr� ~AÞ þ ð~A$ ~BÞ; (28)

where “þð~A $ ~BÞ” means adding the same expression with
~A and ~B interchanged. This trick of interchanging two lines,

, is often useful. With the graphical notation,

utilizing it and recognizing when to use it is achieved with-
out difficulty.
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C. Second and higher-order derivative identities

Graphical proof of second and higher order identities can eas-
ily proceed analogously. Second-order derivatives are depicted
as double-balloon diagrams. There are no new graphical rules
introduced except the following “commutativity of derivatives”:

(29)

where anything smooth that the derivatives commute can be
go inside the balloons. This is translated into the ordinary
notation as @j@i ¼ @i@j as an operator identity.

One of the most immediate results in second order deriva-
tives is the following:

(30)

At the first equality, the inner balloon is rearranged to be the
outer one according to Eq. (29); the second equality comes
from the dancing rule; at the third equality, the “clank” pro-
cess is used. One can easily see that r� ðrf Þ ¼ 0 and r �
ðr � ~AÞ ¼ 0 are all the consequences of this property. The
details are given in the supplementary material14 with the
proof of other second and higher order identities.

IV. PRACTICAL EXAMPLES

So far, this is the story of the graphical notation, a begin-
ners’ companion to vector calculus. In this section, we pro-
vide practical examples in the physics context.

A. The economy of the graphical notation: The same
diagram, different readings

Remember the economy of the graphical notation in Sec.
II C?. In music, there are musical objects that have multiple
names in ordinary notation. For example, D] and E[ are the
same when they are aurally represented. Likewise, there are
situations in which different plaintext equations are repre-
sented as a single graphical expression so that one can easily
recognize their equivalence. The following two, which
appear when one deals with the equations of motion of a
rigid electric dipole translating and rotating in a magnetic
field,22 are equal in their values but spelled differently in the
ordinary notation,

~v � ðð~x �~pÞ � ~BÞ; �ð~p � ð~v � ~BÞÞ � ~x: (31)

To see the equivalence of them, one should spend time on
permuting the vectors according to properties of the triple
products. However, it is strikingly easy if one draws a dia-
gram corresponding to them,

(32)

Two expressions in Eq. (31) are just different readings
(groupings) of Eq. (32). It is the matter of grouping the left
branch (~x �~p) first or the right branch (~v � ~B) first in Eq.
(32). Permuting the vectors in the ordinary notation and in

the graphical notation are just two different ways of manipu-
lating an identical tensor structure, but it is much easier in
the graphical notation. Then, why not use the graphical nota-
tion, at least as a mnemonic?

B. Cross your fingers

The capacity of the graphical notations is more than a
mnemonic. It is a calculation tool equipped with its own syn-
tax so that one can proceed the entire process of vector cal-
culus in the graphical notation without reference to indices.
Let us demonstrate such calculational advantages.

The trick of interchanging lines introduced in Sec. III B 3
has an objective to reassign contractions between indices to
obtain a more convenient form. For an example of its practi-
cal usage, consider the electrostatic force formula for a point
electric dipole ~p in an electric field ~Eð~rÞ. It is given by not
only rð~p � ~Eð~rÞÞ but also ð~p � rÞ~Eð~rÞ. It would be an over-
kill to look up the vector calculus identity table and apply
the general formula, Eq. (28), because ~p is not differentiated
by r. The following graphical equations complete the proof
of the equivalence of the two simply:

(33)

Note that ¼ r� ~Eð~rÞ ¼ 0. This makes the intention of

the calculation evident without memorization of the whole

formula. In the case of a point magnetic dipole ~m in a mag-

netic field ~Bð~rÞ,

(34)

and so the force exerted on the dipole is rð~m � ~Bð~rÞÞ
¼ ð~m � rÞ~Bð~rÞ þ l0~m � ~Jð~rÞ, where ~Jð~rÞ ¼ ð1=l0Þr
� ~Bð~rÞ is the current density at~r .

C. Identities Involving~r

As a specific and important example, consider the vector
calculus with the position vector,~r . First, note that

(35)

which is @ixj ¼ dij in the ordinary notation. If the two termi-
nals are connected by a Kronecker delta, a “vacuum bubble”
is obtained,

(36)
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If a cross product machine is used,

(37)

since you know that r�~r ¼ 0. The second and the third
equality proceed by “swap-then-yanking” the cross product
machine and the Kronecker delta part, respectively. Finally,

note that , where ~n :¼~r=r (r :¼ j~rj) is

the unit radial vector.
With these basic graphical equations, one can graphically

prove identities involving r and~r such as the following:

(38)

(39)

