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Samarium hexaboride is a candidate for the topological Kondo insulator state, in which Kondo
coherence is predicted to give rise to an insulating gap spanned by topological surface states. Here we
investigate the surface and bulk electronic properties of magnetically alloyed Sm1−xMxB6 (M ¼ Ce, Eu),
using angle-resolved photoemission spectroscopy and complementary characterization techniques.
Remarkably, topologically nontrivial bulk and surface band structures are found to persist in highly
modified samples with up to 30% Sm substitution and with an antiferromagnetic ground state in the case of
Eu doping. The results are interpreted in terms of a hierarchy of energy scales, in which surface state
emergence is linked to the formation of a direct Kondo gap, while low-temperature transport trends depend
on the indirect gap.
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The compound SmB6 is a mixed-valence Kondo lattice
system [1–3] that has been under intensive study since 2010
as a strong candidate for the topological Kondo insulator
(TKI) state [4–6]. Angle-resolved photoemission (ARPES)
measurements of the bulk band structure corroborate a TKI
picture, in which dispersive 5d-orbital bands hybridize with
semilocalized 4f-orbital states at the Fermi level to open a
gap with topologically inverted symmetries [7–12].
Topologically associated surface states are seen to emerge
as the gap opens at T ∼ 120 K, and surface conductivity
results in a low-temperature (T < 10 K) resistivity plateau.
The bulk insulating behavior and surface conductivity are
strikingly robust against fractional changes in stoichiom-
etry and nonmagnetic alloying [13–15]; however, doping
with magnetic elements (Ce, Gd) at a far lower ∼1% level
eliminates signatures of surface conductivity [13,14], con-
sistent with the expectation that magnetic disorder will
introduce backscattering and Anderson localization to the
topological surface state system [16–18]. While these
alloys represent fascinating extensions to the physics of
the parent compound, Kondo latices are thought to be
highly sensitive to disorder [37–39], and the fate of the TKI
band structure in alloyed scenarios is unknown. Here, we
report a comparative study of the electronic band structure,
transport, and magnetic susceptibility properties of alloys
incorporating small- and large-moment magnetic lanthanide

elements as Sm1−xMxB6 (M ¼ Ce,Eu).A clean low-temper-
ature gap in the bulk 5d band is found to persist at the Fermi
level up to the highest admixture levels tested (30%Ce, 20%
Eu) and to be spanned by topologically associated surface
states. The emergence of Fermi level topological surface
states in samples with an antiferromagnetic ground state
(Sm1−xEuxB6, x ≥ 0.1) presents an antiferromagnetic topo-
logical insulator scenario [40,41] that has been much sought
in recent years, with an advantage over other material
candidates in that the topological band gap is positioned
at the Fermi level. The physical conditions under which
topological surface states emerge are found to remain tied to
the direct 5d gap and to allow for a broad range of low-
temperature resistivity trends defined by the indirect Kondo
gap [42–44].
Single crystals of Sm1−xMxB6 (M ¼ Eu, Ce) were pre-

pared by the alumina flux method and details of the sample
growth are described in the Supplemental Material (Note 1
[18]). Multiple characterization methods, including x-ray
diffraction, scanning tunneling microscope, and ultraviolet
x-ray photoemission spectroscopy were performed, revealing
homogeneous alloying within single-phase crystals with
stoichiometry-consistent substitution on the lanthanide site
(Supplemental Material, Note 2 [18]). Most ARPES mea-
surements were performed at beam line 4.0.3 at the Advanced
Light Source, with a base pressure better than 5 × 10−11 Torr.
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The photon energy was set to hν ¼ 70 eV, corresponding to a
bulk Γ plane of the cubic Brillouin zone (see Supplemental
Material, Note 8 [18] for other photon energies).
Energy resolution was δE≲ 10 meV, and momentum
resolution along the dispersive axis of measurement was
δk < 3 × 10−3 Å−1. Measurements of kz dependence for
Sm0.7Ce0.3B6 were performed at the NSLS-II ESM beamline,
under approximately the same conditions. Samples were
cleaved in situ at T ∼ 20 K, using a top post glued to the
(001) surface. All ARPES data were taken within 10 h after
cleavage, and band structure near the Fermi level was stable
on this timescale (Supplemental Material, Note 3 [18]).
Additional method details for resistivity and magnetic sus-
ceptibility measurements are described in the Supplemental
Material (Note 4 [18]).
There are conflicting interpretations on whether a com-

plete topological classification of SmB6 surface states has
been achieved [45–47], particularly with respect to weakly
visible Fermi surfaces surrounding the Brillouin zone
center. However, measurements consistently show a single
surface state Fermi surface surrounding the surface X̄ point,
with a contour that is not greatly influenced by surface
termination [7–12,45–47]. Spin-resolved investigations

have found this state to be singly degenerate [12,48,49],
creating a topologically nontrivial surface state (TSS)
scenario along the X̄-M̄ axis [see Fig. 1(d) diagram and
Supplemental Material, Note 5 [18] ].
High-resolution ARPES experiments were performed on

