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1 Introduction

Based on the AdS/CFT correspondence or holography [1–4], a variety of holographic studies
have been performed for understanding nonperturbative aspects of strongly interacting
systems. There is also a growing interest in understanding more fundamental structures and
features of many quantum systems, like quantum entanglement [5–13] and complexity [14–
19]. The recent holographic studies on entanglement entropy provide a new fascinating tool
to figure out nonperturbative features of quantum entanglement from the geometrical point
of view. For a critical system described by a conformal field theory (CFT), intriguingly, it
was shown that a minimal surface extending to a holographic dual geometry can reproduce
the same as the result obtained in a CFT [6, 7, 20–31]. In this work, we consider a CFT
deformed by a relevant operator and investigate macroscopic and microscopic quantum
correlations in this deformed theory.

According to the AdS/CFT correspondence, the radial coordinate of an AdS space can
be regarded as the energy scale of a dual quantum field theory (QFT) [2–4, 32]. Intriguingly,
it was shown that the Hamilton-Jacobi equation of the gravity theory can match to the
renormalization group (RG) flow equation of the dual QFT. In this case, since the RG
flow is parameterized by the energy scale, it corresponds to the momentum space RG flow
usually used in a QFT. On the other hand, many peoples recently have paid attention
to the quantum entanglement entropy for understanding various quantum aspects related
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to quantum information. Based on the AdS/CFT correspondence, Ryu and Takayanagi
proposed a new conjecture that the entanglement entropy of a QFT can be evaluated by
calculating the area of the minimal surface extending to the dual geometry [6]. In this
procedure, the subsystem size is reinterpreted as the inverse of the energy scale, which is
similar to the real space RG flow usually used in the condensed matter theory [9, 22, 33–41].
In the holographic setup, therefore, we have two different descriptions for the RG flow, the
momentum [32, 42–45] and real space RG flows [30, 31, 46–48]. They may be associated
with each other by the Fourier transformation.

In ref. [49], the authors showed that, when a CFT is deformed by a relevant operator,
the entanglement entropy can have nontrivial corrections associated with the subsystem
size. From the real space RG flow viewpoint, this finite-size effect is crucially related to
the effect of the RG flow. In general, the RG flow depends on what kind of deformation
changes a UV CFT. In this work, we consider two different types of deformation like
excitation and condensation. On the dual gravity side, the excitation is associated with
the black hole geometry, whereas the condensation is described by the bulk matter fields.
These two different deformations may give rise to a different effect on the entanglement
entropy. The reason is that the excitation usually increases the degrees of freedom, while the
condensation reduces the degrees of freedom of the underlying theory. Due to this reason,
the entanglement entropy with the excitation or condensation increases or decreases along
the RG flow in the UV region, respectively. We clearly show this feature by calculating
holographically the entanglement entropy of the deformed theory.

In general, n-point correlation functions of local operators play an important role
in understanding physics. In the QFT, the two-point function represents the quantum
correlation between two local operators defined at points of the background spacetime.
To distinguish this two-point function from the entanglement entropy, we call it a mi-
croscopic quantum correlation. Then, the entanglement entropy can be regarded as the
macroscopic correlation because it describes the quantum correlation between two sub-
regions which usually contain many operators. Therefore, the macroscopic entanglement
entropy may be associated with the sum of all microscopic correlation functions. Accord-
ing to the AdS/CFT conjecture, a similar geometric object can describe these two different
macroscopic and microscopic quantum correlations. More precisely, if we concentrate on a
two-dimensional QFT, the entanglement entropy and the two-point function are described
by the same one-dimensional geodesic curve. Nevertheless, the geodesic curve has slightly
different meanings. For a microscopic correlation function, two local operators are at-
tached to the ends of the geodesic curve [50]. On the other hand, the boundary of the
geodesic curve in the macroscopic entanglement entropy realizes the boundary of a subsys-
tem called the entangling surface. In this case, the finite size of the subsystem corresponds
to the inverse of the energy scale observing the system. As a result, the entanglement
entropy relying on the subsystem size describes the RG flow effect of the system, which
the author of ref. [49] called the finite size effect. We will show by explicit holographic
calculation how the macroscopic and microscopic correlations are related to each other for
a two-dimensional QFT. In this case, we crucially exploit the conjecture that explains
how the two-point function is realized by the geodesic curve [50]. To check the validity
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of this conjecture, we further investigate the two-point function of two local operators by
using the holographic renormalization technique [42–45, 51] which leads to the same as the
qualitative feature expected in the conjecture.

The rest of this paper is organized as follows: in section 2, we review the basic setup
for computing both the finite-size effect of the entanglement entropy and the associating
correlation function in the deformed backgrounds. In section 3, applying the RT formula-
tion to several deformed backgrounds, we survey quantum corrections of the entanglement
entropy due to the finite size effect and also compute two-point functions, which can be
constructed by exponentiating the bulk geodesics anchored at the boundary entangling
points, in both a UV and an IR limits. In section 4, we study the two point-functions by
using the holographic renormalization method and compare the asymptotic behaviors of
the correlation functions with the results obtained in section 3. In section 5, we consider
the theory with mixed deformations containing excitation and condensation and survey
the entanglement entropy and two-point function. Finally, we close this work with some
concluding remarks in section 6.

2 Finite size corrections

Recently, a variety of strongly interacting conformal field theories (CFT) has been widely
studied by using the AdS/CFT correspondence. When the conformal symmetry defined
at a UV fixed point breaks down due to deformations, the UV CFT usually evolves to
a nontrivial effective field theory as the observation energy scale becomes lower. To un-
derstand this procedure clearly, it would be important to figure out the non-perturbative
renormalization group flow. Despite the importance of the non-perturbative feature of the
RG flow, unfortunately, we have no well-established mathematical and physical method.
In this situation, the AdS/CFT correspondence and its generalization may be helpful to
investigate the underlying structure of the non-perturbative RG flow. In this work, we will
discuss how microscopic and macroscopic correlations of quantum systems change along
the RG flow by performing the holographic entanglement entropy calculation [49, 52].

