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Experimental demonstrations 
of unconditional security in a purely 
classical regime
Byoung S. Ham

So far, unconditional security in key distribution processes has been confined to quantum key 
distribution (QKD) protocols based on the no-cloning theorem of nonorthogonal bases. Recently, a 
completely different approach, the unconditionally secured classical key distribution (USCKD), has 
been proposed for unconditional security in the purely classical regime. Unlike QKD, both classical 
channels and orthogonal bases are key ingredients in USCKD, where unconditional security is provided 
by deterministic randomness via path superposition-based reversible unitary transformations in a 
coupled Mach–Zehnder interferometer. Here, the first experimental demonstration of the USCKD 
protocol is presented.

Quantum key distribution (QKD) has been intensively researched for unconditionally secured key distribution 
over the last several decades1–13. Since the first QKD protocol of BB841, various types of QKD protocols have 
been successfully demonstrated using optical fibers, free space, and even satellites10. Regardless of QKD type, 
the essential requirements for unconditional security are lossless quantum channels and perfect single-photon 
detectors. Moreover, a deterministic nonclassical light source is required for potential applications of QKD such 
as online banking and quantum internet. So far, none of these requirements have been fully satisfied. As a result, 
the unconditional security of QKD lied in the no-cloning theorem based on Heisenberg’s uncertainty principle14 
cannot be fulfilled unless quantum loopholes are completely closed6–13. The bedrock of no-cloning theorem for 
the unconditional security in QKD is the quantum superposition between binary bases, resulting in eavesdrop-
ping randomness14. To initiate quantum superposition-based unconditional security in QKD, the basis of keys 
cannot be orthogonal. This is the fundamental difference of QKD compared with classical cryptography based 
on orthogonal bases.

Recently, a completely different protocol for unconditionally secured classical key distribution (USCKD) has 
been proposed to overcome the limitations of QKD mentioned above as well as to understand the basic quantum 
features in a classical regime15. Compared with quantum superposition-caused randomness in QKD, USCKD 
achieves unconditional security via path superposition in a Mach–Zehnder interferometer (MZI), where a cou-
pling method between two MZIs plays a key role16. Unlike QKD, USCKD is based on a purely classical system 
of MZIs with orthogonal bases. Thus, USCKD seems to be self-contradicting because the unconditional security 
of QKD is based on non-orthogonal bases. Here, secrete of unconditional security in USCKD is in the path 
superposition-caused measurement randomness between orthogonal bases. According to information theory, 
randomness represents that there is no information to eavesdrop17. Moreover, USCKD results in key distribution 
determinacy between two remote parties via the coherence physics of MZI, even without post-measurement 
of sifting in QKD. The key distribution determinacy in USCKD is provided by reversible unitary transforma-
tions such as in quantum optical memories18,19. Thus, two-way communication channels are adapted to provide 
eavesdropping randomness and directional determinacy to form coupled MZI channels15.

The fundamental physics of USCKD has been studied in a coupled MZI system15, where a specific phase 
relationship between the coupled MZIs results in nonclassical features of coherence de Broglie wavelength 
(CBW)16,20. CBW is a classical version of photonic de Broglie wavelength (PBW), where PBW is a typical mac-
roscopic quantum feature studied for quantum sensing and quantum metrology over the last few decades21–27. 
Recently, experimental demonstrations of CBW have been successfully performed, where USCKD represents a 
special state of CBW under the same physics28. Thus, CBW as well as USCKD have been understood as a macro-
scopic feature15,16. In that sense, conventional understanding of the quantum nature limited to the microscopic 
world satisfying the uncertainty principle has been intrigued and expanded toward the macroscopic world, 
such as in the case of Schrodinger’s cat29,30. Here, USCKD is experimentally demonstrated for the proof of 
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principle of unconditional security in a purely classical regime of coupled MZIs. This study may open the door 
to coherence quantum technology, overcoming limitations in conventional quantum technologies confined to 
the microscopic world1–13,21–27.

