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Abstract 

Due to the complex structure and function of the kidneys, the mechanism of kidney disease 

remains unclear. In particular, the present transcriptomics approaches at the bulk level are unable 

to differentiate the primary autonomous responses, which lead to disease development, from the 

secondary cell non-autonomous responses. Single-cell analysis techniques can overcome the 

fundamental limitations inherent in the measurement of heterogeneous cell populations and 

clarify the central issues regarding kidney biology and disease pathogenesis. Therefore, the 

application of single-cell sequencing helps in identifying the biomarkers and pathways related to 

the disease, stratifying patients, and setting appropriate treatment methods for each individual. 

This article covers various single-cell analysis techniques and single-cell transcriptomics studies 

performed in the field of nephrology. Moreover, we discuss the future of precision medicine in 

nephrology using single-cell analysis. 
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Introduction 

Defining gene regulatory mechanisms that determine cell function and behavior is fundamental 

for understanding the disease; however, due to the complex structure and function of the kidneys, 

the mechanisms governing development and progression of kidney disease remain unclear. 

Although, RNA sequencing has been used to understand the cause and progress of kidney 

disease, it is difficult to understand the biological differences between cell types as the bulk 

transcriptome presents average values for various cell types. As an alternative, single-cell RNA 

sequencing (scRNA-seq) was developed. scRNA-seq involves single-cell isolation, transcript 

capturing, library construction, sequencing and computational analysis, and enables the evaluation 

of basic biological properties of individual cells and cell populations at high resolution. It is a 

powerful approach not just to analyze the complex processes involved in kidney diseases but also 

to understand the causal mechanisms underlying disease development, which eventually facilitates 

precise identification of the therapeutic targets.  

Precision medicine characterizes patients based on the information regarding all factors that can 

affect treatment, from dysregulated genes and cells to the patient’s lifestyle, diet, and environment. 

First, precision medicine aims to identify the biomarkers that can predict the success or failure of 

the treatment for kidney diseases in less time than that required in standard determination. 

Second, it aims to identify pathways for therapeutic intervention using existing pharmacological or 

novel target-specific agents [1]. Identification of the specific target genes, crucial signaling 

pathways, and primary target cell types is the first step to enable this transition in nephrology. 

Although remarkable efforts have been made to identify the target genes, the cellular targets 

involved in the development of kidney diseases are less explored due to technical limitations. 

Application of scRNA-seq can be a perfect solution to address the issues in precision medicine as 

it defines the cell types and states of complex diseases such as chronic kidney disease (CKD) and 

acute kidney injury (AKI. Moreover, scRNA-seq helps to identify potential biomarkers and signaling 

pathways for better diagnostics, prognostics, targeted therapy, early detection, and noninvasive 

monitoring (Fig. 1). Given the advantages, scRNA-seq would provide the foundation for realizing 

precision medicine in nephrology. In this review, we describe several techniques of single-cell 

analysis and scRNA-seq studies performed in the kidneys. Moreover, the application of single-cell 

analysis to precision medicine in nephrology has also been discussed. 

 

Figure 1. Application of single-cell transcriptomics in precision medicine for kidney diseases 

Single-cell analysis can be performed at various levels with kidney biopsy, blood, and urine 

samples from patients with kidney diseases. This approach provides a high resolution to observe 
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disease transitions in each kidney sample at a single-cell level. Single-cell transcriptomics will help 

identify disease-related biomarkers and pathways. Based on these findings, precision medicine can 

be achieved by classifying patients more accurately and administering treatments tailored for each 

patient group. 

Methodological overview 

1. Sample preparation for single cell analysis 

scRNA-seq commences by separating tissues or organs into single cells. It involves the 

following processes: single-cell isolation, cell lysis, complementary DNA (cDNA) synthesis, 

cDNA amplification, library preparation, and sequencing.  