Before studying the RG flow of quantum correlations, it is worth noting that the RG
flow of the entanglement entropy is different from the RG flow studied in the holographic
renormalization procedure. From the dual field theory viewpoint [6, 7], more precisely, the
entanglement entropy RG flow represents the real space RG flow, while the holographic
renormalization studied in ref. [32] corresponds to the momentum space RG flow. In the
holoraphic renormalization, the AdS boundary can move and its position is identified with
the energy scale of the dual field theory. On the other hand, the energy scale of the dual
field theory in the entanglement entropy RG flow is given by the inverse of the subsystem
size. Therefore, the RG effect in the real space RG flow is expressed as the finite-size effect
with the effect.

Now, let us assume a two-dimensional CFT at a UV fixed point. When the UV CFT is
deformed by a certain dimensionful operator, the entanglement entropy is modified. Divid-
ing a system into a subsystem with a size l and its complement, the resulting entanglement
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entropy in the UV region may have the following general expansion form

SE = c

3 log l
ε

+ constant + c

3 SF , (2.1)

where ε and c denote an appropriate UV cutoff and a central charge of the UV CFT,
respectively. Above the first two terms are the entanglement entropy of the UV CFT,
whereas the last term SF was called the finite size effect [49] which is associated with the
deformation breaking the conformal symmetry. In the real space RG flow described by the
entanglement entropy the inverse of the subsystem size plays the role of the energy scale
observing the system, so that we can reinterpret l as the inverse of the RG scale. This
RG flow effect was called the finite size effect in the original paper [49]. From now on, we
also use the same terminology ‘finite size effect’ representing the RG flow effect. Since the
finite size effect disappears for an undeformed critical system or at a UV fixed point with
l → 0, the above entanglement entropy automatically reduces to the well-known result of
a two-dimensional CFT

SE = c

3 log l
ε

+ constant. (2.2)

When the theory deforms near the UV fixed point, the finite size effect is given by a
function of a dimensionless variable. Introducing an appropriate correlation length as a
dimensionful parameter, the finite size effect can be is given by a function of l and ξ like
SF (l/ξ). In this case, the correlation length characterizes the effect of the deformation.

Since the correlation length usually depends on the microscopic details at a given en-
ergy scale, it is worth noting that the correlation length can varies as the RG scale changes.
Then, what is the possible form of the finite size effect? Although it is interesting and im-
portant to answer this question, it is not easy because it requires a full non-perturbative
analysis. However, the AdS/CFT correspondence can give us a chance to understand the
form of the non-pertubative finite size effect in several specific regions. For example, the
UV region deviated slightly from the UV fixed point can be characterized by l � ξ in the
real space RG flow. In this case, a dimension counting with a small expansion parameter
l/ξ enables us to guess the following general expansion form

SF =
∑
j≥1

sj

(
l

ξ

)2jα
, (2.3)

where sj and α are two constants. Here the factor 2 in the expansion power appears because
we assume that the underlying theory is invariant under l→ −l. Although this expansion
looks universal in the UV region, determining the exact values of sj and α remains an
important issue to understand the RG flow effect of the deformation. Intriguingly, the
similar structure may occur in other physical quantity like a two-point function because its
finite size effect is also characterized by the same correlation length. In the next sections,
we will clarify that α is related to the conformal dimension of a deformation operator.

In an IR region, on the other hand, the correlation length usually has a different value
from the UV one because the strength of interactions can vary along the RG flow. For a
two-dimensional CFT deformed by an effective mass m, the correlation length in the IR
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regime is given by as ξ = 1/m. In this case, the IR region is specified by ξ/l � 1 and the
IR finite size effect may be expressed alternatively by the following expansion form

SF = log ξ
l

+
∑
j≥1

s∞j

(
ξ

l

)2jβ
, (2.4)

where s∞j and β are another constants defined in the IR region. In the ultimate IR limit
with ξ/l→ 0, the entanglement entropy results in

SE = c

3 log ξ
ε
, (2.5)

which is the well-known entanglement entropy of a noncritical QFT in the IR limit. In
the holographic setup described in a three-dimensional dual AdS space, the above known
entanglement entropies in (2.2) and (2.5) were reproduced [6, 7]. However, if we consider
a different deformation, the finite size effect may lead to a totally different form in the IR
region due to the nontrivial RG flow.

2.1 Finite size effect on a microscopic two-point function

As mentioned before, the RG effect of a deformed theory can be described by a finite
size effect. This is also true for a two-point correlation function because the deformation
is characterized by the same correlation length. In other words, a two-point correlation
function of a local operator can be written as the following general form

〈O(xµ1 )O(xµ2 )〉 ∼ e−F(|xµ1−xµ2 |/ξ)

|xµ1 − x
µ
2 |2∆O

, (2.6)

where ∆O is a conformal dimension of the operator O and xµi = {ti, xi} indicates the posi-
tion of a local operator. In general, F is a highly nontrivial function relying on the proper
distance of two operators, |xµ1 − xµ2 | =

√
−(t1 − t2)2 + (x1 − x2)2 in a two-dimensional

Minkowskian space. In the CFT case, the correlation length ξ diverges due to the confor-
mal symmetry and the function F vanishes. Finally, the above general two-point function
reduces to the well-known two-point function of a CFT. When a CFT deforms, the de-
formation leads to a nontrivial function F with the correlation length relying on the RG
scale. This fact implies that the function F crucially relies on the RG flow caused by the
deformation. In the UV region, there exists a small parameter, |xµ1−x