Results
Figure 1a shows an unfolded scheme of USCKD15 based on orthogonal bases of coherent light for classical key 
distribution, where two MZIs are coupled symmetrically with ϕ12 = ψ12 and ζij = ζi − ζj . This means that the 
basic scheme of USCKD is composed of two identical MZIs via quantum superposition (see the dotted box) 
between them. Here, the coupling method for superposition plays an important role15,16. Unlike the symmetric 
coupling for USCKD in Fig. 1, CBW is based on asymmetric coupling, in which the asymmetry represents a π− 
phase shift to the second MZI of ψs16. In each MZI, two phase bases (0,π) of each path can be controlled by an 
acousto-optic modulator (AOM) pair, in which each AOM driving frequency plays a key role for the phase control 
of the MZI (discussed in experiments). In Fig. 1a, the ϕj− based first MZI belongs to Bob for key preparation, 
while the ψj− based second MZI belongs to Alice to set the key. When Fig. 1a is folded for a round trip USCKD 
configuration, the right-end BS meets the left-end BS, resulting in Fig. 1b. In other words, the detectors D3 and 
D4 with phase shifters B1 and B2 belong to Bob, while D1 and D2 with A1 and A2 phase shifters belong to Alice. 
Alice and Bob have a basis set, ψ ∈ {0,π} and ϕ ∈ {0,π} , respectively, where ψ ≡ ψ12 and ϕ ≡ ϕ12.

For the experiments, all AOMs are set to be in-phase, and the phase control of the MZI system relies only 
on the upper AOM A1 via a two-channel function generator (AFG3102, Tektronix). For this, the lower AOM 
driving frequencies are fixed at 80 MHz sharp. To select a phase basis for each optical key, all four AOMs are 
synchronized to driving frequency generators, PTS160, PTS250, and AFG3102. The lower two AOMs, B2 and 
A2, are controlled by PTS160 and PTS250, respectively. The upper two AOMs, B1 and A1, are controlled by 
AFG3102. Thus, there are four possible phase basis combinations (see "Theory").

A sophisticated eavesdropper Eve attacks the transmission lines in both MZI channels via BSs, as shown by 
the red lines (e1 and e2), to form the same interferometric scheme as Alice’s or Bob’s. Unlike QKD, such a channel 
attack is allowed in USCKD without revealing her existence to Bob and Alice. Due to measurement randomness 
or indistinguishability in MZI, however, Eve’s chance to extract the correct phase information is 50% on aver-
age, resulting in unconditional security15. This randomness of 50% is the bedrock of unconditional security in 
USCKD. Here, it should be noted that Eve cannot distinguish the set basis by the MZI channel attack due to path 
superposition unless the set basis is known (see section A of the Supplementary Information). Regarding classical 
cryptographic researches, fundamental primitives for security have been developed to protect public key encryp-
tion, digital signature, or tag encoding schemes in networks from side-channel attack such as related-key attacks31 
or network pollution attacks32. Thus, the present research of USCKD ensures those classical security systems.

Theory.  For an analytic approach, the matrix representation for the first MZI in Fig. 1a is given:
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Figure 1.   A schematic of unfolded USCKD for (a) unfolded and (b) folded configurations. Aj(ψj ) and 
Bj(ϕj ) represent an acousto-optic modulator j for Alice and Bob with phase basis ψ ∈ {0,π} and ϕ ∈ {0,π} , 
respectively, where ψ = ψ12(= ψ1 − ψ2) and ϕ = ϕ12(= ϕ1 − ϕ2) . The e1 and e2 in red denote eavesdropping 
paths by Eve. LD: Laser, I: isolator, BS: unpolarizing beam splitter, M: mirror, and Dj: detector j. All Aj’s are 
synchronized via microwave generators at 80 MHz.
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where ϕ = ϕ12 and E0 is the input field of coherent light from LD. The BS matrix is [BS] = 1√
2

[

1 i
i 1

]

 , and the 

matrix of a phase shifter between two MZI paths is [ϕ] =
[

1 0

0 eiϕ

]