Obtaining high quality single cell suspensions is a key determining factor for successful 

single-cell studies. The single-cell preparation process is the biggest cause of unwanted 

technical variation and batch effects in all single-cell studies. To obtain a single cell 

suspension from kidney samples, the fresh tissue was dissociated by mechanical cutting and 

enzymatic digestion. An automatic tissue dissociator was utilized to minimize the batch 

effects. Because different tissues have different characteristics, the protocol must be 

optimized for each purpose and interest. Excessive tissue dissociation causes cell damage 

and low viability, which can result in unwanted transcriptional changes, ambient mRNAs and 

higher amounts of mitochondrial mRNAs [2, 3]. In contrast, insufficient tissue dissociation 

causes excessive multiplets in the data rather than single cells. In addition, the single cell 

suspension obtained through tissue dissociation should be filtered through cell strainers with 

an appropriate size or debris removal solution to remove the cell debris. Cell counting is 

another critical step because overloading the cell suspension to the equipment may cause 

problems in which multiple cells are captured together. In contrast, underloading can cause 

loss of information due to empty droplets. Multiplets can be removed using computational 

tools such as Scrublet and DoubletFinder [4, 5]. It is also important to determine the 

appropriate number of cells to be analyzed, which requires consideration of sample 

heterogeneity and abundance of the target cell type.  A large number of cells have to be 

sequenced to analyze a smaller cell population in the kidneys (a total of 20,000 cells are 

required to obtain 100 target cells if the target cell type constitutes only 0.5% of the whole 

kidney), as approximately 60% of the whole kidney is composed of proximal tubule cells [6]. 

scRNA-seq analysis is hindered when the cells are difficult to isolate during sample 

preparation or if they are damaged. Single nucleus RNA sequencing (snRNA-seq) overcomes 

these limitations and analyzes the transcripts by isolating single nuclei rather than individual 

cells [7, 8]. Although scRNA-seq requires fresh tissue samples, snRNA-seq can be performed 
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on frozen samples, and can also analyze transcripts of tissues that are difficult to separate 

because of intertwined cells [8]. Furthermore, snRNA-seq reduces cell stress and composition 

bias generated during the separation step. Nevertheless, information on cytoplasmic RNA 

cannot be obtained, as only RNA in the nuclei can be analyzed, and various intron sequences 

are observed. Therefore, it is necessary to select a suitable method based on the purpose of 

the experiment. 

2. Single RNA sequencing technologies 

Various scRNA-seq methods have common procedures including RNA molecule capture, 

reverse transcription, cDNA amplification, sequencing library construction, and high 

throughput sequencing  

Based on the library construction methods, scRNA-seq is largely divided into full-length 

scRNA-seq and tag-based scRNA-seq. Full-length scRNA-seq can be utilized not only to 

measure gene expression levels, but also to identify transcript isoforms, alternative splicing, 

and single nucleotide polymorphisms within the transcripts [9-12]. It presents high 

sequencing coverage and mapping efficiency; however, it requires limited cell throughput 

(hundreds of cells), relatively large batch effect, high sample preparation time, and high cost 

per cell because the samples must be prepared independently [9, 13-15]. Smart-seq2 and 

Quartz-seq are representative methods of full-length scRNA-seq [16, 17]. The tag-based 

scRNA-seq technique is mainly used to estimate the transcript abundance by sequencing the 

3′-end of the transcripts in a large number of cells (tens and thousands to even millions of 

cells) [9, 13, 18, 19]. To distinguish different cells and to accurately measure the transcript 

copies, cDNA molecules are labeled with barcode sequences such as cell barcodes and 

unique molecular identifiers (UMIs). The tag-based scRNA-seq is again divided into droplet-

based [19-21], microwell-based [22, 23], and split-pool barcoding-based technologies [24, 25], 

according to the labeling method. Droplet-based technology uses oil droplets and barcoded 

beads made of resin, to generate single droplets through water and oil in the chamber. Next, 

one cell and one bead pair are encapsulated in the droplets, and each single-cell mRNA is 

captured by oligo-dT of the barcoded bead. During cDNA synthesis, cell barcodes and UMIs 

are added to the cDNAs [19-21]. Although droplet-based barcoding obtains limited 

information on the 3′-end of the mRNA, it improves the throughput of single-cell analysis 

and remarkably reduces the experiment time, labor, cost per cell, and batch effect by 

simplifying the experimental procedure. Microwell-based technology captures mRNA by 

loading the cells on a plate with microwells, washing doublets with capillaries, and adding 

barcoded beads [22, 23]. It is simple and economical. Split-pool barcode methods identify a 

single cell by combinatorial indexing without the need for separation process to obtain a 
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single cell. Single-cell combinatorial indexing RNA sequencing (sci-RNA-seq) and split pool 

ligation based transcriptome sequencing (SPLiT-seq) are typical methods of split-pool 

barcoding[24, 25]. These techniques distribute numerous cells that are permeabilized to 96- 

or 384-well plates; the first molecular index is introduced to the mRNA of cells in each well, 

with in situ reverse transcription. After the first barcoding, the cells are pooled and numerous 

cells are distributed in another well plate again. Thereafter, a second barcode is sequentially 

added that provides a unique combination of barcode for each cell [24, 25]. 

