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Abstract
The 2015 Paris Agreement led to a number of studies that assessed the impact of the 1.5 ◦C and
2.0 ◦C increases in global temperature over preindustrial levels. However, those assessments have
not actively investigated the impact of these levels of warming on fire weather. In view of a recent
series of high-profile wildfire events worldwide, we access fire weather sensitivity based on a set of
multi-model large ensemble climate simulations for these low-emission scenarios. The results
indicate that the half degree difference between these two thresholds may lead to a significantly
increased hazard of wildfire in certain parts of the world, particularly the Amazon, African savanna
and Mediterranean. Although further experiments focused on human land use are needed to
depict future fire activity, considering that rising temperatures are the most influential factor in
augmenting the danger of fire weather, limiting global warming to 1.5 ◦C would alleviate some risk
in these parts of the world.

1. Introduction

While climate-drivenwildfire hazard varies under dif-
ferent global warming scenarios, the increase of cli-
mate extremes conducive to wildfires, such as heat-
waves and droughts, is a universal and inevitable
outcome of anthropogenic climate change. Globally,
widespread wildfires have intensified and are occur-
ring more frequently than before (Moritz et al 2012,
Seidl et al 2017), with climate overtaking human
activity as the dominant influence on fire in some
regions (Vachula et al 2019). Modeling results show
that anthropogenic climate change is already causing
fire weather conditions in excess of natural variability
in certain areas (Abatzoglou et al 2019). This trend is
driven primarily by rising temperatures (Pechony and
Shindell 2010) and has had a particularly profound
impact onwesternNorthAmerica andAustralia (Jolly
et al 2015, Yoon et al 2015). Previous modeling

studies have also warned that fire weather conditions
would become more extreme under climate change
(Liu et al 2010, Eliseev et al 2014, Bedia et al 2015,
Abatzoglou et al 2019). However, fire activity is not
driven by fire weather alone, but also by the influ-
enced of anthropogenic factors, such as demographic
and socio-economic changes (Andela and Van Der
Werf 2014, Bistinas et al 2014). For instance, the
expansion of agricultural land in forest regions can
increase fire activity, while decreasing such activity
in semi-arid savannah regions. It is also important
to note that fire model projections which do not
properly reflect the human influences may overes-
timate future fire activity (Andela et al 2017). Nev-
ertheless, the long-term trend of increasing fire activ-
ity under global warming may not be reversed, but
rather accelerated, as a result of the reversal of land
conversion and declining populations (Pechony and
Shindell 2010).
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Under the Paris Agreement, the United Nations
Framework Convention on Climate Change agreed
to pursue efforts to limit the temperature increase
to 2.0 ◦C and, ideally, to 1.5 ◦C, over preindus-
trial levels. Most of previous studies, however, were
designed to look at the impact of extreme emis-
sion scenarios, rather than the specific and relat-
ively moderate warming levels that global societies
are attempting to achieve. It is difficult to distin-
guish between model uncertainty and internal vari-
ability under representative concentration pathway
(RCP) scenarios (Mitchell et al 2016), so the Inter-
governmental Panel on Climate Change (IPCC) com-
piled a special report examining the potential effects
under these moderate targets (Pörtner et al 2019),
which led to the half a degree additional warming,
prognosis and projected impacts (HAPPI) project,
a focused modeling database intended to facilitate
the study of extreme weather events under moder-
ate warming (Mitchell et al 2017). Subsequent stud-
ies using HAPPI have delineated potential changes
in climate extremes including drought (Lehner et al
2017), heatwaves (Wehner et al 2018), and hydro-
logical cycles (Madakumbura et al 2019) for the
respective 1.5 ◦C and 2.0 ◦C thresholds. All of these
factors are known to affect wildfire occurrence and
intensity, but fire weather conditions have not been
specifically and comprehensively explored with the
HAPPI experiments. Although a similar assessment
of fire weather with RCP8.5 has been discussed (Sun
et al 2019), the documented difference in climate
responses among different RCP scenarios limits the
assessment of warming impacts (Mitchell et al 2016).
Thus, this study was conducted to examine potential
changes in fire weather conditions under 1.5 ◦C and
2.0 ◦Cwarming levels using the HAPPI database, and
to evaluate the change in wildfire hazard associated
with a half a degree of additionalwarming (HADAW).