Sm0.7Ce0.3B6 and Sm0.8Eu0.2B6 to address the question of
how this topological surface state responds to the altered
chemical environments. For Sm0.7Ce0.3B6, low-temper-
ature (T ¼ 20 K) measurements show a four-pocket
Fermi surface with a long elliptical orientation along the
Γ̄-X̄ axis, where the Fermi momentum is marginally closer
to Γ̄ than to X̄ [Fig. 1(a)]. These states are two-dimensional
[Fig. 1(e); see also Supplemental Material, Note 8 [44] ]
and qualitatively identical to the X̄-point surface state Fermi
surface observed at low-temperature for undoped SmB6.
Fermi pockets surrounding the Γ̄ point are not seen, as is
often the case for undoped SmB6 under the same meas-
urement conditions [10,11]. Examining band dispersions
along the Γ̄-X̄ axis reveals steeply sloped bulk states [black
dashed lines in Fig. 1(c)] from the X̄-point 5d pocket,
which merge with a flatband associated with 4f states. At
the Fermi level, there is no feature at the extrapolated Fermi
momentum of the 5d bulk bands [∼0.17 Å−1 for Fig. 1(c)
and ∼0.41 Å−1 for Fig. 1(g)], indicating a well-defined
bulk hybridization gap. The gap is crossed by highly
dispersive surface states that are offset in momentum from
the lower dispersion of the 5d band [see guides to the eye in
Fig. 1(c)] as is typically seen for undoped SmB6. A similar
scenario is seen along the X̄-M̄ axis [Fig. 1(g)], with only a
single surface state intersecting the Fermi level as required
for the topological insulator state attributed to SmB6.
The same features are seen in Sm0.8Eu0.2B6 [Figs. 2(a) and

2(b)], however,we find that the bulk electron pocket contours
have shifted away from the Brillouin zone center by Δk ¼
0.07 Å−1 relative to Sm0.7Ce0.3B6. If taken to represent an
isotropic fractional change in Fermi momentum, this indi-
cates the addition of 0.2 holes per unit cell in the 5d orbital.
This difference in the bulk electronic structures can be
understood by noting that the samarium sites in SmB6 are
mixed valent with a roughly equal mixture of 4f5 and 4f6

configurations [50], whereas cerium and europium have
strongly favored f-shell occupancies of 4f1 (Ce3þ) and 4f7

(Eu2þ) [51,52] (see characterization in Supplemental
Material, Note 6 [18]) and can be expected to contribute
∼50% fractional electron (Ce3þ) and hole (Eu2þ) doping,
respectively, to the samarium sublattice. The observed
difference in bulk 5d dispersions accounts for roughly
80% of this nominal doping effect, suggesting that most
of the doped charge resides in itinerant 5d states, with just a
few percent (< ∼5%) of an electron or hole doped into the
strongly correlated Sm 4f sublattice.
Raising the temperature of Sm0.8Eu0.2B6 from 10 to 180K

shows incremental broadening and a downward energetic
shift of the flat 4f state [Fig. 2(b)], as is also seen for undoped
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FIG. 1. Surface states after 30% Ce doping. (a) The Fermi
surface of Sm0.7Ce0.3B6, with dashed lines tracing ovoid surface
state electron pockets. (b) A low-energy ARPES cut along the
X̄-Γ̄-X̄ momentum axis (cut 1). (c) Surface (blue) and bulk
(black) bands are traced on momentum distribution curves from
(b), with an energy step of 6 meV. (d) A band structure diagram
showing (blue) a topological surface state and (black) hybridi-
zation-gapped bulk bands along the M̄-X̄-M̄ axis. The lower half
of the surface Dirac cone is expected to be a weaker bulk-
degenerate resonance state. (e) The two dimensionality of the
surface state is visible in kz dependence of the cut 2 Fermi
surface. (f),(g) An ARPES cut along the M̄-X̄-M̄ direction. The
energy step in (g) is 5 meV. All measurements were performed
at T ¼ 20 K.
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SmB6 [8,11]. The Fermi momentum of the in-gap feature
declines at T > 120 K [see Fig. 2(b)], as the surface state
(with larger Fermi momentum) vanishes and is replaced
within the incoherent Kondo gap by a continuation of the
bulk 5d state [see Fig. 2(e) progression]. The similarity of the
low-temperature Fermi level band structure in these highly
doped configurations is remarkable, but consistent with
recent theory for mixed-valent systems [53] and with a
majority of doped electrons occupying the itinerant 5d states
as attributed above.
Unlike these topological features, local moment physics