Another challenge of scRNA-seq is the loss of cell location and orientation information 

during the tissue dissociation process. Remarkable efforts have been made to understand the 

cells by recreating a near-realistic cell environment. Because cells exist in a three-dimensional 

(3D) space and interact within that space, techniques have been developed to understand 

cell types and their locations through the spatial transcriptome analysis. Single-molecule 

fluorescence in situ hybridization (smFISH) was used to identify the RNA location and copy 

number; however, it could not measure multiple cells simultaneously [26, 27]. To overcome 

these limitations, multiplexed error robust FISH (MERFISH), a method that labels multiple 

RNAs in a single cell, and sequential-FISH (seq-FISH), which carries out multiple imaging FISH, 

have been developed [28, 29]. In addition, spatially resolved transcript amplicon readout 

mapping , which labels RNA with a DNA probe, and a fluorescent in situ sequencing  

method, which improves existing padlock probe shortcomings, have been developed [30, 31]. 

Visium, a spatial transcriptomics technology from 10× genomics, is a gene expression 

technique for morphological context. This technique provides a multidimensional view of 

tissue biology through high-throughput mRNA analysis of intact tissue sections [32]. 

Computing technologies such as Seurat, DistMap, and novoSpaRc are also simultaneously 

evolving [33-35], and efforts are made to understand the progression and function of cells in 

the spatial configuration.  

There are several limitations to be overcome in scRNA-seq. In scRNA-seq experiments, 

dissociation may cause stress or change the cell proportion [2, 36]. The batch effect may be 

induced due to differences in protocols, sample handling, and platforms [37, 38]. In addition, 

the transcript efficiency per cell is relatively lower compared to bulk RNA-seq [39, 40]. The 

dropout event occurs in the droplet-based scRNA-seq method [20, 21, 41]. 

 

3. Computational analysis of scRNA-seq data 

The raw data generated via sequencing is processed to obtain a gene by cell data matrix 

through analysis pipelines such as Cell Ranger [21], SEQC [42], and zUMIs [43].  
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Quality control filters include only high-quality cells, making it easier to identify distinct cell 

type populations when clustering cells, and identifying failed samples so that data can be 

recovered or removed from analysis. This requires generation of quality metrics such as the 

number of UMIs per cell, number of genes detected per cell, and percent of mitochondrial 

genes [44-46].  

Normalization is essential for accurate comparison of gene expression between samples. 

Because the gene expression count depth of the same cells can vary due to the diversity 

inherent in each step, such as single cell capture, reverse transcription, and sequencing, the 

gene expression counts are scaled by the total number of sequencing reads or counts per 

cell [45, 47, 48]. 

After normalization, clustering analysis was performed to separate the cells based on gene 

expression patterns and identify the cell types. Seurat package allocates cells to clusters 

based on the principal component scores obtained from the expression of the most variable 

genes[49, 50]. For visualization of the cell clusters, t-distributed stochastic neighbor 

embedding and uniform manifold approximation and projection are mainly used [51, 52]. 

The identified clusters are then assigned into known cell types based on well-known cell 

type-specific markers or automatic cell assignment programs. Several cell marker databases 

for cell type classification also exist, such as Cell Finder [53], CellMarker [54], and PanglaoDB 

[55]. Despite these databases, marker-based cell-type classification allows markers to be 

represented by other cell types or complicate cell type classification by the heterogeneity of 

cell states. Various automated cluster annotation methods have been developed that 

combine annotation and clustering, and this paper presents a comparison of the various 

automatic cell identification methods [56]. Downstream analysis such as trajectory analysis, 

differential expression analysis, gene set analysis, and gene regulatory networks are well-

summarized in the other reviews [45, 47, 57]. 

4. Integration of single cell transcriptomics with another omics data 

Recently, a single-cell sequencing study has been developed to simultaneously analyze omics 

such as genome, epigenome, transcriptome, and proteome in one cell. By integrating 

genome and transcriptome information, it is possible to confirm the effect of DNA copy 

number variation on gene expression, transcript changes according to genomic changes, and 

the effect of mutations in the coding or non-coding region during transcript expression [58]. 