2. Data andmethods

2.1. Model simulation data
Weanalysed the simulations from fiveHAPPImodels,
each with 100 ensemble members: CAM4 (Neale et al
2013), CanAM4 (Von Salzen et al 2013), ECHAM6
(Stevens et al 2013), MIROC5 (Watanabe et al
2010) and NorESM1 (Debernard et al 2013). The
model outputs include three sets of experiments of a
10 year period: present (observed, 2006–2015), 1.5 ◦C
warmer (RCP2.6, 2106–2115) and 2.0 ◦C warmer
(weighted combination of RCP2.6 andRCP4.5, 2106–
2115).

2.2. FireWeather Index
The FireWeather Index (FWI), was originally derived
from the Canadian forest fire danger rating sys-
tem (Stocks et al 1989), to estimate fire weather
conditions. A popular indication for fire weather,
FWI involves five different indices related to fire

ignition and intensity and it considers four near-
surface meteorological variables: temperature, relat-
ive humidity, wind speed and last 24 h accumulated
precipitation. Fuel Moisture Codes, such as Fine Fuel
Moisture Code, Duff Moisture Code and Drought
Code, track moisture changes in different layers of
the forest floor alongside changes in weather. These
variables are used to calculate the Initial Spread Index
(ISI), which represents the potential rate of spread,
and the Build-Up Index (BUI), which estimates the
total fuel available for consumption. Finally, FWI
is derived from a weighted combination of ISI and
BUI to describe potential fire occurrence and intens-
ity. FWI has been widely employed to measure wild-
fire hazard across the globe and it has been shown
to have a close relationship with burned area and
fire frequency (Bedia et al 2015, Abatzoglou et al
2018, Fox et al 2018). Although there is not a uni-
fied FWI threshold to explain extreme wildfire con-
ditions worldwide, previous studies have highlighted
the association between high values of FWI and
extreme fire activities (Urbieta et al 2015, Bowman
et al 2017, Goss et al 2020). Following those studies,
we use the 90th percentile of FWI on each model grid
to demarcate extreme fire weather conditions.

2.3. Bias correction
Before one can estimate extreme fire weather con-
ditions using FWI, biases of each model need to be
corrected. Here, we adopted the Japanese 55 year
Reanalysis (JRA55) (Kobayashi et al 2015) and fol-
lowed a published bias correction method (Maraun
2016). The daily climatology of the model outputs
is replaced with the JRA55’s for temperature and
humidity using equation (1). For precipitation and
wind speed showing only positive values with dis-
tribution skewed to zero, a log transformation is
executed before applying equation (1), hence simpli-
fying the computation in equation (2),

Modelcorrect =Model−Model_Histclim+ JRAclim.
(1)

Modelcorrect =Model÷Model_Histclim× JRAclim.
(2)

In these equations, Model (Model_Hist) represents
the historical simulations from the HAPPI models,
which is applied separately for each model. The sub-
script clim and correct mean ‘climatology’ and ‘cor-
rected results,’ respectively. Next, to avoid inconsist-
encies between different warming scenarios, which
may potentially induce underestimated FWI, we fur-
ther applied the delta change approach correction
(Maraun 2016) for the sensitivity analysis. This step is
similar to the previous formulations, but the anomaly
of present climate is added ormultiplied on the clima-
tology of each warming condition; these are summar-
ized by equations (3) and (4).
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Sensitive= Futureclim+(Present− Presentclim) .
(3)

Sensitive= Futureclim× (Present÷ Presentclim) .
(4)

