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Abstract: In several wireless communication systems, robustness against jammers and covertness
against eavesdroppers are required simultaneously. In this paper, we propose a novel covert anti-
jamming communication system. The properties of both anti-jamming and covertness are achieved
through the Gaussian-coded time-frequency modulation scheme. We propose two receiver algorithms
based on the sparse signal recovery framework. The receiver algorithms estimate and remove the
jamming signal from the received signal. In addition, it is difficult to distinguish the proposed signal
from the actual Gaussian noise in both the time and frequency domains. We compare the covertness
of the proposed communication system with that of a conventional digital modulation system in
terms of the probability of detection. We numerically evaluated the bit error rate of the proposed
system to demonstrate its anti-jamming performance.

Keywords: anti-jamming; covert communication; sparse signal recovery; sparse Bayesian learning
(SBL); orthogonal frequency-division multiplexing (OFDM); spread spectrum; analog coding

1. Introduction

Wireless communication systems (WCSs) have become an essential part of the infras-
tructure for exchanging information. However, WCSs are exposed to various threats due to
the open nature of wireless media. One of these threats is eavesdropping. Eavesdroppers
means malicious receivers that harm innocent users using information on the radio trans-
mission. Since the advent of wireless communication, security to prevent damage caused
by eavesdroppers has been considered an important concern.

Computational complexity-based approaches at the application layer (e.g., encryption)
have been implemented for security. However, such methods are not suitable for wireless
networks that contain devices with low computational power. Physical layer security,
which exploits the physical properties of the wireless channel, is another solution. The
random nature of the channel makes physical layer security possible. Since Wyner defined
the wire-tap channel model and secrecy criterion [1], a number of researchers have studied
this approach to secrecy.

The aforementioned secrecy criterion is often referred to as (physical layer) information-
theoretic security. Information-theoretic security defines how much information in a con-
fidential message is revealed to eavesdroppers. However, sometimes the presence of a
communication itself should be hidden from eavesdroppers. One example is a covert mili-
tary communication in a hostile region. Eavesdroppers can recognize the covert operation
by detecting the presence of the signal. To evade such threats posed by eavesdroppers,
a low probability of detection (LPD) for covert communications has been considered as
another secrecy criterion.

Covert communication [2,3] has received little attention, relative to its importance.
Without covert communications, the physical location of wireless transmitters can be
detected by an eavesdropper, owing to the wireless transmission of signals. In such
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scenarios, the presence of wireless communications should not be easily detectable by
hostile eavesdroppers.

Intentional electromagnetic radiation, also called jamming, is another serious threat to
the robustness of WCSs. Jamming attacks can disturb ongoing wireless communications
by causing additional errors. Jamming attacks can become more destructive if the jammers
cooperate with eavesdroppers. A follower jammer [4] is an example of such cooperation.
It first measures the time-frequency band of the target signal and then concentrates its
jamming energy onto that band. Covert communication decreases damage by jammers
using the eavesdropping-and-jamming strategy by preventing the leakage of system param-
eters. Thus, to protect the security and robustness of WCSs, covertness and anti-jamming
performances are required simultaneously.

A spread spectrum (SS) scheme is one common solution for overcoming jamming
attacks in the physical layer. Through this scheme, the bandwidth of band-limited jamming
becomes much smaller than that of the communication signals. Furthermore, the scheme
makes communication difficult to detect by hiding communication signals under the noise
level, thus reducing the threat of eavesdroppers and eavesdropper-aided smart jammers
such as follower jammers.

The coded modulation method using Gaussian-distributed code can be a complement
to the SS scheme. If the modulated symbols follow a Gaussian distribution, it is difficult for
the eavesdropper to distinguish whether there is a communication signal or not without an
exact codebook. Furthermore, the legitimate receiver can use the error-correction property
of the coding scheme. The idea of real-valued channel coding has been used, and is known
as analog coding [5]. The code can correct sparse errors (e.g., narrowband jamming).
Researchers [6] have studied a generalization of this coding scheme: a complex-field
coding using orthogonal frequency-division multiplexing (OFDM). Candes and Tao [7]
proposed a sparse error-correction method for an arbitrary generator matrix, which is a
polynomial–time linear programming method unified within a compressive sensing (CS)
recovery framework [8]. Studies motivated by analog coding and many other CS-based
anti-jamming approaches have exploited the sparse characteristic of jamming in both the
time-frequency [9,10] and spatial domains [11]. Thus, analog coding can be applied to
anti-jamming communication.