µ
2 |/ξ � 1. Expanding

the general two-point function in terms of this small parameter, the resulting two-point
function is perturbatively given by

〈O(xµ1 )O(xµ2 )〉 ∼ 1
|xµ1 − x

µ
2 |2∆O

1 +
∞∑
i=1

ci

(
|xµ1 − x

µ
2 |

ξ

)2iα
 , (2.7)

where α is the constant used in the UV expansion of the entanglement entropy.
If we concentrate on the equal-time correlation function satisfying t1 − t2 = 0, the

resulting two-point function is rewritten as

〈O(x1)O(x2)〉 ∼ 1
|x1 − x2|2∆O

[
1 +

∞∑
i=1

ci

( |x1 − x2|
ξ

)2iα ]
, (2.8)
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where |x1 − x2| indicates a distance in the x-direction. Intriguingly, replacing |x1 − x2|
with l in the previous section, the finite size effect of the two-point function gives rise to
the same expansion as that of the entanglement entropy up to an overall factor. This is
because the expansion form depends mainly on the deformation. Therefore, the same α
corresponding to the conformal dimension of the deformation appears in both expansions
of the entanglement entropy and two-point function. This fact becomes more manifest in
the dual gravity model.

In the holographic study, a physical quantity of the field theory can be realized by a
geometric object on the dual gravity side [50]. The entanglement entropy studied in the
previous section is described by a minimal surface area extending to the dual geometry.
Similarly, it was proposed that a two-point function at a given time can be represented as
a geodesic curve connecting two local operators via

〈O(x1)O(x2)〉 ∼ e−mL(|x1−x2|), (2.9)

where L indicates a geodesic length of a particle with a mass m. For a three-dimensional
gravity theory, interestingly, a minimal surface describing the entanglement entropy is also
given by a geodesic curve connecting two entangling points. As a result, the entanglement
entropy and two-point function are described by the same curve in the holographic setup.
This fact shows that at least for a two-dimensional field theory, the macroscopic entangle-
ment entropy is closely associated with the microscopic two-point function. Hereafter, we
discuss the validity of the proposed formula in (2.9) and investigate the relation between
the entanglement entropy and two-point function with a variety of deformation.

Before closing this section, we discuss how the proposed formula (2.9) reproduces the
known two-point function of a two-dimensional CFT. To describe a local scalar opera-
tor holographically, we consider a bulk massive scalar field living in a three-dimensional
AdS space

ds2 = R2

z2

(
−dt2 + dx2 + dz2

)
, (2.10)

where R indicates an AdS radius. In this setup, the fixed background geometry implies
that we take into account a probe limit where the gravitational backreaction of the bulk
scalar field is ignored. According to the AdS/CFT correspondence, the bulk massive scalar
field maps to a scalar operator of the dual QFT. More precisely, the bulk massive scalar
field is governed by the following action

S =
∫
d3x
√
−g

(
−1

2∂Mφ∂
Mφ− 1

2M
2φ2

)
. (2.11)

When the mass of the bulk scalar field satisfies

M2 = −∆O (2−∆O)
R2 < 0, (2.12)

it maps to the scalar operator O(x) with a conformal dimension ∆O on the dual field
theory side. Using this relation together with the previous two-point function in (2.9), it
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is possible to rederive the two-point function of a scalar operator holographically. In this
procedure, if we relate the bulk field mass M to the particle mass m like

m =
√
− ∆O

(2−∆O)M
2, (2.13)

the expected two-point function of CFT is reproduced from (2.9). To check this, we
calculate the geodesic length when two local operators are located at different positions
at equal time. In this case, the geodesic curve on the dual gravity side is given by a
curve connecting two local operators. This gravity configuration leads to a equal-time two
point function from the dual field theory viewpoint. In this case, the geodesic length is
determined by

L(|x1 − x2|) =
∫ x2

x1
dx
R

z

√
1 + z′2. (2.14)

Note that, if we replace x1 and x2 with −l/2 and l/2, the geodesic length calculation is the
same as the previous entanglement entropy calculation. Finally, the resulting two-point
function reads

〈O(x1)O(x2)〉 ∼ 1
|x1 − x2|2∆O

, (2.15)

which is the expected form in CFT.

3 Finite size effect on two-point functions

In the previous section, we discussed the perturbative expansions of the entanglement
entropy and two-point correlation function. For a two-dimensional deformed field theory,
we claimed that these two quantities at least in the UV region lead to a similar expansion
with the same expansion power α. To clarify the physical meaning of α, in this section,
we will consider a two-dimensional field theory and three-dimensional holographic duals
deformed by a relevant operator. Then, we will show that the expansion power α in the
UV region is closely related to the conformal dimension of the deformation operator.

To specify the finite size effect in the UV region, let us first discuss a finite effect of an
Euclidean two-dimensional CFT deformed by a mass

S = 1
2

∫
d2x

(
∂µφ∂

µφ−m2
effφ

2
)
, (3.1)

where meff indicates an effective mass containing all quantum corrections. For the massless
case with meff = 0, the conformal symmetry is restored. For the mass deformed theory the
conformal symmetry is slightly broken in the UV region, so that the effective mass meff
is small. In this case, the conformal dimensions of φ and meff are given by ∆φ = 0 and
∆m = 1 respectively.