Here, Sensitive represents sensitive components
in the sensitivity analysis (∆ ̸= 0), Future is for the
1.5 ◦C warmer and the 2.0 ◦C warmer scenarios
(2106–2115) and Present represents all simulated res-
ults from the present scenario (2006–2015). This is
applied separately for each scenario of each model.
For wind speed, we modified equation (4) for con-
ditions that demonstrate too high of a correction rate
for low values in the denominator of equation (5):

if Presentclim < 1,
Sensitive= (Futureclim+ 1)× (Present+ 1)

÷(Presentclim+ 1)− 1
else,
Sensitive= Futureclim× (Present÷ Presentclim) .

(5)

2.4. The masking of arid areas
Arid areas and polar regions have few plants and
are classified as ‘Barren or Sparsely Vegetated’,
‘Open Shrublands’ and ‘Permanent Snow and Ice’
(Friedl et al 2010) (figure S1(a) (available online at
stacks.iop.org/ERL/16/034058/mmedia)). Even when
fire-prone climate appears in such areas, the probab-
ility of fire occurrence is low due to the lack of fuel.
However, the changes of the fire weather conditions
in these barely vegetated areas, such as those in the
Sahara Desert and Australian deserts, are not neg-
ligible. Therefore, we use the enhanced vegetation
index (EVI) from the Moderate Resolution Imaging
Spectroradiometer Land Discipline Group (Huete
et al 1999) and define the approximated masking
areas as those with a mean value of EVI that is less
than 0.12 (figure S1(c)). This definition leads to a
coverage that is in good agreement with figure S1(a).
We note that such approximation may oversimplify
the precipitation effect by climate change and ignore
the changes in some arid areas. However, our study
is mainly focused on general fire weather changes
based on the IPCC AR5 regions (figure 1(f)), and the
change in boundary zones is omitted. (All results in
our study are derived on land.)

2.5. The fraction of attributable risk
To investigate the distribution of regional extreme
wildfire danger, we spatially average FWI for the
regions shown in figure 1(f). The regional FWI is
compared among the warming scenarios for the top
0.1 quantile. We then use the fraction of attributable
risk (FAR) to quantitatively compare the changes in
the distribution of wildfire hazard (Stone and Allen
2005). The FAR is calculated by equation (6) with the

probability of exceedance (P) of 0.9 quantile obtained
from the present condition.

1− Ppresent÷ Pfuture. (6)

This explains the changes in the probability
of extreme fire weather that is attributable to the
external forcing from the current state. For instance,
if FAR is 0.2, then it indicates that the warming-
induced event probability has increased 25% over
natural causes. Thus, the higher value of FAR the
higher probability of a fire hazard.

2.6. Sensitivity analysis
For each of the factors leading to fire weather, such
as the maximum temperature, relative humidity, pre-
cipitation and wind speed, the changes in FWI are
individually compared according to the future warm-
ing scenarios (figures 3 and S6–S9). For instance,
when the sensitivity of the fire weather is examined
with respect to the maximum temperature, only the
maximum temperature is changed according to the
warming levels, while the other variables are pre-
served as the present conditions. Here, we introduce
an additional correction to remove any complication
due to mismatching of meteorological parameters.
For example, simply using a precipitation time-series
from the future and others from the present could
produce peculiar values. This additional bias correc-
tion is important for rainy and humid days, as the
potential inconsistency between present and future
variables may result in an underestimation of FWI.
We then compared the relative contribution of each
component. However, the globally averaged differ-
ence in FWI for the additional correction is less than
2.5% and the regions with greater difference mostly
show high sensitivity on humidity and precipitation
(figure S15).

