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Abstract: The transfer function-generalized sidelobe canceller (TF-GSC) is one of the most popular
structures for the adaptive beamformer used in multi-channel speech enhancement. Although the
TF-GSC has shown decent performance, a certain amount of steering error is inevitable, which
causes leakage of speech components through the blocking matrix (BM) and distortion in the fixed
beamformer (FBF) output. In this paper, we propose to suppress the leaked signal in the output
of the BM and restore the desired signal in the FBF output of the TF-GSC. To reduce the risk of
attenuating speech in the adaptive noise canceller (ANC), the speech component in the output of the
BM is suppressed by applying a gain function similar to the square-root Wiener filter, assuming that a
certain portion of the desired speech should be leaked into the BM output. Additionally, we propose
to restore the attenuated desired signal in the FBF output by adding some of the microphone signal
components back, depending on how microphone signals are related to the FBF and BM outputs.
The experimental results showed that the proposed TF-GSC outperformed conventional TF-GSC in
terms of the perceptual evaluation of speech quality (PESQ) scores under various noise conditions
and the direction of arrivals for the desired and interfering sources.

Keywords: dual-mic speech enhancement; transfer function-generalized sidelobe canceller; steering
error; leakage suppression; signal recovery

1. Introduction

Multi-channel speech enhancement is an essential part for many applications, such
as mobile phones, smart TVs, and smart speakers [1,2]. Compared to a single-channel
approach, multi-channel speech enhancement can utilize not only spectral information, but
also spatial information using multiple microphones, which makes it possible to achieve
better performance. Popular examples of spatial filters include multi-channel Wiener
filters [1,3–6], adaptive beamformers [2,7,8], and nonlinear filters [9–16].

One of the useful implementations of adaptive beamformers [17] is the generalized
sidelobe canceller (GSC) [17], which consists of a fixed beamformer (FBF) that tries to pass
only the signals from the desired direction, a blocking matrix (BM) that attempts to filter out
the signals from the desired direction, and an adaptive noise canceller (ANC) that removes
the signals related to the BM output from the FBF output. The transfer function (TF)-GSC
(TF-GSC) [18–27] is one of the most popular algorithms for GSC, which steers a beam to a
desired source based on the estimated acoustic TF [2] ratio vector and achieves high noise
reduction performance while maintaining low speech distortion [28]. However, the steering
error [29] arising from an inaccurate TF ratio estimation may introduce signal leakage in
the BM output and speech distortion in the FBF output, which degrades the performance
of speech enhancement, especially in the presence of diffuse or nonstationary noise.

One of the typical remedies to this problem is to equip a single-channel speech
enhancement module as a post-processor [9–16]. The spectral gain based on the optimally
modified log spectral amplitude (OM-LSA) estimator [30] is applied to the output of the
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TF-GSC in [12–14], where the transient beam-to-reference ratio (TBRR) [31] is utilized
for hypothesis testing [32] to determine if the input contains desired speech, transient
interference, or stationary noises, which in turn affects the estimation of a priori signal
absence probability, a priori signal-to-noise ratio (SNR), noise power spectra, and spectral
gain function. In [15,16], the results of the hypothesis testing were further utilized in the
parameter updates for the TF-GSC. Nevertheless, a certain amount of the steering error is
practically inevitable, resulting in signal leakage in the BM output and signal attenuation
in the FBF output, which limits the performance of speech enhancement using TF-GSC.

In this paper, we propose to modify the outputs of the FBF and the BM by utilizing
both of the outputs and the microphone signals. Specifically, we applied a gain function
similar to the square-root Wiener filter to the BM output to suppress the desired speech
signal leaking into it. Moreover, the attenuated signal in the FBF output was recovered
to an extent by adding back a certain amount of appropriate microphone signals. The
experimental results show that the proposed TF-GSC achieved better performance than
the conventional TF-GSC for various noise scenarios. Moreover, the proposed method can
provide consistent performance for various directions of arrivals (DoAs) of the desired and
interfering sources in contrast to the conventional TF-GSC.

The remainder of this paper is organized as follows. Section 2 summarizes the con-
ventional TF-GSC and the postfiltering. The proposed TF-GSC with leakage suppression
and signal recovery is introduced in Section 3. Section 4 outlines the experimental results.
Finally, a conclusion is provided in Section 5.