Here, the fact that @kdij¼ 0 k$ ¼ 0 is used.23 Also,

expressions such as r� ðr sin h~e/̂Þ (~e/̂ :¼ r/=jr/j,
where / is the azimuthal angle) can be calculated by recast-
ing it into a coordinate-free expression: r� ð~ez �~rÞ,

(40)

The last step is due to , which can be proved by
the following:

(41)

Rather than using coordinate expressions of gradient, curl,
and divergence, in particular, coordinates, working in a
coordinate-free manner, has several benefits. In complex
cases, it can be faster and has a lower probability of mis-
takes.24 Also, it offers an algebraic way to find the dð3Þð~rÞ
term in the divergence or curl of a vector field.14 It is notable
that such advantages are doubled with the graphical notation
that significantly lowers the difficulty of handling higher-rank
index manipulations. For various physical examples such as
dipolar electromagnetic fields and flow configurations in fluid
dynamics, refer to the supplementary material.14

D. A first look on tensors

Finally, we want to comment about tensors since they
occasionally appear in undergraduate physics. Students are
likely to develop the ideas of tensors by themselves while
utilizing the graphical vector calculus; the extension from
zero and one-terminal objects to multi-terminal objects is
straightforward, and the graphical notation naturally
involves the manipulation of multiple terminals. Also,
graphical representations are useful to explain the concept
of tensors to students, by utilizing the “machine view.” For
example, think about the inertia tensor, Iij¼ . It is

simply a two-terminal device that “modulates” a one-
terminal input (angular velocity, ) into a one-terminal

output (angular momentum, ). Imagine as
if a “signal” generated from the x box propagates from right
to left. Swapping the two arms of the inertia tensor does
not affect the value, because it is symmetric:

. However,

this is not the case for a general multi-terminal object unless
it is symmetric, as we have already discussed in Sec. II C.
For the details of graphical representations of such general
objects, refer to the supplementary material.14 Here, we
restrict our attention to symmetric rank-2 tensors.

There are at least three practical benefits of using graphi-
cal notation for tensor equations. First, it is convenient to
calculate the trace25 and related quantities of a tensor.14

Next, the graphical notation provides a transparent and
unambiguous way to denote contraction structures. For
example, consider the two expressions below denoting
K ¼ 1

2
xiIijxj and �ijkxjLk ¼ �ijkxjIklxl, respectively,

(42)

or the following more complex example that appears in the
formula for the angular profile of electric quadrupole radia-
tion power,14

(43)

Here, ¼Qij is the electric quadrupole moment,
which is also a symmetric tensor. The asterisk stands for
complex conjugation.

For a calculus example, consider r � r, the divergence of
the stress tensor r, which index of r is in charge of the inner
product in the expression “r � r?’—find the answer in the
following diagram:

(44)

The contraction structures and their symmetry are clearly
evident at a glance and can be quickly denoted in an unam-
biguous and less-bulky form, in comparison to ordinary nota-
tions. Moreover, as one finds in the supplementary
material,14 one can wisely calculate enormous tensor expres-
sions in a shortcut with the guidance of the graphical nota-
tion. Finally, the graphical notation is considerably useful in
denoting and explaining the invariance property of tensorial
expressions. As elaborated in the supplementary material,14

one can easily examine how the terminals of a tensor expres-
sion transform under rotation intuitively by “arrow
pushing”—the pair creation/annihilation and propagation of
arrowheads.

V. CONCLUSIONS

The graphical notation has a lot of advantages. First, it
provides a quick mnemonic or derivation for identities (e.g.,
Eq. (18) or the vector calculus identities). It also enhances
the calculation speed,57 giving a bird’s eye view to the
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calculation scenario. The strategy of reducing complicated
expressions can be intelligently decided. Although they are
best performed in the graphical environment, such techni-
ques on index gymnastics gained from graphical representa-
tions are inherited altogether into the index notation
environment. An index notation user also will benefit from
association of a tensorial expression with a graphical image.

Next, it has advantages in denoting and comprehending
tensors. If it is unambiguous, an index-free notation is pre-
ferred, that is, “r� ~A” is preferred over “~ei�ijk@jAk,” proba-
bly because it is more simple and easy to read off the
tensorial structure in groups of semantic units (such as pars-
ing ~B � r � ~A into “~B dot r� ~A,” not “(~B cross r) dot ~A”).
In particular, the graphical notation is preferable to other
index-free notations because it can flexibly represent tensor
equations that become bulky in the ordinary index-free nota-
tion and transparently display the contraction structure. The
symmetry of a tensorial expression can also be grasped at a
single glance. Moreover, students will automatically dis-
cover the concept of tensors as an invariant n-terminal object
and develop essential ideas of tensors in a coordinate-free
setting using the graphical notation. For example, students
will realize themselves interpreting the first term on the
right-hand side of Eq. (26) as Eq. (22) contracted with ~B at
its second terminal (“input slot”). As a result, the idea of the
tensor “r~A” can be understood without leaving a vague
impression, as its graphical representation provides a con-
crete comprehension of its functionality (as a “machine”).
As parse trees (graphs) can promote understanding syntactic
structures and generating sentences of the same structure, the
graphical representation can do the same in tensor calculus
and its teaching.58 Furthermore, an unsupervised acquisition
of tacit knowledge during graphical manipulation experien-
ces such as “the equations are also valid after undressing test
vectors from them” (Sec. II D) or “a compound n-terminal
object that has a permutation symmetry can be reduced into
a simpler expression of the same symmetry up to a propor-
tionality constant”14 is also notable. In fact, these “know-
hows” have names: for example, Schur’s lemma or Wigner-
Eckart theorem3 in the case of the latter. It is remarkable that
students will discover these concepts by themselves far
before learning the subject at a higher level of mathematical
sophistication.