3. Results

3.1. Annual mean changes
The annual mean of FWI, as shown in figures 1(a)
and (b), reveals that the higher the temperature
becomes in a particular region, the greater the fire
weather in that region. By comparing the present
day FWI with the 1.5 ◦C and 2.0 ◦C warming levels
(figure 1(c)), it can be seen that the increased wild-
fire hazard associated with a HADAW is nearly equi-
valent to the increased FWI between present warm-
ing and the 1.5 ◦C threshold worldwide (figure 1(a)),
with the exception of Oceania (which includes Aus-
tralasia, Melanesia, Micronesia and Polynesia; dis-
cussed later).

By calculating the FAR for extreme fire events
(those in the top 0.1 quantile of FWI values), we
found that the global-mean of FAR for extreme events
reaches 0.32 in the 1.5 ◦C scenario and 0.47 in the
2.0 ◦C scenario (figure 1(d)), with the most striking
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Figure 1. (a)–(c) Annual mean difference of FWI: (a) from 1.5 ◦C warmer scenario to present (2006–2015), (b) from the 2.0 ◦C
to the present and (c) from the 2.0 ◦C to the 1.5 ◦C. Arid areas (shown in the figure S1(c)) and insignificant results (p > 0.01) are
masked. (d)–(j) Kernel density estimations of annual mean FWI, spatially averaged based on the IPCC AR5 reference regions
(shown in (c), www.ipcc-data.org/guidelines/pages/ar5_regions.html). (d) Global, (e) Amazon, (f) Mediterranean, (g) African
savanna, (h) Northwest America, (i) Indonesia and (j) Australia. FAR indicates the fraction of attributable risk for each 1.5 ◦C
(green) and 2.0 ◦C (red) to P90 (0.9 quantile) in the present and between 1.5 ◦C and 2.0 ◦C (purple), respectively. The y-axis
explains the probability of FWI (x-axis).

regional increases in the Amazon basin and Europe,
especially the Mediterranean. The spatially averaged
FWI over these individual regions (figure 1(c)) shows
that the FAR for extreme events underHADAWcould
rise in increments that could double the difference
between the present and the 1.5 ◦Cwarming scenario
(figures 1(e) and (f)). This is consistent with earlier
studies that indicated the potential for increasedwild-
fires in these regions (Engelbrecht et al 2015, Ciscar;
et al 2018, Fonseca et al 2019). In western North
America and the African savanna, the changes in the
top 0.1 quantile range are not discernible and FAR
is relatively low at each warming level (figures 1(g)
and (h)). However, the FAR in western North Amer-
ica abruptly rises from 0.05 in the 1.5 ◦C warming
scenario to 0.16 in the 2.0 ◦C scenario, an increase of
0.12 under HADAW. These non-linear relationships
suggest that the effect of global warming on wild-
fire may seem insignificant at first in some regions,
but can quickly increase with relatively small rises in
temperature. Australia and Indonesia show a com-
parably small change (less than 0.02) in FWI under

HADAW, despite a large rise at 1.5 ◦C (figures 1(i)
and (j)). This ‘levelling off ’ of HADAW, however,
may be only temporary and, if warming is not lim-
ited to 2.0 ◦C, the fire danger may become even more
extreme in those regions (Liu et al 2010).

3.2. Changes in seasonal mean
Regional wildfire activity has a distinct seasonality
(Aldersley et al 2011) (figures S2–S5). Figure 2 sum-
marizes the most significant changes of FWI under
HADAW by season based on the IPCC AR5 refer-
ence regions. The results generally show similar pat-
terns and tendencies to those identified under the
analysis of annualmeans, but with remarkable intens-
ification in different seasons. Most regions in the
northern hemisphere, including Europe and Siberia,
show the most increase during the boreal summer
(June–August, pink box in figure 2). East Asia, how-
ever, shows a pronounced increase during the boreal
winter (December–February, purple box in figure 2),
a season earlier than the observed climatological
period with the most frequent fires (Aldersley et al
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Figure 2. (a)–(c) Seasonal mean difference of FWI during the largest change (separated by four seasons: spring (March - April -
May (MAM), green), summer (June - July - August (JJA), pink), autumn (September - October - November (SON), blue), winter
(December - January - February (DJF), purple)): (a) 1.5 ◦C to present (2006–2015), (b) 2.0 ◦C to present and
(c) 2.0 ◦C to 1.5 ◦C. Arid areas (shown in the figure S1(c)) and insignificant results (p > 0.01) are masked. (d)–(j) Kernel density
estimations of seasonal mean FWI, spatially averaged based on the IPCC AR5 reference regions (shown in (c)). (d) Amazon,
(e) Mediterranean, (f) African savanna, (g) Northwest America, (h) Indonesia, and (i) Australia. FAR indicates the fraction of
attributable risk for each 1.5 ◦C (green) and 2.0 ◦C (red) to P90 (0.9 quantile) in the present, and between 1.5 ◦C and 2.0 ◦C
(purple), respectively. The y-axis explains the probability of FWI (x-axis).