2. Summary of TF-GSC and Postfiltering

Let xp(m), np(m), and s(m) denote the input microphone signal and interfering
signal at the pth microphone and the desired speech at the source for time m, respectively.
With additive noise assumption, xp(m) is represented as:

xp(m) = ap(m) ∗ s(m) + np(m), p = 1, 2 (1)

where ap(m) is the acoustic impulse response from the desired source to the pth micro-
phone and ∗ denotes the convolution operation. The short-time Fourier transform (STFT)
coefficients for signals Xp(n, k), Np(n, k), and S(n, k) for frame n and frequency k are
related as:

X(n, k) = A(n, k)S(n, k) + N(n, k) (2)

in which:
X(n, k) = [X1(n, k) X2(n, k)]T

A(n, k) = [A1(n, k) A2(n, k)]T

N(n, k) = [N1(n, k) N2(n, k)]T
(3)

where Ap(n, k) is the acoustic TF from the desired source to the pth microphone for frame
n and frequency k. A block diagram of the TF-GSC is shown in Figure 1 in black, which
mainly consists of three blocks [2,7,8,18]. The FBF conserves signals from a desired direction
while rejecting other signals as much as possible. The output of the FBF W(n, k), YFBF(n, k)
is given by:

YFBF(n, k) = W(n, k)HX(n, k), (4)

where W(n, k) is constrained to satisfy W(n, k)HA(n, k) = F ∗(n, k), in which a prespecified
filter F ∗(n, k) is usually assumed to be a simple delay [9]. However, since the actual TFs
are very difficult to obtain, the TF ratios are estimated instead and the optimal W(n, k) is
represented as [18]:

W(n, k) =
H(n, k)∥∥H(n, k)

∥∥2 (5)
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in which H is the acoustic TF ratio vector:

H(n, k) =
[
H1(n, k) H2(n, k))

]T
=

[
1

A2(n, k)
A1(n, k)

]T

. (6)

In the other branch, the BM B(n, k) tries to block the signals from a desired direction
while passing through all other signals, resulting in the noise reference YU :

YU(n, k) = B(n, k)HX(n, k) (7)

in which:

B(n, k) =

[
−H2(n, k)∗

1

]
. (8)

The third block, the ANC, tries to remove the components related to YU(n, k) from the
FBF output YFBF(n, k) using the normalized least-mean-square (NLMS) algorithm:

Y(n, k) = YFBF(n, k)− G(n, k)HYU(n, k) (9)

where G(n, k) is the ANC filter updated by:

G(n + 1, k) = G(n, k) + µ
YU(n, k)YFBF(n, k)H

Pest(n, k)
(10)

in which µ is a step size and the noise reference power Pest(n, k) is updated as:

Pest(n, k) = ρU Pest(n− 1, k) + (1− ρU)YU(n, k)YU(n, k)H (11)

where ρU is a smoothing factor.
In order to effectively operate FBF and BM, the estimation of accurate TF ratios is

essential. In [18], the TF ratios were estimated using least squares, assuming that the TF
ratios are slowly changing in time compared to the desired signal and the background
noise signals are stationary. The TF ratio is updated when the desired signal is present in
the last L frames as:

H2(n, k) =

〈
Φ̂X1X1(n, k)Φ̂X2X1(n, k)

〉
−
〈

Φ̂X1X1(n, k)
〉〈

Φ̂X2X1(n, k)
〉

〈
Φ̂2

X1X1
(n, k)

〉
−
〈

Φ̂X1X1(n, k)
〉2 (12)

in which: 〈
Φ(n, k)

〉
,

1
L

L

∑
l=1

Φ(n− l + 1, k) (13)

where Φ̂XpX1(n, k) (p = 1, 2) is the estimate of the cross-power spectral density between Xp
and X1 given by:

Φ̂XpX1(n, k) = ρPΦ̂XpX1(n− 1, k) + (1− ρP)Xp(n, k)X1(n, k)H (14)

where ρP is a smoothing factor.
However, the TF ratio estimation suffers from diffuse or nonstationary noises, resulting

in steering error, which causes leakage of speech components through the BM and speech
distortion in the FBF output. One way to mitigate this problem is to apply a postfilter
based on the OM-LSA estimator [12–16]. The first step of this postfiltering is the hypothesis
test, which determines if the output of the TF-GSC contains desired speech, transient
interference, or stationary noises using the TBRR [31]. The result of the hypothesis test
is utilized to determine a priori signal absence probability and, finally, the spectral gain
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function. Additionally, the hypothesis test result from the postfilter is further used to
control the update of the parameters of the TF-GSC in [15,16] as follows:

H2(n, k) =


〈

Φ̂X1X1(n, k)Φ̂X2X1(n, k)
〉
−
〈

Φ̂X1X1(n, k)
〉〈

Φ̂X2X1(n, k)
〉

〈
Φ̂2

X1X1
(n, k)

〉
−
〈

Φ̂X1X1(n, k)
〉2 , i f |L| ≥ Nd

H2(n, k), otherwise

(15)

in which: 〈
Φ(n, k)

〉
,

1
|L| ∑l∈L

Φ(l, k) (16)

where L is a set of frame indices that contain the desired signal component in the analysis
interval from the n − L + 1th frame to the nth frame, |L| is the size of L, and Nd is the
threshold for the TF ratio update. It is noted that the value of L should be carefully chosen
to provide accurate estimates of ensemble averages with a large enough number of frames,
while the quasi-stationary assumption for the acoustic TF is not violated by too big of an
L [15,16,18]. It has the effect of relaxing the assumption on the stationarity of the TF ratio,
which reduces the steering error to an extent. Even with the improved TF ratio estimation,
however, a certain amount of the steering error is practically inevitable, leaving room for
improvement in the performance.

Figure 1. A block diagram of the conventional transfer function-generalized sidelobe canceller
(TF-GSC) (black) and the proposed one with leakage suppression and signal recovery (black+red).
FBF, fixed beamformer; BM, blocking matrix; ANC, adaptive noise canceller.

3. Proposed TF-GSC with Leakage Suppression and Signal Recovery

To alleviate the problems caused by steering error, this paper proposes a leakage
suppression module to suppress the leaked desired signal in the output of the BM and the
signal recovery module to restore the attenuated desired signal in the FBF output, which is
shown in Figure 1 in red. The postfiltering and the feedback from it are also adopted for
both the conventional and the proposed TF-GSC, which is omitted from the figure.

3.1. Leakage Suppression

Although the FBF and BM do not operate perfectly, the ratio of the FBF output YFBF
and the BM output YU bears information on the input SNR. The leakage of the desired signal
to the BM output would be more severe when the input SNR increases, and vice versa.
Therefore, the leakage suppression module applies a spectral gain GU(n, k) to the BM
output YU(n, k) to produce the modified noise reference ȲU(n, k):

ȲU(n, k) = GU(n, k)YU(n, k) (17)
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in which GU(n, k) has a form similar to the square-root Wiener filter:

GU(n, k) =

√
| YU(n, k) |2

α | YFBF(n, k) |2 + | YU(n, k) |2 (18)

where α < 1 is a tuning parameter representing the attenuation of the desired signal
component in the BM output. The leakage suppression would attenuate the desired signal
component from YU(n, k) and thus reduce the signal cancellation in the ANC.

3.2. Signal Recovery

Once the desired signal is attenuated by the FBF with steering error, the following
modules such as the ANC and the postfilter cannot restore it, while they can suppress
the residual interference in the FBF output. In this regard, the proposed signal recovery
module adds a certain amount of the appropriate microphone signal to the FBF output.
To determine which microphone signal should be utilized to recover the attenuated desired
signal, we evaluated which microphone signal is closer to YFBF and YU , respectively.
Specifically, we assessed the cosine similarities between X1, X2 and YFBF, YU given by:

SXpYFBF (n) = λSXpYFBF (n− 1) + (1− λ)
Re(Xp(n) • YFBF(n))
‖Xp(n)‖‖YFBF(n)‖

SXpYU (n) = λSXpYU (n− 1) + (1− λ)
Re(Xp(n) • YU(n))
‖Xp(n)‖‖YU(n)‖

(19)

in which:
Xp(n) = [Xp(n, 1), . . . , Xp(n, K)]T , p = 1, 2
YFBF(n) = [YFBF(n, 1), . . . , YFBF(n, K)]T

YU(n) = [YU(n, 1), . . . , YU(n, K)]T
(20)

where λ is a smoothing parameter, • is an inner product operation, K is the number

of frequency bins, and Re(Xp(n)•YFBF(n))
‖Xp(n)‖‖YFBF(n)‖

and Re(Xp(n)•YU(n))
‖Xp(n)‖‖YU (n)‖ are the cosine values of the

Euclidean angles between Xp(n) and YFBF(n) and YU(n), respectively [33,34]. Using these
similarities, the two similarity differences SDX12YFBF (n) and SDX21YU (n) can be computed:

SDX12YFBF (n) = SX1YFBF (n)− SX2YFBF (n),
SDX21YU (n) = SX2YU (n)− SX1YU (n).