 . Thus, the corresponding output intensities 

detected by D1 and D2 are as follows, respectively:

where Ij = EjE
∗
j  . Depending on the orthogonal phase basis of ϕ ∈ {0,π} in MZI, the output field intensity 

becomes either Iα or Iβ . Thus, Alice knows what basis is chosen by Bob by her visibility ( Vαβ) measurements 
(see section B of the Supplementary Information)15. This represents the MZI propagation directionality. Here, 
it should be noted that the phase basis selection in ϕ (ψ) belongs to Bob (Alice) for key preparation (confirma-
tion) according to the USCKD protocol15. The output field from the first MZI is inserted into the second MZI 
via symmetric superposition (dotted box) for Alice’s control. From the second MZI, the final output fields EA 
and EB are obtained as:

Owing to the binary phase bases of ϕ and ψ , there are four combinations of phase bases between Bob and 
Alice for the key distribution:

(i)	 ϕ = 0 ; ψ = 0

For the case (i), Eq. (4) becomes (see the red square in Fig. 2):

Thus, the corresponding intensities are IA = I0 and IB = 0 , resulting in an identity relation: VAB = 1,
where the visibility is defined as VAB = VA−VB
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Figure 2.   Numerical calculation for Eq. (4). ϕ = ϕ12 ; ψ = ψ12 . (a)–(d) Red square (blue dot) indicates identity 
(inversion) relation between two phase bases.
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	 (ii)	 ϕ = 0 ; ψ = π

For the case (ii), Eq. (4) becomes (see the blue dot in Fig. 2):

Thus, the corresponding intensities are IA = 0 and IB = I0 , resulting in an inversion relation:VAB = −1.

	 (iii)	 ϕ = π ; ψ = 0

For the case (iii), Eq. (4) becomes (see the blue dot in Fig. 2):

Thus, the corresponding intensities are IA = 0 and IB = I0 , resulting in an inversion relation:VAB = −1.

	 (iv)	 ϕ = π ; ψ = π

For the case (iv), Eq. (4) becomes (see the red square in Fig. 2):

Thus, the corresponding intensities are IA = I0 and IB = 0 , resulting in an identity relation:VAB = 1.
In a short summary, IA = I0 and IB = 0 are achieved for ϕ = ψ , otherwise IA = 0 and IB = I0 . Like Alice’s 

measurements in Eqs. (2) and (3), Bob also knows Alice’s phase basis choice by measuring his visibility even 
without communication with her. As a basic property of coherence optics, this propagation directionality in 
a coupled MZI is the quintessence of USCKD with superposition-caused measurement randomness to an 
eavesdropper15, where the measurement is for the channel attack by an eavesdropper (see section A of the Sup-
plementary Information).

These four options for the key distribution process analyzed in Eqs. (5)–(8) are numerically demonstrated 
in Fig. 2 by solving Eq. (4). Figure 2a,b are for the output field IA , and Fig. 2c,d are for IB . Depending on the ψ− 
basis choice by Alice given ϕ− basis chosen by Bob, the visibility VAB becomes either 1 or −1 . As an example, for 
ϕ = π (see the center red squares), Bob surely knows the basis chosen by Alice by his visibility measurements. 
The key distribution determinacy between Bob and Alice in USCKD is summarized in Table 1.

Experiments.  Figure 3 shows experimental results corresponding to Fig. 2 and Table 1, where four differ-
ent phase combinations are performed in a cw scheme of the laser light E0 . The temporal stability is determined 
mostly by air fluctuations in MZI paths. In Fig. 3, a rough laboratory condition is intentionally applied to the 
data without any system stabilization, where the MZI stability issue has already been closed33,34. Figure 3a shows 
the MZI channel stability for 20 s for the case of ψ = ϕ . For this, all four AOMs are set at 80 MHz and ψ = ϕ . 
Here, the experimental results of Fig. 3a are the same as in Fig. 2 (see the red squares for ϕ = 0 ). As mentioned 
above, the experimental data are from bare laboratory conditions, resulting in ~ 20% phase (path length) fluc-
tuations in short time scales less than a minute. In a long-time scale, the output intensity varies between the 
minimum and maximum mostly due to air fluctuations.