Genome and transcriptome sequencing (G&T-seq) is a technology that combines whole 

genome amplification (WGA) and Smart-seq2 [59]. As the relationship between DNA 

methylation and the transcriptome is crucial, a single-cell methylome and transcriptome (scM 

and T-seq) was developed to analyze this relationship in a single cell [60, 61].  
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Moreover, technologies that integrate chromatin information and the transcriptome have 

been considered. Single-cell combinatorial indexing-chromatin accessibility and mRNA (sci-

CAR) integrates single-cell transcriptome analysis technology (sci-RNA-seq) and epigenetic 

analysis technology (sci-ATAC-seq) into one protocol [62]. Herein, it is possible to assess the 

relationship between the differentially expressed genes and chromatin regions that regulate 

these genes. 

RNA and protein determine the properties of a biological system; however, because of the 

distinct half-life of mRNA and protein, and the effects of post-transcriptional modification, it 

is difficult to evaluate the correlation between mRNA and protein levels [58]. Simultaneous 

identification of the transcriptome and proteome at the single-cell level has helped in 

addressing this challenge by exploring RNA and protein abundance. Cellular indexing of 

transcriptomes and epitopes sequencing (CITE-seq) and RNA expression and protein 

sequencing (REAP-seq) assay can simultaneously analyze cell proteins and transcripts with 

oligonucleotide-labeled antibodies at a single-cell level, and can detect proteins barcoded 

into multiple antibodies and more than 20,000 genes [63, 64]. 

By analyzing the genome, epigenome, transcriptome, and proteome in a single cell, various 

techniques unaffected by cellular heterogeneity have been developed to overcome the 

limitations of single transcriptome studies. Through the continuous development of 

bioinformatics algorithms and experimental technology advances, more complex and 

important analyses will be possible. These single-cell multiomics can help researchers to 

precisely distinguish subtypes of cells from heterogeneous cell populations [65-67]. In 

addition, a more accurate lineage trajectory analysis is possible by integrating gene 

expression and epigenetic changes obtained during cell division and delivery to daughter 

cells [68]. Present single-cell multiomics data can reveal the correlation between different 

omics information, and presumably, may effectively reveal the causal relationship between 

omics and technology development. 

 

Approaches and utility of single cell transcriptomics in nephrology 

- Kidney single-cell atlas 

Until now, various scRNA-seq studies have been conducted in the diseased kidneys and 

normal kidneys across humans and mice. Based on the results of these studies, various 

databases have been constructed. Table 1 summarizes the databases of scRNA-seq studies 

performed in the kidneys. 
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Table 1. List of single-cell analysis databases 

Definition Resource Target 

disease 

Speci

es 

Cell 

number 

Platform 

Single-cell atlas from 

healthy mouse 

kidneys [6] 

http://susztaklab.com/sc  Normal Mous

e 

57,979 10x 

Genomic

s 

Single-cell atlas of 

the mouse glomeruli 

[69] 

https://shiny.mdc-berlin.de/mgsca/  Normal Mous

e 

~13,000 Drop-

seq 

Single-cell RNA 

sequencing for each 

collecting duct type 

[70] 

https://hpcwebapps.cit.nih.gov/ESBL/D

atabase/scRNA-Seq/alpha-

fraction.html  

Normal Mous

e 

235 Fluidigm 

C1 

Profiling kidney cell 

by lineage, gender, 

zonation [71] 

https://cello.shinyapps.io/kidneycellexp

lorer/  

Normal Mous

e 

31,265 10x 

Genomic

s 

Single-cell RNA 

sequencing of 

human kidney [72] 

  Normal Huma

n 

23,366 10x 

Genomic

s 

Profiling of human 

kidney development 

by single-cell RNA 

sequencing [73] 

  Kidney 

develop

ment 

Huma

n 

~3,000 STRT-

seq 

Inflammatory 

response in 

transplantation 

kidney [74] 

http://humphreyslab.com/SingleCell/  Transplan

tation 

Huma

n 

4,487 InDrops 

Single-nucleus RNA 

sequencing of 

human kidney [7] 

  Normal Huma

n 

17,659 

(nuclei) 

Drop-

seq 

Single-cell atlas of 

the human kidney's 

immune system from 

mature and fetal 

kidneys [75] 

https://www.kidneycellatlas.org/  Normal Huma

n 

67,471 10x 

Genomic

s 

Human kidney cell 

atlas by Mux-seq 

[76] 

  Normal Huma

n 

45,000 10x 

Genomic

s 

Single-cell RNA 

sequencing from 

patients with lupus 

nephritis [77] 