Now, let us consider a two-point function of the filed φ. The two-point function of the
mass deformed theory must satisfy the following equation of motion[

−∂2 −m2
eff

]
〈φ(xµ1 )φ(xµ2 )〉 = δ(xµ1 − x

µ
2 ) (3.2)
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Using the Fourier transformation, the resulting two-point function is given by

〈φ(xµ1 )φ(xµ2 )〉 ∼
∫
d2p

e−ipµ(xµ1−x
µ
2 )

p2 −m2
eff

, (3.3)

where p2 = pµpµ for the Euclidean space. In the UV region with the small effective mass,
the two-point function is perturbatively given by

〈φ(xµ1 )φ(xµ2 )〉 ∼ 1 +
∞∑
i=1

Ai (meff |xµ1 − x
µ
2 |)

2i
, (3.4)

where Ai are nontrivial constants. This result shows that, as we expected, the two-point
function reduces to that of CFT in the massless limit. Moreover, the expansion power is
given by the conformal dimension of the mass deformation, ∆m = 1, as claimed before.
The correlation length of this mass deformed theory is given by the inverse of the effective
mass, ξ ∼ 1/meff . The resulting two-point function is coincident with the previous result
in (2.7) with α = 1. This is also true for holographic models. In the following sections,
we will further investigate the finite size of two holographic model deformed by different
deformation operators.

3.1 Finite size effect of excitation

Now, let us take into account another deformation caused by excitation of a massless boson.
On the dual gravity, such excitation can be described by a AdS black hole. According to the
holographic renormalization, for example, the dual QFT of a five-dimensional AdS black
hole has a nonvanishing stress tensor which is traceless and proportional to N2

c where Nc

is the rank of the gauge group. Here the traceless indicates that the excitation is massless,
whereas the N2

c dependence of the energy means that the excitation corresponds to an
adjoint field like gauge bosons. As a consequence, the AdS black hole geometry is dual to
the excitation of the massless adjoint fields.

For a three-dimensional case, an AdS black hole is described by

ds2 = R2

z2

(
−f(z)dt2 + dx2 + 1

f(z)dz
2
)
, (3.5)

with a blackening factor

f(z) = 1− z2

z2
h

, (3.6)

where zh denotes a black hole horizon. The black hole geometry usually satisfies the
thermodynamics law, which in the holographic setup is reinterpreted as thermodynamics
of the dual field theory. From the black hole geometry, the Hawking temperature and
Bekenstein-Hawking entropy read

TH = 1
2πzh

and SBH = R

4G
L

zh
, (3.7)
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where L is an appropriately regularized spatial volume of the boundary space-time. Then,
the thermodynamics law yields the following internal energy and pressure

E = L

16πG
R

z2
h

,

P = 1
16πG

R

z2
h

. (3.8)

These two quantities show that the excitation in the dual QFT has an equation of state
parameter w = 1. For the two-dimensional CFT, this corresponds to the equation of state
parameter of a massless boson. For a general d-dimension, the equation of state parameter
of a massless boson is given by

P = 1
d− 1ρ, (3.9)

where ρ indicates the energy density. In the UV region with l� 1/TH , the internal energy
is regarded as the excitation energy of a massless boson.

Now we calculate the entanglement entropy on this background. To apply the holo-
graphic technique, we first consider a space-like hypersurface at a given time on which the
minimal surface is define. At a given time, the induced metric on the space-like hypersur-
face is given by

ds2 = R2

z2

(
dx2 + 1

f(z)dz
2
)
. (3.10)

Assuming that two end points of the entangling region are located at −l/2 and l/2, the
entanglement entropy is governed by the area of the minimal surface [6, 7]

SE = 1
4G

∫ l/2

−l/2
dx
R

z

√
1 + z′2

f
, (3.11)

where the prime means a derivative with respect to x. This entanglement entropy does not
depend on x explicitly, so that there exists a conserved quantity

H = − R

4G

√
f

z
√
f + z′2

. (3.12)

In this case, the ends of the minimal surface are attached to the entangling surface defined
at the boundary. To do so, the minimal surface extending to the z-direction must have a
turning point which we denote as z0. Then, the minimal surface extends to the range of
0 ≤ z ≤ z0 where z = 0 corresponds to the boundary. In this case, the minimal surface
should have a smooth configuration even at the turning point. The smoothness of the
minimal surface requires z′ = 0 at the turning point. At the turning point, the conserved
quantity is rewritten as

H = − R

4G
1
z0
. (3.13)

Comparing the above two conserved quantities, we finally obtain the relation between
x and z

dz

dx
=
√
f
√
z2

0 − z2

z
. (3.14)

– 9 –



J
H
E
P
0
2
(
2
0
2
1
)
1
3
5

Using this relation, we can reexpress the subsystem size and the entanglement entropy in
terms of the turning point

l =
∫ z0

0
dz

2z
√
f
√
z2

0 − z2
, (3.15)

SE = Rz0
2G

∫ z0

ε
dz

1

z
√
f
√
z2

0 − z2
, (3.16)

where ε is an appropriate UV cutoff which is introduced to regularize the UV divergence.
Performing these integrals perturbatively in the UV region satisfying z0 � zh and rewriting
the entanglement entropy in terms of the subsystem size l, the entanglement entropy in
the UV region results in

SE = R

2G

(
log l

ε
+ π2

6
l2

ξ2 + · · ·
)
, (3.17)

where the correlation length is given by ξ = 2πzh = 1/TH .
In a three-dimensional gravity theory, since entanglement entropy and two-point func-

tion are described by the same geodesic curve on the dual gravity side, the entanglement
entropy is closely related to a two-point function. Therefore, one can easily read a two-point
function by applying the previously proposed formula in (2.9). To do so, we first identify
the subsystem size l with the distance of two local operators |x1 − x2|. In this procedure,
it must be noted that the entanglement entropy is defined on the space-like surface at a
given time. In other words, two ends of the entangling region are measured at the same
time, t1 = t2. This fact implies that |x1 − x2| identified with l must be the distance of
two local operators measured at the same time. As a consequence, the resulting two-point
function derived from (2.9) corresponds to the equal-time two-point function. Representing
the geodesic length (2.9) in terms of the entanglement entropy