2011). In North America, the biggest increase is in
the fall season (as opposed to summer when wildfires
have traditionally peaked), suggesting a lengthening
of the fire season. In addition, most of the South-
ernHemispheric regions, where active wildfire occurs
in the boreal summer, show the most outstand-
ing changes during the boreal autumn (September–
November, blue box in figure 2), echoing the finding
of an extended fire season worldwide (Flannigan et al
2013). These HADAW results paint a worrisome pic-
ture of increased fire weather conditions associated
with relatively small increases in global temperature.

3.3. Fire hazard sensitivity to climate factors
Multiple climate factors play a role in wildfire haz-
ard (figures 3 and S6–S9) and these roles vary in
significance from region to region and at differ-
ent warming projections. In the tropics, changes in
humidity and precipitation exhibit a considerable
effect on the increase of FWI under HADAW. In the
Mediterranean and western North America, changes
in wind appear to be negligible, while in the Amazon

and Indonesia, the influence of wind is greater than
some other factors (table 1). In the subtropics, the
increase in temperature dominates the change of FWI
more than other factors (table 1 and figures S1–S4),
echoing the argument that the rise of temperature is
the most influential factor for climate-driven wild-
fire hazard (Pechony and Shindell 2010). It is worth
noting that humidity and precipitation may play dif-
ferent roles in the mid-latitudes. In western North
America increases of humidity and precipitation may
slightly offset temperature increases (table 1). This
finding is not in accordance with historical observa-
tions (Abatzoglou and Williams 2016, Holden et al
2018), though some analyses did find similar results
by accounting for increases in the amount and fre-
quency of precipitation (Flannigan et al 2000) and
decreases in the number of dry days (Brown et al
2004). In the Southern Hemisphere, warmer temper-
atures and less humidity liaise to increase the danger
of wildfire. In the near-term future, humidity may
play a role in modulating the wildfire hazard, but this
effect appears to be negated by temperature in the

5
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Figure 3. Sensitivity comparison between climate components (maximum temperature (red), relative humidity and precipitation
combined (blue) and wind speed (green)) during regionally separated season (same with figure 2, gray boxes): (a) 1.5 ◦C to
present (2006–2015), (b) 2.0 ◦C to present and (c) 2.0 ◦C to 1.5 ◦C. Each component is scaled in range (−0.2 to 1.0). Arid areas
(shown in the figure S1(c)) and insignificant results (p > 0.01) are masked. FAR of the major AR5 reference regions (shown in (c))
are summarized in table 1.

Table 1. FAR for the individual sensitivity comparison results during regionally separated season (shown figure 3). From present to
1.5 ◦C (Plus 1.5), to 2.0 ◦C (Plus 2.0) and from 1.5 ◦C to 2.0 ◦C (Additional 0.5) ◦C are compared in P90 (0.9 quantile, same method
with figures 2(d)–(j)). The threshold of the 99% significant level is±0.012.