Figure 3b shows a frequency-dependent phase control of AOM A1 (see Fig. 1). For this, the frequency for 
A1 is switched to either 1 Hz more or 1 Hz less than AOM A2 at 80 MHz sharp. The other AOMs are set at 
80,000,001 Hz for B1 and 80,000,000 Hz for B2, resulting in ϕ = 1Hz and ψ = ±1Hz . The asymmetric struc-
ture of the coupled MZIs with ψ = −ϕ results in CBW, whose modulation frequency turns out to be doubled 
(2 Hz), as shown in the region left of the dashed line in Fig. 3b due to �CBW = �/216. This doubled frequency is 
a quantum feature obtained in a classical domain, where it is not the frequency beating. Here, the wavelength � 
is for the input light E0 , and �CBW is due to the nonclassical properties (VAB > 0.71) of CBW.

If the symmetric coupling condition is satisfied with ψ = ϕ , then the identity relation in Eqs. (5) and (8) is 
satisfied (see both IA and IB in the right region of the dashed line in Fig. 3b), where the nonclassical feature of 
CBW disappears. The residual 1 Hz (not 2 Hz) modulation is due to the background (leakage) from the first MZI 
at ϕ12 = 1Hz , which is not completely isolated in the experimental setup. Figure 3c is an extension of Fig. 3b, 
where the output intensities of CBWs are also opposite each other as in the conventional MZI outputs in Fig. 2. 
Here, the modulation depth (VAB < 0.71) below CBW represents the classical feature of USCKD35.
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Table 1.   Output fields in Fig. 1. ϕ = ϕ12 ; ψ = ψ12 . visibility: VAB = VA−VB

VA+VB
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Figure 3d represents toggle switching between CBW and USCKD, where the green curve is for the reference 
of Iα from the first MZI. In the toggle switching by AOM A2 (see the red curve), the intensity value of USCKD 
depends on the phase of CBW at switching time as denoted in regions ‘a,’ ‘b,’ and ‘c.’ For potential applications of 
USCKD, such an arbitrary intensity value can be controlled by controlling the internal phase of an rf generator. 
As already known for CBW bases35, USCKD is understood as an extreme of CBW in terms of a symmetric mode 
in a coupled pendulum model36. The alternating CBW peaks between maxima and minima for a fixed value of Iα 
represent the increased phase bases (see the dotted lines). In other words, the π span in a single MZI is reduced 
to π/2 in the doubly coupled MZI, representing a quantum feature35. If an n-coupled MZI is used, then the phase 
basis span is reduced to π/n35. The related movie is shown in section C of the Supplementary Information for 
toggle switching between CBW and USCKD.

Figure 4 shows screen captures of the output intensities from the oscilloscope for Fig. 3. Figure 4a corresponds 
to Fig. 3b, where both the identity and inversion relations for USCKD in Fig. 2 are shown as results of toggle 
switching with AOM A2 from CBW. As shown, the maxima and minima of IA and IB are swapped according 
to a proper phase at the switching time as discussed in Fig. 3(d). Figure 4b is for the Iα from the first MZI as a 
reference, whose modulation frequency (beating) is 1 Hz due to the preset 1 Hz driving frequency difference 
between AOMs B1 and B2. As mentioned in Fig. 2 as well as Eqs. (5)–(8), Fig. 4c shows ψ− dependent intensity 

Figure 3.   Experimental results for USCKD in Fig. 1. (a) ψ12 = ϕ12 . (b) Switching between CBW and USCKD. 
(c) expansion of (b). (d) Conventional MZI output (green) vs. CBW [USCKD(a/b/c)] (red). In (b) and (c), 
ϕ12 = −ψ12 = 1Hz before the dashed line; ϕ12 = ψ12 = 1Hz after the dashed line. The value of vertical axis is 
arbitrary.

Figure 4.   (a) CBW vs. USCKD. (b) Conventional MZI output Iα . (c) Manual phase control for ψ1 in Fig. 1. 
The driving frequencies for AOM B1 and B2 are 80,000,001 Hz and 80,000,000 Hz. The brackets in (c) indicate 
manual phase (ψ) scanning. Intensities in (a–c) are arbitrary.
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swapping between IA and IB , where the phase control is performed by manually rotating a thin glass inserted into 
the A1 path of Fig. 1 (see the bracket regions). Here, ψ = ϕ = 0 is initially set for Fig. 4c. The rotation speed is 
not constant, but optimistically shows the trend of phase-dependent output-intensity variations. Glass rotation 
starts at a normal position with respect to the beam path, and thus the phase variation speeds up as it moves 
from region ‘a’ to ‘d’.