L(|x1 − x2|) = 4GSE(|x1 − x2|), (3.18)

the equal-time two-point function becomes

〈O(x1)O(x2)〉 ∼ e−4G∆OSE(|x1−x2|)/R

= 1
|x1 − x2|2∆O

(
1− π2 ∆O

3
|x1 − x2|2

ξ2 + · · ·
)
, (3.19)

where ∆O indicates the conformal dimension of a local scalar operator O(x). Noting that
the excitation energy has a conformal dimension 1, the obtained two-point function is
again consistent with the expected UV expansion form in (2.8). From the obtained results,
we see that the entanglement entropy increases as the correlation length decreases, while
the two-point function decreases. This is because the macroscopic quantum correlation
of excitation increases as the entanglement entropy increases. The strong correlation of
excitation screens the microscopic quantum correlation between two local operators, so
that the two-point function of local operators decreases as the entanglement entropy of
excitation increases.
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In the IR regime (l� zh), the turning point approaches the horzion, z0 → zh. In this
IR limit, the leading contribution to the entanglement entropy comes from the thermal
entropy contained in the subsystem [47, 53]. In the present setup, the IR entanglement
entropy becomes

SE = R

4G

(
l

zh
+ log ξ

2πε + · · ·
)
. (3.20)

The first term is the leading contribution in the IR limit with l → ∞ and corresponds
to the thermal entropy. On the other hand, the second term indicates the first quantum
correction which is very small comparing to the first term. Applying (2.8), this result leads
to the following IR two-point function

〈O(x1)O(x2)〉 ∼ 1
ξ2∆0

e−2π∆O|x1−x2|/ξ. (3.21)

This result shows that the IR the two-point function is suppressed exponentially not by
power-law discussed in (2.4). Moreover, as the temperature becomes high and the conformal
dimension of a local operator is large, the two-point correlation is suppressed more rapidly
as the distance of two local operators increases.

3.2 Finite size effect of condensation

Now, let us investigate how the finite size effect of the condensation affects on the micro-
scopic and macroscopic correlations. For more general situations, we take into account
a two-dimensional CFT deformed by a relevant operator with a conformal dimension of
the range 1 ≤ ∆d < 2. On the dual gravity side, the dual geometry is described by the
following action

S = 1
16πG

∫
d3x
√
−g

[
(R− 2Λ)− 1

2∂Mφ∂
Mφ− 1

2M
2φ2

]
, (3.22)

where Λ denotes a cosmological constant, Λ = −1/R2 with an AdS radius R and M is a
bulk mass of the scalar field. In general, the gravitational backreaction of the scalar field
deforms the AdS space and the deformed geometry is determined by

RMN −
1
2gMNR+ gMNΛ = TMN ,

1√
−g

∂M
(√
−gGMN∂Nφ

)
−M2φ = 0, (3.23)

where the energy-momentum tensor of the scalar field is given by

TMN = 1
2∂Mφ∂Nφ−

1
4gMN

(
∂Pφ∂

Pφ+M2φ2
)
. (3.24)

In this case, the bulk mass M is associated with the conformal dimension of the dual
scalar operator

M2 = −∆d(2−∆d)
R2 . (3.25)
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When we take into account deformation by a relevant scalar operator. Near the bound-
ary of an asymptotic AdS space, the scalar field has usually the following perturbative
profile

φ(z) = Jz2−∆d(1 + · · · ) +Dz∆d(1 + · · · ) , (3.26)

where the ellipsis indicate higher order corrections. On the dual CFT, J and D ≡ 〈O〉 are
identified with the source and the vev of the deformation operator. Note that for ∆d = 1
the source term can have an additional logarithmic term due to the degeneracy of two
independent solutions. From now on, we focus on the case of J = 0 to study the effect
of the deformation operator. Once we set J = 0, we don’t worry about the additional
logarithmic term for ∆d = 1 because the degeneracy disappears. Note that the mass of the
dual bulk scalar field must have −1/R2 ≤M2 ≤ 0 for a relevant deformation.

Assuming that the bulk scalar field relies only on the z-coordinate, the most general
ansatz compatible with the isometry is given by

ds2 = R2

z2

(
g(z)ηµνdxµdxν + dz2

)
, (3.27)

where ηµν denotes a two-dimensional Minkowskian metric. Recalling that the equations of
motion are invariant under z → −z, the solutions must have the following expansion form
to satisfy Einstein equations and scalar field equation at the same time

φ(z) = z∆d

z∆d
d

1 +
∞∑
j=1

aj

(
z

zd

)2j∆d

 ,
g(z) = 1 + z2∆d

z2∆d
d

c0 +
∞∑
j=1

cj

(
z

zd

)2j∆d

 , (3.28)

where we setD = 1/z∆d
d for convenience. After substituting these expansions into the equa-

tions of motion, solving them perturbatively gives rise to the following perturbative solution

φ(z) = z∆d

z∆d
d

(
1 + ∆d

8(2∆d − 1)
z2∆d

z2∆d
d

+ · · ·
)
,

g(z) = 1− z2∆d

z2∆d
d

(
1
4 + 2−∆d

64(2∆d − 1)
z2∆d

z2∆d
d

+ · · ·
)
. (3.29)

On this background geometry, the entanglement entropy is given by

SE = 1
4G

∫ l/2

−l/2
dx
R

z

√
g(z) + z′2 (3.30)

Repeating the similar calculation performed in section 3.1, the subsystem size is determined
by the turning point z0 and the vev of the operator z)

l = 2z0

1 +
Γ
(
∆d + 3

2

)
−
√
π∆dΓ(∆d + 1)

8 Γ
(
∆d + 3

2

) z2∆d
0

z2∆d
d

+O
(
z4∆d

0

z4∆d
d

) . (3.31)
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Performing the integral of the entanglement entropy after substituting the obtained solu-
tion, the resulting entanglement entropy in the UV region expands into

SE = R

2G

log l
ε
−

√
π Γ(∆d + 1)