  Lupus 

nephritis 

Huma

n 

4,019 Fluidigm 

C1 
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Kidney immune cell 

profiling by single-

cell RNA sequencing 

in patients with 

lupus nephritis [78] 

https://immunogenomics.io/ampsle/  Lupus 

nephritis 

Huma

n 

8,455 CEL-

seq2 

Single-cell atlas of 

the human diabetes 

kidney [79] 

http://humphreyslab.com/SingleCell/ Diabetes Huma

n 

23,980 

(nuclei) 

10× 

Genomic

s 

Single-cell RNA 

sequencing of mouse 

glomeruli with 

diabetes [80] 

  Diabetes Mous

e 

644 Fluidigm 

C1 

Single-cell RNA 

sequencing from 

UUO mouse model 

[81] 

https://argonaut.is.ed.ac.uk/shiny/katie.

connor/mac_shiny/  

UUO Mous

e  

25,381 10x 

Genomic

s, 

SMART-

seq2 

 

The production of a single-cell atlas offers several advantages. First, by identifying the cell 

types of the differentiated cells, we can fathom the stage of development and 

differentiation. Second, it helps to better understand the mechanism of disease 

development and progression. By analyzing the diseased tissue of various patients at a 

single-cell level and comparing it with the cell atlas of a healthy person, it is possible to 

understand the heterogeneity of cells in the diseased tissue and precisely determine the 

cause of the disease. By analyzing the single cells in diseased tissues of various patients, 

the factors that contribute to differences between individuals can be revealed more 

accurately, making it possible to suggest suitable and personalized treatments for each 

patient. Eventually, it also facilitates the development of new drugs and biomarkers. Efforts 

to the build kidney’s single-cell atlas are in process. 

Park et al. constructed a cell atlas using scRNA-seq for 57,979 cells from the healthy 

mouse kidneys [6]. They identified previously defined 18 kidney epithelial and immune cell 

types as well as novel transitional cell types located between intercalated cells (ICs) and 

principal cells (PCs), which are distinct cells of the collecting ducts. Moreover, they revealed 

that Notch signaling is responsible for the transition of ICs to PCs. Karaiskos et al. 

performed single-cell profiling on mouse glomerulus cells [69]. They identified previously 

defined glomerular cell types such as podocytes, mesangial cells, and endothelial cells. 

They also revealed novel marker genes for all glomerular cell types and transcriptional 

heterogeneity of each cell type via sub-clustering the endothelial cells and the podocytes. 
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Furthermore, Chen et al. performed scRNA-seq on mouse collecting duct cells [70]. Ransick 

et al. anatomically dissected the male and female kidneys to perform anatomy-guided 

scRNA-seq [71]. They confirmed sexual diversity along with spatial and temporal diversity 

in nephrons and the collecting system. 

Liao et al. identified 10 normal human cell clusters via scRNA-seq with 23,366 kidney cells 

from 3 human donors [72]. Proximal tubule cells and collecting duct cells were classified 

into 3 and 2 subtypes, respectively. For gene expression profiling of human fetal kidney 

development, Wang et al. applied scRNA-seq to 3,543 renal cells spanning several 

embryonic stages and classified the major cell types of the human fetal kidney [73]. 

Moreover, they identified two subpopulations in the cap mesenchyme and reported 

heterogeneity of cap mesenchyme through differences in their molecular characteristics. 

Furthermore, they identified the transcription factor and signaling pathway involved in 

nephron tubule segmentation during fetal kidney development. Wu et al. performed 

scRNA-seq of human kidney allograft biopsy samples and confirmed the proinflammatory 

response of allograft rejection by comparing biopsy samples with healthy kidney epithelial 

transcriptomes [74]. Understanding the similarities and differences of organ-specific tumors 

and the origin of the tumors is crucial for suitable treatment. Young et al. reported single-

cell profiling of human renal tumors and normal tissues from pediatric and adult kidneys 

[82]. They confirmed that Wilms tumor, a pediatric kidney cancer, was derived from 

abnormal fetal cells. The origin of the tumor was predicted by matching the transcriptome 

of adult kidney cancer to a specific subtype of the proximal convoluted tubular cells. Lake 

et al. optimized the snRNA-seq pipeline for clinical specimens to define the molecular 

transition states of more than 10 nephron segments across two major kidney regions, 

proximal tubules and collecting ducts [7]. Thus, this pipeline describes the anatomical 

nephron organization and provides a starting point for building a molecular and 

physiological atlas that can be used as an important reference for identifying variations in 

several kidney diseases. Stewart et al. attempted to solve the spatiotemporal immune 

topology in human kidneys via scRNA-seq [75]. The scRNA-seq of mature and fetal 

kidneys revealed the asymmetric distribution of immune cells via spatial distribution 

analysis of cells throughout the kidney, and the contribution of each cell type based on the 

nephrogenesis stage was analyzed. This kidney immune cell atlas can help understand the 

pathogenic mechanisms and identify the therapeutic targets in immune and infectious 

kidney diseases.  