and many-body ordering energetics cannot be unaffected by
magnetic doping. AsCe doping level increases, themagnetic
susceptibility (χ-T) curves evolve rapidly and nonlinearly to
strongly resemble the CeB6 curve after just 30% substitution
[Fig. 3(a)]. Fitting inverse susceptibility (1=χ-T) with a
Curie-Weiss function in the high-temperature paramagnetic
regime (Supplemental Material, Note 7 [18]) reveals effec-
tive local moments of 5.4 μB (Sm0.99Ce0.01B6), 5.15 μB
(Sm0.97Ce0.03B6), 4.2 μB (Sm0.9Ce0.1B6), and 3.15 μB
(Sm0.7Ce0.3B6). The terminal value at 30% doping is
remarkably close to the local moment of CeB6, or the
free-ion 4f1 scenario, both of which are around 2.54 μB
[54,55].
Large-moment dopingwithEuyields a similarly nonlinear

trend, but in the opposite direction. Europium gravitates
strongly to the half filled large-spin 4f7 configuration
favored by intra-atomic exchange interactions, with a large
effectivemoment of8 μB in EuB6 [59]. Partial substitution of
samarium as Sm1−xMxB6 induces antiferromagnetic order
[60], which can be seen from the susceptibility kinks at

T ¼ 2.8 K (Sm0.9Eu0.1B6) and T ¼ 7 K (Sm0.8Eu0.2B6) in
Fig. 3(b). The effective moments extracted from
inverse susceptibility for Eu-alloyed SmB6 are 4.2 μB
(Sm0.95Eu0.05B6), 7.1 μB (Sm0.9Eu0.1B6), and 6.1 μB
(Sm0.8Eu0.2B6). The rapid change in local moments may
be aided by a complementary effect from charge doping.
Electron doping fromCe is expected to reduce local moment
by promoting occupancy of the zero-moment (7F0) multiplet
ground state of 4f6 Sm, and hole doping from Eu will have
the opposite effect by biasing the system toward large-
moment 4f5 configurations.
Transport trends are also very different between the Ce-

and Eu-alloyed samples. The resistivity of undoped SmB6

is strikingly enhanced beneath the Kondo onset of T ∼
50 K [Fig. 3(c)], before flattening into a plateau associated
with surface state conductivity [13,61,62] at T < 10 K.
Substituting 3% Sm with Ce causes T ≲ 5 K bulk resis-
tivity to be reduced by 1–2 of magnitude [Fig. 3(c)], an
effect that seems counterintuitive in the context of adding
defects, but matches expectations for an insulating Kondo
lattice, as impurities may create in-gap states and suppress
the coherence of the insulating Kondo band structure
[39,63]. The Kondo-regime resistivity of Sm1−xCexB6 is
suppressed further at higher doping levels, but retains an
upturn beneath T ≲ 50 K. For Sm0.7Ce0.3B6, the trend
beneath T ≲ 4 K appears to be metallic (positively sloped),
and resembles pure CeB6 [see Fig. 3(c) inset].
The insulating character of Sm1−xEuxB6 [Fig. 3(d)] is far

more robust, with a nonmonotonic trend under doping that
has been noted in previous literature [60]. The alloys retain
a characteristic Kondo insulating exponential trend (see
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FIG. 2. Surface state emergence after 20% Eu doping. (a) The Fermi surface of Sm0.8Eu0.2B6. (b) A low-energy ARPES cut taken
along the high-symmetry X̄-Γ̄-X̄ direction [traced in (a)] is shown as a function of temperature and annotated with the momentum-axis
center of mass of Fermi level features. Raw data underlying the T ¼ 10 (c) and 180 K (d) images are traced with surface (blue) and bulk
(black) bands. The Fermi level is indicated with a thicker line, and the energy step is 6 meV. (e) Raw data curves within 50 meVof the
Fermi level are shown for selected temperatures, with an energy step of 7 meV.
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Supplemental Material, Fig. S9 [18]). Mild inflections of
resistivity are seen at the Néel transitions, but are not very
distinguishable from other nonlinear details within the plot
and differ starkly from the dramatic change caused by
ferromagnetism at TC ∼ 12 K in EuB6 [59].
With respect to the trend toward metallicity in Ce alloys,