Discussion
In addition to QKD, experimental demonstration of USCKD provides the proof of principle of unconditional 
security. As already discussed15,16, such unconditional security of USCKD lies in the coupled path superposi-
tion between two MZIs, which cannot be obtained conventionlly. Thus, the coupled MZI structure should be 
differentiated from a single MZI, where the MZI itself belongs to the classical realm. To support the nonclassi-
cal property of the coupled MZIs, phase basis-based toggle switching with ψ− ϕ = ±1 Hz was demonstrated 
for swapping between CBW and USCKD. Here, the phase bases are orthogonal to each other, representing 
two modes of the nonclassical features. All aspects of USCKD are macroscopic and coherent. Although the 
structure of MZIs for USCKD is definitely classical, coupled superposition results in nonclassical features of de 
Broglie wavelength in an asymmetric form and unitary transformations (identity relation) in a symmetric form. 
The unitary transformation represents deterministic randomness, where the superposition-caused randomness 
in MZI is the bedrock of unconditional security in USCKD15. Understanding that MZI is another form of BS, 
where orthogonal input modes are automatically provided20, the nonclassical features of USCKD or CBW in the 
present demonstrations are not trivial. Here, it should be noted that the physical origin of USCKD is the coupled 
superposition between two MZIs15,35.

Conclusion
Experimental demonstrations of USCKD were presented in a symmetrically coupled MZI structure along with 
theoretical analyses. The unconditional security of USCKD was provided by deterministic randomness with 
round trip unitary transformations, where randomness plays a key role for unconditional security via MZI 
path superposition. The quantum behavior of the coupled MZI structure was confirmed by CBW with coupling 
manipulations, where the coupled MZIs regenerate fundamental phase bases. For the toggle switching between 
CBW and USCKD, a ±1 Hz frequency difference between the coupled MZIs was used. For the round trip MZI 
directionality of USCKD, a manual phase (ψ) variation with a thin glass was performed, where 0 ≤ ψ ≤ 2π . 
The MZI stability was tested in bare conditions of MZIs without environmental isolations or a feedback control. 
Taking advantages of technologically advanced laser locking systems, an active control for MZI phase stability 
is not an issue anymore, and thus practical applications of USCKD are plausible for fiber-optic communications 
networks or free space in the future.

Methods
In Fig. 1, the input light power of E0 is around 1 mW, and the diffraction efficiency of AOMs is ~ 70%. The wave-
length of E0 is 606 nm whose linewidth is ~ 300 kHz, and intensity fluctuation is ~ 1%. The path length of each 
arm of MZI is ~ 60 cm. All AOM outputs are synchronized by synchronizing rf driving frequency generators, 
PTS160, PTS250, and AWG3102 (Tektronix) together. Each AOM in the first MZI is without a focused lens pair 
whose beam diameter is ~ 1 mm. Each AOM in the second MZI, however, is focused and collimated by a 10 cm 
focal-length lens pair. The fringe pattern of Iα and Iβ is a bar shape as usual, while the fringe pattern of IA and IB 
is an Airy disk type due to the lens-caused circular aperture (see section C of the Supplementary Information). 
Hamamatsu avalanche photodiodes (C12703) are used to detect the data and recorded on a Tektronix oscil-
loscope (DPO5204B). For the data in Fig. 3, an iris is added before each detector to pass only the zeroth-order 
fringe pattern. For the movie in section C of the Supplementary Information, the output light of IB is shined on a 
paper screen, and the image was captured via iPhone camera. The frequency offset ±δf  between two upper paths 
of the coupled MZI via AOMs is controlled by a two-channel arbitrary function generator (Tektronix AFG3102), 
whose frequency resolution is 0.001 Hz. All data in Figs. 3 and 4 are raw, single-shot recordings without averaging 
or trimming. The major error source in data is the air fluctuations in each MZI because the MZI setup of Fig. 1 is 
uncovered. In other words, the experimental setup is under a rough, coarse, and noisy environment intentionally 
to show the system’s robustness for potential applications, where phase locking is technologically well matured.
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