Recently, single-cell studies of human and mouse kidneys characterized the complexity of 

kidney tissues; however, some scRNA-seq studies missed the known cells and subtypes. 
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This occurs because sample preparation, dissociation method, and batch effects have an 

impact on the detection of rare or sensitive cells. A multiplex approach for droplet snRNA-

seq (Mux-Seq) was applied to minimize batch variation [76]. This allows feasible application 

of several human biopsies to scRNA-seq at once, thereby enabling efficient and successful 

identification of different kidney cell communities in healthy and diseased models. 

- Single-cell analysis of kidney diseases 

Previous studies have reported the application of scRNA-seq to the kidneys of patients 

with lupus nephritis (LN). Der et al. reported that the type 1 interferon response in the 

patient’s tubular epithelial cells was higher than that in the healthy controls, and also 

confirmed clinically relevant signatures related to the disease in kidney biopsy as well as a 

skin biopsy [77]. Arazi et al. performed scRNA-seq for the kidney tissues of patients with 

LN and healthy control, and confirmed that leukocytes in the kidney were active in the 

disease conditions and presented differences in activation status before and after the 

inflammatory reaction [78]. Subgroups of innate and adaptive immune cells expressing 

various transcription factors related to systemic lupus erythematous (SLE) were identified 

by analyzing cluster-specific expression of genes related to disease risk through genome-

wide association studies. The scRNA-seq of LN tissues clinically confirmed the molecular 

signature associated with prognosis, which can improve the standard of current patient 

care and stratification.  

Transcriptome profiling of the kidney tissue or isolated glomeruli provides insight into the 

pathogenesis of kidney fibrosis. Wilson et al. performed snRNA-seq using 23,980 nuclei 

from control and diabetic kidney cortex samples [79], which revealed gene expression 

changes in diabetic glomeruli, mesangial cells, endothelial cells, and diabetic proximal 

convoluted tubules and ascending limbs. In addition, intercellular signal changes were 

observed in the glomerular cell types through differentially expressed ligand-receptors. 

Differential expression analysis of the leukocytes revealed that infiltrating immune cells 

contribute to the generation of kidney risk inflammatory signature (KRIS) markers. These 

gene expression changes may be useful in identifying biomarkers and signaling pathways 

early in diabetic nephropathy. To better explain the mechanism of an early diabetic kidney 

disease development, Fu et al. performed scRNA-seq for gene expression analysis of 

kidney glomerular cells in a diabetic mouse model. They identified 5 distinct cell clusters 

and novel glomerular cell specific markers. Comparison of the scRNA-seq data between 

the diabetic and normal mouse kidneys revealed that the identified cell clusters were the 

same, but the immune cell population increased in diabetic mice. Moreover, they 

confirmed remarkable gene expression changes in endothelial and mesangial cells of 
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diabetic mouse kidneys. These analyses identify key factors involved in diabetic kidney 

disease progression and thereby help in implementing new treatment approaches [80]. 

Using the reversible unilateral ureteric obstruction model (R-UUO), changes observed in 

renal injury and repair were noted at the single-cell level [81]. The scRNA-seq analysis 

performed and revealed detailed characteristics of myeloid cell heterogeneity in damaged 

and recovering kidneys by identifying new monocyte and macrophage subsets that have 

not been observed in the kidney [81]. These data could identify potential therapeutic 

targets that can inhibit the progression of kidney disease and aid in the development of 

therapeutics for kidney diseases. 