it is intriguing to note that pure CeB6 also presents a
4 f=5 d Kondo lattice scenario, with a superficially similar
onset of Kondo-associated resistivity to SmB6 at T ≲ 50 K
[Fig. 3(c)]. However, the CeB6 bulk band structure that
emerges from low-temperature Kondo coherence is met-
allic due to the high density of Kondo-active large-moment
sites [64], and the modest increase of resistivity as Kondo
coherence sets in appears to represent the transition to a
low-mobility, heavy-Fermion band structure [65,66].
However, there is no fully established approach to model-
ing the band structure of a dense Kondo lattice like CeB6 or
a mixed-valent one like SmB6. Theory for SmB6 often
builds from a computationally tractable single-particle band
hybridization picture, however, the monovalent nature

ascribed to cerium in CeB6 is much less compatible with
such a picture, and the coincidence of Kondo temperature
scales within resistivity measurements is suggestive that a
complete theory for Sm0.7Ce0.3B6 may need to go beyond a
single-particle modeling basis.
From an empirical perspective, Sm0.7Ce0.3B6 has supe-

rior T < 50 K conductivity to pure CeB6 and preserves the
topological surface state of SmB6, and so appears to be a
poor fit for the standard picture in which the metallicity of a
disordered Kondo insulator comes from an in-gap impurity
band [39]. Examining the low-temperature 4f states in
greater detail, we find that they are broader along the
energy axis than those seen in SmB6, with a peak width at
half maximum (half-width) that is greater by ∼15–20 meV
[Fig. 4(a)]. This change is much larger than the ∼4 meV
insulating gap attributed from the activation of resistivity in
SmB6 [15] and suggests that impurities may close the gap
by introducing a broader continuum of diffusively con-
ducting states. Similar 4f-associated states are seen by
ARPES at low temperature in CeB6, but are much broader
[67,68], making it difficult to perform a fine comparison.
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As temperature increases, a rapid thermal activation of
4f half-width is seen for undoped SmB6 and Sm0.8Eu0.2B6

at T ≳ 80 K, and is consistent with the square of temper-
ature (T2) trend expected for Fermi liquid self-energy. In all
cases, surface states and 4 f=5 d hybridization are visible
at 4f half-width values less than 40 meV, found at
temperatures T ≲ 120 K. This phenomenology is consis-
tent with recent theoretical investigations, which have
proposed that the topological insulating gap of band
insulatorlike TKI systems may be highly robust against
defects at the ∼20% level [53,69]. This picture may also
relate to the lack of surface states in ARPES studies of pure
CeB6 [67,68], which has a 4f-state width considerably
larger than 40 meV.
The picture that emerges is one in which the topological

surface states of SmB6 alloys begin to emerge in concert with
the direct 4 f=5 d hybridization gap as coherence improves
at T ≲ 120 K. This matches expectations that the direct
Kondo gap will define topology within a band picture [see
Fig. 4(c)]. The transition is unlikely to be sudden, as earlier
studies on undoped SmB6 have shown that the bulk bands
evolve continuously throughout the onset of f-electron
coherence [11]. Surface states satisfy a nontrivial topology
along theX-M axis and are found near the outer boundary of
the kz-projected 5d state continuum [Fig. 4(b)]. The robust-
ness of both surface states and the gap are remarkable given
that SmB6 may otherwise be unique as a TKI andmay be due
to the unusual tendency of Sm toward mixed-valent elec-
tronic configurations [53,69] (see further discussion at the
end of the Supplemental Material, Note 2 [18]). Moreover,
the crossover to a metallic (positively sloped) low-temper-
ature resistivity trend appears to relate to changes in the band
structure on a smaller energy scale comparable to the
∼4 meV indirect band gap.
Taken collectively, these results show that TKI surface

states can still emerge in alloys that deviate greatly from the
parent compound SmB6 in terms of metallicity, magnetic
local moment, and magnetic ground state. This will enable
the exploration of TKI surface physics in new physical
regimes and supports recent theoretical modeling, which
has suggested that topological band gap and surface state
properties of SmB6-like TKI materials will be far more
robust against disorder than is typically expected for Kondo
lattice systems [53,69]. Comparing these alloys with
undoped SmB6 and CeB6, the emergence of TKI surface
states is found to consistently coincide with the opening of
a direct band gap in the bulk 5d spectral function, which in
turn is associated with 4f-state half-widths falling beneath
a critical ≲40 meV threshold. Local moments are seen to
vary by a factor of 2, from roughly 3.15 μB in Sm0.7Ce0.3B6

to over 6 μB in Sm1−xEuxB6 (x ¼ 0.1, 0.2), and the
differing 4f-electron energetics appear to result in con-
trasting trends toward metallic- and insulatinglike Kondo
lattice scenarios for Ce and Eu alloys, respectively.
The insulatinglike scenario realized by Sm0.8Eu0.2B6

places topological surface states at the Fermi level in a
system with TN ¼ 7 K antiferromagnetism, presenting a
remarkably clean candidate system for the much-sought
antiferromagnetic topological insulator state.
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