Amazon (7, 8) TMAX RHUM Rain Wind

Plus 1.5 0.07 0.11 0.05 0.11
Plus 2.0 0.12 0.16 0.08 0.11
Additional 0.5 0.05 0.06 0.02 0.00
Mediterranean (13)
Plus 1.5 0.06 0.04 0.00 0.01
Plus 2.0 0.12 0.11 0.01 0.00
Additional 0.5 0.06 0.08 0.01 0.00
African Savanna (15, 16)
Plus 1.5 0.07 0.05 0.00 0.01
Plus 2.0 0.12 0.06 −0.01 0.02
Additional 0.5 0.05 0.00 −0.01 0.00
Northwest America (3)
Plus 1.5 0.08 −0.02 −0.03 0.01
Plus 2.0 0.16 0.02 −0.03 0.01
Additional 0.5 0.08 0.04 0.00 0.00
Indonesia (24)
Plus 1.5 0.08 0.09 −0.01 0.08
Plus 2.0 0.12 0.10 −0.03 0.08
Additional 0.5 0.04 0.01 −0.02 0.00
Australia (25, 26)
Plus 1.5 0.09 0.15 0.04 0.05
Plus 2.0 0.16 0.13 0.03 0.04
Additional 0.5 0.07 −0.03 −0.01 0.00

long term. This is the case for Australia and other
neighbouring countries impacted by the complexity
of the future changes in the Australian monsoon
(Chevuturi et al 2018).

Given that relative humidity is a function of tem-
perature, we also compare FWI in consideration of
both the maximum temperature and relative humid-
ity (figure S10), and the results are similar with the

sum of the individual climate factors. Some regions,
such as Siberia, China and the Amazon, show higher
increases of temperature than each warming level,
reaching 3.5 ◦C in the 2.0 ◦C warming scenario
(figure S11). In the case of humidity and precipita-
tion, changes in the Amazon are more evident than
in other regions (figures S12 and S13). In sum, it
would appear that none of the evaluated areas can

6



Environ. Res. Lett. 16 (2021) 034058 R Son et al

avoid an increased hazard of wildfire, even under
the targeted rising temperature goals of the Paris
Agreement, HADAW confers considerable additional
extreme fire weather risk.

4. Discussion and conclusions

The HAPPI simulations, which target specific warm-
ing levels of 1.5 ◦C and 2.0 ◦C following the Paris
Agreement, project that fire weather conditions will
be more extreme worldwide regardless of the warm-
ing level. However, suppressing the 0.5 ◦C additional
warming could reduce climate-driven extreme fire
activities globally, except for a few areas that seem
to reach their peak risk level at an earlier warming
state (before 1.5 ◦C). These areas of accelerated fire
hazard include Australia and Indonesia. Given that
temperature is the principal factor for fire risk, the
inhibition of a half-degree of warming would provide
measurable benefits toward a reduction in wildfire
likelihood. However, in areas where the risks may
already peak, an even stricter target to reduce climate
warming would be required.

Although the HAPPI experiments include a large
number of ensembles for statistical significance, cau-
tion should be exercised when interpreting the results
presented, given that themodels are atmosphere-only
and not fully coupled. Internal ocean-atmosphere
variability can only be simulated using coupled mod-
els, and the lack of that information in the HAPPI
experiments could distort trends in places such as
western North America (Coats et al 2016). Although
climate increasingly may be reassuming a role as the
dominant influence on fire, wildfires are not merely
driven by fire weather but also vegetation changes,
fuel loads and ignition sources (e.g. lightning activ-
ity). Fuel loading is a major factor in determining
fire intensity (Deeming and Brown 1975) and soil
moisture is crucially associated with the fuel system
(Krueger et al 2016). Furthermore, human activities,
such as population growth and land-use, also need to
be considered (Rego et al n.d., Thompson et al 2018),
otherwise estimated fire activity can be significantly
misleading in comparison to real-world (Andela et al
2017). Thus, while our study is solely focused on
climate-related stressors in the global scale, mitiga-
tion of warming alone would not be sufficient to neg-
ate wildfire hazard.
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