Finally, the graphical notation serves as an excellent
primer to the graphical languages of advanced physics for
undergraduates. After learning the graphical vector algebra,
one can easily learn the birdtrack notation that is capable of
group-theoretical calculations in quantum theory. Also, the
graphical vector calculus provides exercises of
“diagrammatics,” translating equations into graphics and
vice versa that would be an everyday task when learning
quantum field theory. Enthusiastic undergraduates who have
always been curious about the working principles of
Feynman diagrams will not only quench their thirst by learn-
ing the graphical tensor algebra but also find themselves
being eager to discover the fun of the “next level” at the
same time—the world of diagrams that involve new words
(multiple kinds of lines or representations) and new gram-
mars (more interesting graphical rules). In essence, graphs
for tensorial expressions of various symmetry groups, bird-
tracks, are a group-theoretical portion of Feynman diagrams.
It is easy to learn Feynman diagrams after learning birdtracks
or graphical tensor algebra and vice versa because the way
they denote mathematical structures is alike: loop diagrams

for trace (“vacuum bubbles,” Eq. (36)), etc. Meanwhile, bird-
tracks may leave a more concrete impression because it has
graphical “progression rules”60 that enable jumping from an
expression to another via equality unlike Feynman diagrams.
Furthermore, when one considers a series expansion of a ten-
sorial expression, one encounters the exact parallel with dia-
grammatic perturbation in statistical mechanics or quantum
field theory. Pedagogical examples can be found in the sup-
plementary material.14

The core characteristic that provides a background to all
these advantages is the “physically implemented syntax” of
the notation. It is believed that Feynman diagrams work
because it is indeed a representation of the physical reality—
the nature is implemented by worldlines of particles that are
isomorphic to Feynman diagrams. In the graphical notation
of tensors, the grammar of tensors is “embodied” in the
wires, 3-junctions, nodes, and beads, and all that: the sym-
bols behave according to the physical appearance (self-
explanatory design of symbols in Sec. II B and Sec. II C).
Consequently, the language is highly intuitive and automati-
cally simplifies tensorial expressions (the economy of the
graphical notation). The association of a kinesthetic imagery
further simplifies the perception and manipulation of the ele-
ments (the dancing rule and the “clank” in Sec. II C). As
Feynman diagrams are the most natural language to describe
the microscopic process of elementary particles, the graphi-
cal notation is the canonical language of the vector calculus
system.

Last but not least, the graphical notation will change a
vector calculus class into an enjoyable game. Like a child
playing with educational toys such as Lego blocks or mag-
netic building sticks, a student will find it an entertaining
experience to “doodle” with the dancing diagrams. Even a
calculation of complicated tensorial invariants can be a chal-
lenging task that thrills a person; one would feel as if he or
she is doing cat’s cradle or literally “gymnastics” involving
their visual, kinesthetic, or even multimodal neural sub-
strates. Such an amusing character can attract students’
interest and offer a motivation to study vector calculus (cf.
Fig. 2). Students will voluntarily build various tensorial
structures, heuristically find the identities, and gain intu-
itions. One possible “creative classroom” scenario we sug-
gest is to present students only the basic grammar of the
graphical notation and letting them spontaneously and
exploratively find the “sentences (identities),” perhaps in a
group. The teacher can collect their results, have a group

Fig. 2. The lively image of the graphical notation; they move and deform

themselves freely, the differentiation loop phagocytizes the operand. As if

drawing pictures, students can imagine and generate various tensorial struc-

tures beyond the basic ones explicitly mentioned in this article, e.g., the

rank-5 “starfish” tensor in the figure. Students can heuristically explore the

“ecosystem” of tensor identities by doodling the elements of the graphical

calculus.
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presentation, and then introduce missing identities if any.
This will turn a formula-memorizing class into an amusing
voluntary learning experience. So how about boosting your
education by the graphical notation?
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