Intratumoral heterogeneity interferes with marker-based anticancer treatment because 

targeted therapy only removes a specific population of tumor cells while failing to detect 

others. To distinguish molecular and cellular heterogeneity in renal cell carcinoma, Kim et 

al. performed transcriptome profiling of primary and metastatic renal cell carcinoma at 

single-cell resolution [83]. The study demonstrated that metastatic cancer cells exhibit 

distinct gene expression patterns with increased metastatic and aggressive signatures 

compared to primary cancer cells. Based on transcriptome profiling and drug screening, 

drug sensitivity and activation status of signaling pathways were predicted, and the 

correlation between the predicted signature and measured data was verified. Based on 

single-cell transcriptome analysis, identifying a subgroup of cells that have an active state 

for signaling pathways and drug screening can lead to the most effective combination of 

drugs to eliminate the potentially targeted cancer cells. Such approaches will help 

overcome the intratumoral heterogeneity that interferes with the success of precision 

medicine. The immune cells of the tumor microenvironment (TME) are crucial in 

determining the response to cancer immunotherapy. Nevertheless, the role of immune 

cells in clear cell renal cell carcinoma (ccRCC) remains unclear, and most patients do not 

respond to these treatments. Vishwakarma et al. applied scRNA-seq to the tumors and 

immune cells in the blood from patients with ccRCC to characterize the TME of ccRCC [84]. 

They identified several intratumoral CD8 T cell states that characterize the effector, memory, 

and exhausted subpopulations along with the multiple cell states of tumor associated 

macrophages and dendritic cell types. Moreover, they demonstrated intratumoral cytotoxic 

and regulatory CD4 T cell clusters, establishing tumor-infiltrating effectors and memory 

programs. These results provide a basis for facilitating research on TME to identify new 

therapeutic targets and biomarkers. 

 

Application of single-cell analysis in precision medicine 
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Research on most diseases related to genetic or epigenetic alterations can make remarkable 

progress via single-cell analysis. Various biomedical fields such as microbiology, immunology, 

neurology, and oncology have already been studied by applying single-cell analysis in precision 

medicine, which has the potential to improve disease diagnostics, prognostics, targeted therapy, 

early detection, and noninvasive monitoring [85]. 

Existing drug screening methods provide only rough readouts such as cell survival, proliferation, 

altered cell morphology, or specific molecular findings revealing whether a specific enzyme is 

blocked. Therefore, most assays miss the cell state changes or subtle changes in gene expressions 

that can reveal the mechanisms appearing inside the treated cells. In addition, it may not be 

possible to detect unexpected side effects of the drug tested, or various responses between cells 

that are genetically identical to the same drug. During drug development, the application of 

single-cell sequencing provides more detailed information based on the genetic, epigenetic, and 

transcriptomic profiles of responders compared to those of nonresponders, and further helps in 

improving the efficiency and accuracy of drug development [86]. Due to limitations in studying 

the mechanism, heterogeneous response, and off-target effects of drugs, Srivatsan et al. 

introduced “sci-Plex,” which combines nuclear hashing and conventional sci-RNA-seq to quantify 

the global transcriptional responses to numerous independent perturbations at single-cell 

resolution [87]. Sci-Plex can distinguish the distinct effect of a drug on a cellular subset, and can 

reveal the heterogeneity of a cellular response to perturbation. Furthermore, it is possible to 

measure changes in the relative proportions of a subset of distinct cells across the drugs. Shin et 

al. developed a multiplexed scRNA-seq method that can profile multiple experimental conditions, 

and evaluated whether the approach can simultaneously perform single-cell transcriptome 

profiling for multiple drugs [88]. After drug treatment, a 48-plex single-cell experiment was 

performed, and each drug revealed a unique transcriptome response and target specific gene 

expression signature at the single-cell level. They demonstrated that this method can be applied 

to screen drugs and their transcriptional responses in a high-throughput manner. Kim et al. 

performed drug screening for renal cell carcinoma based on single-cell transcriptome analysis. 

They identified cellular subpopulations with activation status for the signaling pathway based on 

single-cell transcriptome analysis, and derived effective combinations of drugs for cancer cell 

removal through drug screening [83]. Using single-cell transcriptome analysis, it is possible to 

understand the heterogeneous cellular pattern of diseases, and based on this understanding, drug 

screening will enable more precise and accurate treatments. 

In recent years, immunotherapy has been used as a promising approach to treat advanced 

diseases. Remarkable progress has been made in the development of effective immunotherapy for 

specific cancers. However, it is still a relatively early step in understanding the complexity of the 
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immune system against human diseases. Single-cell sequencing will help in understanding tumor 

heterogeneity and highlight the need for this technique to develop safe and effective treatments 

for each patient. For instance, Krieg et al. analyzed immune cell subsets in the peripheral blood of 

patients before and after treatment at the single-cell level to investigate the immune signature 

related to the reaction of anti-programmed cell death protein-1 (anti-PD-1) immunotherapy [89]. 