22∆d+4 Γ
(
∆d + 3

2

) l2∆d

z2∆d
d

+O
(
l4∆d

z4∆d
d

) . (3.32)

This result shows that the UV expansion of the entanglement entropy follows the expected
form in (2.3). In this case, the correlation length is given by ξ ∼ zd. Following (2.9)
and (3.18), the equal-time two-point correlation function becomes

〈O(x1)O(x2)〉 ∼ e−4G∆OSE/R

= 1
|x1 − x2|2∆O

1 + 2
√
π∆d Γ(∆d + 1)

22∆d+4 Γ
(
∆d + 3

2

) |x1 − x2|2∆d

ξ2∆d
+ · · ·

 , (3.33)

where ∆O and ∆d indicate the conformal dimensions of the local operator and deformation
operators respectively. Unlike the previous excitation case, the sign of the second term of
the two-point function is positive. Thus, the vev of the deformation operator decreases
the entanglement entropy but increases the microscopic quantum correlation between two
local operators.

The deformations, excitation and condensation, specify the property of the matter
field contained in the dual QFT. Since the deformation is independent of the boundary
coordinate, we can consider such a matter field as a uniformly distributed background
matter or medium. In this setup, the entanglement entropy measures the macroscopic
quantum correlation between two subregions in the medium. On the other hand, the
microscopic two-point function represents the correlation between two local fluctuations (or
operators) in the background medium. The above result indicates that, as the background
medium is strongly correlated, the two-point function of two fluctuations becomes weak.
This is reinterpreted as the screening effect of the background medium. As a consequence,
the excitation in the medium increases the screening effect, while the condensation weakens
the screening effect.

4 Holographic renormalization

In the previous section, we considered two-dimensional field theory deformed by excitation
or condensation and calculated the equal-time two-point functions by using the geodesic
length extending to the dual geometry. In this process, the formula in (2.9) was crucial
even though there is no exact proof. In this section, we discuss two-point functions of
the same systems by using a different way called the holographic renormalization. This
calculation may support the formula (2.9) and the UV expansion of the two-point function
in (2.8).

4.1 Holographic two-point function deformed by excitation

We first study the excitation effect on the two-point function by using the holographic
renormalization technique [54–57]. To do so, we consider a scalar field fluctuation living
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in a three-dimensional AdS black hole which, as mentioned before, describes excitation of
massless bosons on the dual field theory side. Assuming that the scalar field fluctuation
has the mass satisfying (2.12), the Fourier mode of the scalar field

φ(z, xµ) =
∫
d2k φ(z, k)eikµxµ , (4.1)

is governed by

φ′′(z, kµ)− 1
z
φ′(z, kµ) +

(∆O(2−∆O)
z2 − k2 + ∆O(2−∆O)

z2
h

)
φ(z, kµ) = 0, (4.2)

where k2 = kµkµ and we ignore higher-order terms. The solution of this equation is given
by the following analytic functions

φ(z,kµ) = c1φ1(z,kµ)+c2φ2(z,kµ)

= c1 zK∆O−1

(
z

√
k2− (2−∆O)∆O

z2
h

)
+c2 z I∆O−1

(
z

√
k2− (2−∆O)∆O

z2
h

)
(4.3)

where Kν(·) and Iν(·) are the modified Bessel functions of the second and first kind, re-
spectively. In this case, the bulk-to bulk propagator between scalar fields located at z and
z′ is defined by

G(z, z′; kµ) = θ(z − z′)φ1(z, kµ)φ2(z′, kµ) + θ(z′ − z)φ1(z′, kµ)φ2(z, kµ)√
|γ|(φ1(z′, kµ)φ′2(z′, kµ)− φ′1(z′, kµ)φ2(z′, kµ))

, (4.4)

where |γ| = gzz|g| and θ indicates a step function.
After taking the z′ → 0 limit, the boundary-to-bulk propagator G(z, 0;x1, x2) in the

Euclidean space is given by the Fourier transformation of G(z, 0; kµ)

G(z, 0;xµ1 , x
µ
2 ) = 1

2π

∫ ∞
0

dk k J0(k|xµ1 − x
µ
2 |)G(z, 0; kµ), (4.5)

with G(z, 0; kµ) with an appropriate normalization

G(z, 0; k) = (k2z2
h − (2−∆O)∆O)(∆O−1/2)

2∆O−1Γ(∆O)z∆O−1
h

× φ1(z, k), (4.6)

where k = |kµ| in the Euclidean space and J0(·) indicates the Bessel function of the first
kind. After performing the integral (4.5) and taking the z → 0 limit, the inverse Wick
rotation finally gives rise to a Minkowskian two-point function of the dual scalar operator
(see appendix for more details)

〈O(xµ1 )O(xµ2 )〉 ∼ 1
|xµ1 − x

µ
2 |2∆O

(
1− π2(2−∆O)∆O

16(∆O − 1)
|xµ1 − x

µ
2 |2

ξ2 + · · ·
)
, (4.7)

where ξ = 2πzh = 1/TH and we assume |xµ1 − x
µ
2 |2/zh � 1 which corresponds to the UV

region. If we further consider an equal time correlation, |xµ1 − x
µ
2 | reduces to |x1 − x2|.

Consequently the resulting equal time two-point function in the UV region has the same
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form as the result in (3.19), although the coefficient of the first correction is slightly different
from the previous result.

Now, we consider another limit satisfying |xµ1 − x
µ
2 |2/zh � 1 which corresponds to the

IR region. When performing the integral (4.5) for |xµ1 −x
µ
2 |2/zh � 1, it finally leads to the

following equal time two-point function

〈O(x1)O(x2)〉 ∼ 1
z2∆O
h

e−
√

(2−∆O)∆O|x1−x2|/zh (1 + · · · ) , (4.8)

where the ellipsis implies higher order corrections. In the IR region, this holographic
renormalization result is also the same form as (3.21) which suppresses exponentially as
the distance of two local operators increases.