(21)

where SDX12YFBF (n) is a measure of how much X1 is more similar to YFBF compared to
X2, and SDX21YU (n) represents how X2 is closer to YU compared to X1. Thus, if both
SDX12YFBF (n) and SDX21YU (n) are positive (or negative), X1 (or X2) contains more of the
desired signal. If the absolute value of SDX12YFBF is small, however, the desired source
may be located at the broadside, and thus the average of two microphone signals would
provide a better reference of the desired signal. When the signs of SDX12YFBF and SDX21YU
differ, we anticipate that the signal restoration may not be reliable, and the FBF output is
not modified. The selected signal for the signal recovery is summarized by:

Xselected(n) =


X1(n), i f η < SDX12YFBF (n) and SDX21YU (n) ≥ 0
X1(n) + X2(n)

2
, i f 0 < SDX12YFBF (n)× sgn(SDX21YU (n)) ≤ η

X2(n), i f SDX12YFBF (n) ≤ −η and SDX21YU (n) ≤ 0
0, else

(22)

which is also described in Figure 2. Using the selected microphone signal, the FBF output
YFBF(n, k) is modified as:

ȲFBF(n, k) = YFBF(n, k) + GX(n, k)Xselected(n, k) (23)
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in which GX(n, k) determines how much of the microphone signal is added to restore the
attenuated desired signal. Since adding the microphone signal in low SNR environments
may be harmful, GX(n, k) is designed to have higher values in higher SNRs:

GX(n, k) =

√
| YFBF(n, k) |2

β | ȲU(n, k) |2 + | YFBF(n, k) |2
(24)

where β > 1 is a tuning parameter.

Figure 2. Selected microphone signal to be used for signal recovery depending on the similarity
differences between the microphone signals and the outputs of the FBF and BM.

4. Experimental Results

To evaluate the performance of the proposed method, the acoustic environments
depicted in Figure 3 were simulated using the image method [35]. The dimension of
the room was [6.7 m, 6.1 m, 2.9 m]. Two microphones were located at [3 m, 3 m, 1.5 m]
and [3.14 m, 3 m, 1.5 m], respectively, 14 cm away from each other, which is typical
for modern smartphones. The reverberation times (RT60s) were 300 ms and 500 ms.
The distance between the desired source and the microphone array was 0.4 m, while that
for the interfering source was 0.8 m. The DoA for the desired source was−90◦, −60◦, −30◦,
and 0◦ when 0◦ indicates the broadside direction, while the interfering source was located
at [−90◦, +90◦] with a 30◦ interval.

Twenty utterances spoken by 13 male and 7 female speakers were selected randomly
from the TIMIT database [36] as the desired speech signals. Babble, F16, and Factory1 noises
from the NOISEX-92 database [37] and restaurant and street noises from the AURORA 2
database [38] were used as diffuse noise, which was constructed using the arbitrary noise
field generator [39]. Five competing talker utterances were selected randomly from the
TIMIT database as directional noises. The SNRs for diffuse or directional noise were 0,
5, 10, 15, and 20 dB. The sampling rate was 8 kHz and the 256 point STFT with a Tukey
window was used with the frame shift of 160 samples.

The empirically determined values of the parameters for the conventional TF-GSC
with postfiltering [16] and the proposed one with two additional modules are summarized
in Table 1. The ANC filter G and the noise reference power for ANC update Pest were
converged before evaluating the performance. The parameters not included in the table
were set to be the same as in [16], which produced the highest average performance.
Perceptual evaluation of speech quality (PESQ) scores [40] were carried out to evaluate
the performance.