The frequency of the immune cell subset of healthy controls, responders, and nonresponders was 

confirmed in the peripheral blood mononuclear cells of patients before and after immunotherapy. 

Using scRNA-seq, Kim et al. reported that the concentration of exhausting induction factors that 

cause T cells to lose their attacking power against abnormal cells can predict patient-specific 

reactions to immune cancer treatment [90]. Chimeric antigen receptors (CAR) are receptor proteins 

that are genetically modified to give T cells the ability to target specific proteins. CAR T cell 

therapy uses modified T cells to effectively target and destroy cancer cells. Suarez et al. designed 

a new CAR therapy targeting carbonic anhydrase (CAⅨ) to prevent T cell exhaustion [91]. It was 

confirmed that the anti-CAⅨ-CAR T cell secreting anti-PD-L1 reduces T cell exhaustion and 

improves CAR T cell treatment of ccRCC in vivo. Sheih et al. performed scRNA-seq to profile CD8+ 

CAR T cells isolated from patients treated with CAR T cell immunotherapy and from the infusion 

product (IP) [92]. These findings reveal that scRNA-seq can provide unique insights into the in 

vivo behavior of CAR T cells after adoptive transfer, and can improve CAR T cell immunotherapy 

through future studies.  

As mentioned above, oncology is already implementing precision medicine via single-cell analysis; 

however, precision medicine in kidney diseases lags behind other fields, including cancer. As the 

immune mechanism is centrally involved in the progression of kidney disease, an insight into this 

mechanism will be an important step towards development of precision medicine [93]. To 

determine the key elements related to this mechanism, the heterogeneity of the tissue sample 

must be resolved. Single-cell analysis is the optimal method for solving the immune cell 

heterogeneity in the kidney diseases. A previous study reported the human kidney spatiotemporal 

immune topology at the single-cell level [75]. This profiling provides a description of the kidney’s 

immune system and helps in the diagnosis and treatment of kidney-related diseases. Furthermore, 

as single-cell multiomics analysis can reveal correlations between different omics data, it is 

possible to analyze the disease-causing factors and their interaction. This overcomes the 

limitations of single omics data. Therefore, the application of single cell analysis in nephrology will 

contribute to the development of precision medicine (Fig. 1). 

 

Discussion 
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Precision medicine is a new approach for disease treatment and prevention that takes into 

account an individual’s gene variability, environment, and lifestyle. Based on specific genetic 

biomarkers and omics approaches, precision medicine has made remarkable impact on several 

areas of medicine, ranging from kidney cancer to acute and chronic kidney diseases. This 

approach will allow researchers to more accurately predict the groups that will receive treatments 

and prevention strategies for certain diseases, while also providing insights into the treatment 

approach. Precision medicine distinctly differs from the “one-size-fits-all” approach, which 

develops one-sided disease treatments and prevention strategies for patients with little 

consideration for individual differences. Identifying specific target genes, critical signaling 

pathways, and cell types is the first step to enable this transition from conventional to precision 

medicine in nephrology. In contrast to the remarkable efforts in identifying the target genes, 

fewer attempts have been made to identify the cellular targets in kidney disease development due 

to the technical limitations. Moreover, the present bulk measurements cannot differentiate primary 

cell autonomous responses, which lead to disease development, from secondary cell non-

autonomous responses. scRNA-seq is an innovative approach that understands various cell types 

and cell states, and plays a pivotal role in development of precision medicine by characterizing 

the cells, pathways, and genes related to complex or heterogeneous diseases. 

Single-cell transcriptome analysis can reveal new biological processes by combining multiple 

datasets, and correlation analysis between such multiomics datasets, thus more comprehensively 

describing the state of a single cell. Multiomics approaches characterize the disease states and 

identify target genes to identify therapeutic targets or biomarkers for kidney diseases. Various 

single-cell sequencing technologies have been developed, which can distinguish and analyze the 

cell types and states of the genome, epigenome, proteome, and transcriptome. Recently, single-

cell sequencing technologies that can simultaneously analyze multiomics such as genome, 

epigenome, transcriptome, and proteome in a same single cell have been developed. 

Integrative single-cell transcriptome data will enable us to untangle the complex pathological 

mechanisms of kidney diseases in different aspects and eventually, to assess disease risk and 

monitor disease states precisely for personalized medicine. 
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