4.2 Holographic two-point function deformed by condensation

Now, we repeat the similar calculation in the dual geometry deformed by condensation
of a deformation operator. We first assume that a two-dimensional UV CFT deforms
by operator’s condensation with a conformal dimension ∆d. The dual geometry of this
deformed theory is given by (3.27). On this condensation geometry, the equation of motion
for a scalar field fluctuation is governed by

φ′′(z, kµ)− 1
z
φ′(z, kµ) +

(
∆O(2−∆O)

z2 − k2 + ∆O(2−∆O)z2∆d−2

z2∆d
d

)
φ(z, kµ) = 0 , (4.9)

where we again assume that the mass of φ is given by (3.25) and the vev of the deforma-
tion operator is replaced by D = 1/z∆d

d . By using the previous bulk-to-bulk propagator
formula (4.4), the equal time two-point function in the UV region finally results in

〈O(x1)O(x2)〉 ∼ 1
|x1 − x2|2∆O

(
1 + C∆O

|x1 − x2|2∆d

ξ2∆d
+ · · ·

)
, (4.10)

where the correlation length is given by ξ = zd. In the case of ∆O = 3/2 and ∆d = 3/2,
for example, the coefficient of the first correction in (4.10) becomes C∆O

≈ 0.0024. This
result supports that the two-point function (3.33) derived from the geodesic length gives
rise to the consistent result, as we expected.

5 Competition of two different deformations

Now, we consider a two-dimensional field theory containing excitation and condensation
discussed before. A most general metric ansatz of this system is given by

ds2 = R2

z2

(
−f̃(z) g(z) dt2 + g(z) dx2 + 1

f̃(z)
dz2

)
. (5.1)

To describe excitation, we need a black hole solution which usually breaks the boundary
Lorentz symmetry. In the above metric ansatz, therefore, gtt and gxx have different metric
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factor. Ignoring the source term for condensation as done in the previous section, the
perturbative expansion forms of bulk fields in the asymptotic region are given by

φ(z) = z∆d

z∆d
d

1 +
∞∑
j=1

a0,j

(
z

zd

)2j∆d

+
∞∑
i=1

∞∑
j=1

ai,j

(
z

zh

)2i ( z
zd

)2j∆d

 ,
f̃(z) = 1 + z2

z2
h

b0,0 +
∞∑
i=1

∞∑
j=1

bi,j

(
z

zh

)2i ( z
zd

)2j∆d

 ,
g(z) = 1 + z2∆d

z2∆d
d

c0,0 +
∞∑
j=1

c0,j

(
z

zd

)2j∆d

+
∞∑
i=1

∞∑
j=1

ci,j

(
z

zh

)2i ( z
zd

)2j∆d

 , (5.2)

where condensation is again represented by D = 1/z∆d
d with the conformal dimension ∆d.

Note that above the invariance under z → −z, which changes only the overall sign of the
action (3.22) and does not affect the equation of motion, allows the series expansion only
with even powers. Comparing this expansion with the previous results, the coefficients of
the leading correction are given by b0,0 = −1 and c0,0 = −1/4.

Repeating the entanglement entropy calculation, we finally obtain the entanglement
entropy in the UV regime with l� zh, zd reads

SE = R

2G

log l
ε

+ 1
24

l2

z2
h

−
√
π Γ(∆d + 1)

24+2∆d Γ
(
∆d + 3

2

) l2∆d

z2∆d
d

+ · · ·

 . (5.3)

For ∆d = 1, excitation and condensation have the same conformal dimension and the
resulting entanglement entropy becomes

SE = R

2G

(
log l

ε
+ η

24
l2

ξ2
eff

+ · · ·
)
, (5.4)

with an effective correlation length

ξeff =
√

2 zhzd√∣∣2z2
d − z2

h

∣∣ , (5.5)

where η ≡ sign(2z2
d − z2

h). Due to the existence of η, the resulting entanglement entropy
can show two different behaviors relying on the parameter range. For 2z2

d > z2
h, excitation

becomes dominant and increases the entanglement entropy. For 2z2
d < z2

h, oppositely,
condensation is dominant and reduces the entanglement entropy.

For general ∆d satisfying 1 < ∆d < 2, the first correction changes its sign at the critical
subsystem size lc given by

l2(∆d−1)
c =

22∆d+1 Γ
(
∆d + 3

2

)
3
√
π Γ(∆d + 1)

z2∆d
d

z2
h

. (5.6)

This result implies that for l < lc excitation is dominant and that the entanglement entropy
of the deformed theory is larger than that of the undeformed CFT. For l > lc, on the other
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hand, condensation becomes dominant and reduces the entanglement entropy. In the field
theory deformed by excitation and condensation, the equal time two-point function of a
local operator with a conformal dimension ∆d is holographically given by

〈O(x1)O(x2)〉

∼ 1
|x1 − x2|2∆O

1− ∆O

12
|x1 − x2|2

z2
h

+
√
π∆O Γ(∆d + 1)

23+2∆d Γ
(
∆d + 3

2

) |x1 − x2|2∆d

z2∆d
d

+ · · ·

 . (5.7)

Excitation and condensation affect the two-point function in the opposite way to the en-
tanglement entropy case. This is because, if excitation and condensation increases the
entanglement entropy of the background theory, the two-point function of two local oper-
ators becomes weaker in the background having strong macroscopic correlation.

6 Discussion

In this paper, we holographically studied the finite-size effects on the macroscopic entan-
glement entropy and the microscopic two-point functions. In this case, the finite-size effect
is associated with the RG flow effect because the inverse of the finite size corresponds to
the energy scale of the real space RG flow. As a setup, we considered two-dimensional
field theories deformed by excitation and condensation, which have dual gravitational de-
scriptions, BTZ black hole and asymptotic AdS geometry deformed by the backreaction
of the bulk scalar field, respectively. The macroscopic and microscopic correlations of the
deformed two-dimensional QFT can be described by a geometrical object extending to the
above three-dimensional dual geometries.