Figures 4 and 5 show the average PESQ scores and the 95% confidence intervals (CIs)
for the input microphone signal, the output of the conventional TF-GSC with postfiltering,
and the proposed scheme in diffuse noise environment according to the SNR, RT60, and the
azimuth of the desired source averaged for five noise types. The conventional algorithm
improved the PESQ scores in all conditions, but the improvement in performance reduced
as the desired source moved from the broadside direction (0◦) to the end-fire direction
(−90◦). The proposed leakage suppression and signal recovery were considered to be
effective in maintaining the performance for all DoAs of the desired source. The improve-
ment in performance over the conventional TF-GSC was statistically significant when
the desired source was located near the end-fire direction (−90◦ and −60◦) and the SNR
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was higher than 0 dB, but was insignificant when the desired source was located at the
broadside (0◦). This may be because the steering error was smaller when the desired source
was located in the broadside direction, and the signal recovery module essentially has no
impact for the broadside as it just adds the scaled FBF output (X1(n) + X2(n))/2 to the
FBF output. A similar tendency was observed for both RT60s. The PESQ score differences
between the proposed and baseline beamformers for each noise type are shown in Figure 6.
The proposed beamformer improved the PESQ scores in both stationary and nonstationary
noise environments. The signal recovery module may work more effectively when the
desired source is located in the end-fire direction by recovering the attenuated desired
signal using the closer microphone signal.

Table 1. Parameters used for the baseline and proposed beamformers.

ANC update µ = 0.03 ρU = 0.97
TF ratio identification L = 20 ρP = 0.99 Nd = 4
Leakage suppression α = 0.0001

Signal recovery λ = 0.9 η = 0.1 β = 10

Figure 3. Room configurations with the locations of the microphones and the desired and interfer-
ing sources.

Figure 4. Cont.
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Figure 4. Average perceptual evaluation of speech quality (PESQ) scores and 95% confidence intervals for the noisy input
and the outputs of the baseline and proposed beamformers depending on the azimuth of the desired source in diffuse noise
environments with an RT60 of 300 ms.

Figure 5. Average PESQ scores and 95% confidence intervals for noisy input and the outputs of the baseline and the proposed
beamformers depending on the azimuth of the desired source in diffuse noise environments with the reverberation time
(RT60) of 500 ms.
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(a) (b)
Figure 6. Difference of the average PESQ scores for the proposed and baseline beamformers in diffuse noise environments
for five noise types with the RT60s of (a) 300 ms and (b) 500 ms.

Another set of experiments were carried out on the directional interference. We
conducted experiments on the speech enhancement in the presence of the competing talker.
Figures 7 and 8 show the average PESQ scores and CIs for the conventional and proposed
TF-GSC depending on the locations of the desired and interfering sources for two difference
RT60s. As in the case of the diffuse noises, the proposed method showed higher PESQ
scores than the conventional TF-GSC, achieving almost the same performance for all DoAs
of the desired source in contrast to the baseline TF-GSC. The improvement in performance
was significant except when the desired source was located at the broadside, as in the
diffuse noise case. The PESQ scores were improved even when the desired and interfering
sources were located in the same direction, although the improvement was smaller. This
may be because the interfering source was located farther than the desired source, as is
often the case with practical scenarios. Therefore, YU might contain more reverberant
components from the competing talker and YFBF might include more desired signal, which
enable the leakage suppression module to operate properly.

Figure 7. Cont.
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Figure 7. Average PESQ scores and 95% confidence intervals for the outputs of the baseline and proposed beamformers
depending on the azimuths of the desired source and a competing talker with an RT60 of 300 ms.

Figure 8. Average PESQ scores and 95% confidence intervals for the outputs of the baseline and proposed beamformers
depending on the azimuths of the desired source and a competing talker with an RT60 of 500 ms.

5. Conclusions

In this paper, we introduced two additional modules to mitigate the effect of the
steering error of the TF-GSC with postfiltering. The leakage suppression module suppresses
the leaked desired signal in the output of the BM by applying a spectral gain similar to
the square-root Wiener filter. On the contrary, the signal recovery module restores the
attenuated desired signal in the FBF output by adding a certain amount of the appropriate
microphone signal, which is chosen by examining the cosine similarities between the
microphone signals and the outputs of the FBF and BM. The experimental results showed
that the two proposed modules improved the performance of the conventional TF-GSC
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with postfiltering, both in diffuse noise environments and in the presence of a competing
talker, achieving almost the same PESQ scores for all of the DoAs of the desired signal.
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