A relevant deformation, in general, triggers a nontrivial RG flow. At the critical UV
and IR fixed points, in particular, the system has an infinite correlation length because of
restoring of the scale symmetry. In the intermediate energy regime, however, the relevant
deformation breaks the scale symmetry and makes the correlation length finite. Therefore,
it would be important to clarify the relation between the correlation length and the defor-
mations. We explicitly showed how the correlation length depends on the deformations in
the UV and IR regions by exploiting the holographic propositions. First, we investigated
the deformation effect on the entanglement entropy. The entanglement entropy measures
the quantum correlation between two macroscopic subsystems so that we can regard the
entanglement entropy as the macroscopic quantum correlation. We showed that the ex-
citation (condensation) increases (decreases) the entanglement entropy in the UV region.
Recalling that the entanglement entropy is associated with the c-function, which measures
the degrees of freedom of the system, the change of the entanglement entropy caused by
the deformations looks natural. The reason is that the excitation (condensation) increases
(decreases) the degrees of freedom of the system.

We also investigated the microscopic two-point function of local operators. To do
so, we introduced two local operators to the deformed QFT. In this case, the deformed
theory is regarded as the background medium containing excitation and condensation.
As a result, the two-point function we considered corresponds to the microscopic quantum
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correlation of two local operators in the medium. For a two-dimensional QFT, intriguingly,
the holographic dual of such a two-point function is again described by the same geometric
curve like the one used in the entanglement entropy calculation. This fact may give a
hint to the relation between the macroscopic and microscopic quantum correlations. The
holographic result of the two-point function shows that, as opposed to the entanglement
entropy case, the excitation (condensation) decreases (increases) the two-point function
of the local operator. This result is understood in the following way. The excitation, as
mentioned before, increases the entanglement entropy of the background medium, which
indicates that the ingredient of the background medium is correlated more strongly to each
other. As the quantum correlation becomes strong, the background medium gives rise to a
strong screening effect and the resulting two-point function of the local operator becomes
weaker. For the condensation case, the entanglement entropy and the two-point function
result in the opposite situation, as expected. When a system has both excitation and
condensation, these two deformations compete with each other to increase or decrease the
entanglement entropy. We also showed that, when the deformation operator is relevant, the
excitation effect is dominant at the higher energy scale. On the contrary, the condensation
effect becomes dominant at the lower energy scale.

When we calculated the two-point function, we used the formula proposed in ref. [50],
which maps the geodesic length in the dual geometry to the two-point function of the
dual field theory. To check the validity of this proposal, we investigated the two-point
function of the dual field theory by applying the holographic renormalization technique.
We checked that the holographic renormalization leads to the same qualitative behavior as
the one obtained by the proposal in ref. [50].

A Holographic two-point function

Here we present details of the derivation of (4.7) in section 4.1. Inserting the normalized
Green function (4.6) into (4.5) and performing the integration, we have

G(z,0;xµ1 ,x
µ
2 ) =− ieiπ∆z∆

2∆+1Γ(∆)

 √
(2−∆)∆

zh

√
z2+|xµ1−x

µ
2 |2

∆

H
(2)
−∆

√(2−∆)∆
√
z2+|xµ1−x

µ
2 |2

zh

 ,
(A.1)

where ∆ = ∆O and H(2)
n indicates the Hankel function of the second kind. Here we used

the following integral formula

∫ ∞
0
dk kν+1Jν (k|xµ1 − x

µ
2 |)Kρ

(
z
√
k2 − α2

)
(k2 − α2)−ρ/2 (A.2)

= π

2 e
−iπ(ρ−ν−1/2) |x

µ
1 − x

µ
2 |ν

zρ


√
z2 + |xµ1 − x

µ
2 |2

α

ρ−ν−1

H
(2)
ρ−ν−1(α

√
z2 + |xµ1 − x

µ
2 |2).
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Next, we want to compute the equal-time correlation function. To do so, it is useful to
rewrite (A.1) in terms of an integral form as

G(z, 0;xµ1 , x
µ
2 ) = z∆ e

iπ∆/2(
√

(2−∆)∆)∆

2∆Γ(∆)|xµ1 − x
µ
2 |∆z∆

h

∫ ∞
∞

dy e
∆y−i

√
(2−∆)∆ |xµ1−x

µ
2 | cosh y

zh , (A.3)

where |xµ1 − x
µ
2 | =

√
(t1 − t2)2 − (x1 − x2)2. When we consider the equal-time correlation,

t1 = t2, this Lorentz invariant interval becomes space-like |xµ1 − x
µ
2 | → −i|x1 − x2|. Then,

we have

G(z, 0;x1, x2) = z∆ eiπ∆/2(
√

(2−∆)∆)∆

2∆Γ(∆)(−i|x1 − x2|)∆z∆
h

∫ ∞
∞

dy e
∆y−

√
(2−∆)∆ |x1−x2| cosh y

zh

= z∆ eiπ∆/2(
√

(2−∆)∆)∆

2∆−1Γ(∆)(−i|x1 − x2|)∆z∆
h

K−∆

(√
(2−∆)∆ |x1 − x2|

zh

)
, (A.4)

where we applied the following relation to the second line

K−σ(α) ≡ 1
2

∫ ∞
∞

dy eσy−α cosh y. (A.5)

Finally, the boundary-to-boundary two-point function is obtained by taking the limit z → 0
together with the normalization factor z−∆

G(x1, x2) = lim
z→0

z−∆G(z, 0;x1, x2). (A.6)
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