In this paper, we consider wireless communications under a jammer and eavesdropper
scenario, for example, the electronic warfare scenario depicted in Figure 1. The proposed
system transmits information messages on a coded Gaussian signal through a wireless
channel that is attacked by an eavesdropper, called Eve in this paper, and a jammer. We con-
sider two types of jammers. The first type is a blind jammer, which radiates a partial-band
or pulse jamming signal without knowing when or where a target communication signal
exists. The second type is a follower jammer, which detects an ongoing communication
signal and then radiates a jamming signal to interfere with this ongoing signal. We assume
that Eve is not aware of the exact codebook and time-frequency band of the target system.
Suppose that there is no secret information shared between the transmitter and the receiver.
Then the achievability of covert communication depends entirely on the channel quality
difference between the receiver and Eve, which is difficult for communicators to control.
Thus, many studies assume that the transmitter and the receiver share some secret infor-
mation, such as a codebook [2,12] or spreading sequence [13,14]. This secret information
is often time-varying to prevent information leakage [15]. One practical example is a
frequency-hopping radio that exploits the exact time-frequency band of a signal as secret
information.
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Figure 1. Tactical wireless communication system under an electronic warfare scenario.

In this paper, we propose a novel covert anti-jamming communication system based
on a noise-like Gaussian-coded time-frequency modulation, as illustrated in Figure 2. To
provide covertness to a communication signal, we propose a time-frequency modulation
scheme. It is difficult to distinguish a signal generated using the proposed scheme from
Gaussian noise. To provide robust anti-jamming performance, we propose two receiver
algorithms that estimate and remove the jamming signal from the received signal by
exploiting the sparse nature of the jamming signal.

The main contributions of this paper are as follows:

• We propose a covert anti-jamming communication system based on Gaussian-coded
time-frequency modulation. We consider the communication system that is exposed
to the threat of the jammer and Eve. Previous studies on analog coding [5–7,9–11]
have not considered the threat of jammers and eavesdroppers simultaneously. We
designed a coding and modulation method for a transmitter to achieve anti-jamming
and covert communication simultaneously. For a receiver, to estimate and remove
jamming, we propose two novel sparse jamming estimation (SJE) algorithms, i.e.,
greedy SJE (GSJE) and Bayesian SJE (BSJE), which are described as Algorithm 1 and
Algorithm 2, respectively.

• For the proposed Gaussian coding scheme, we aimed to develop a real-valued coding
scheme in which a coding gain is provided. Previous studies on analog coding [5,7]
have considered analog messages. In this paper, we show that the coding method
cannot provide a coding gain for finite-field messages. As a countermeasure, we
introduce two methods to achieve coding gain even when the finite-field messages
are encoded. The first method is a two-stage coding approach, applying finite-field
coding and linear Gaussian coding sequentially. In this method, the overall coding
gain is equivalent to that of the finite-field coding used in the first stage. Another
coding method is a codebook method that uses a pregenerated codebook rather than
a linear operation on message vectors. We demonstrate the existence of a coding gain
through numerical results that compare the bit error rate (BER) performance of the
proposed system under jamming and the uncoded direct-sequence spread spectrum
(DSSS) without jamming.

• We show the undetectability of the signal transmitted from the proposed system. The
signal of the proposed system is compared to that of a conventional binary phase-shift
keying (BPSK)-DSSS scheme. For this comparison, we considered Eve to be an energy-
detecting eavesdropper that can distinguish the communication signal from noise
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using the maximum likelihood (ML) method. The detection capability of Eve increases
as the signal-to-noise ratio (SNR) and false alarm probability increases. Our results
demonstrate that the proposed system offers significantly better undetectability than
the BPSK-DSSS scheme in such critical cases. Thus, the proposed method is superior
when Eve is the most threatening.
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Figure 2. Block diagram of the proposed system. The message is encoded by Gaussian coding,
described in Section 2.2. Alice transmits the codeword to Bob and Eve after a time-frequency
modulation, introduced in Section 3.1. Bob estimates and removes the effect of the jammer by using
the sparse jamming estimation algorithm proposed in Section 3.4, in order to decode the message
from Alice. Meanwhile, Eve aims to determine if the signal is present or not. The signal detection by
Eve is discussed in Section 4.

The remainder of this paper is organized as follows. In Sections 2–4, we describe the
proposed covert anti-jamming communication system as depicted in Figure 2. Specifically,
we discuss the signal design required to achieve covertness and anti-jamming performance
in Section 2. In Section 3, we describe the time-frequency modulation method. In Section 4,
we present an analysis of the undetectability of the proposed system and compare it with
that of a conventional binary system. Section 5 discusses issues related to implementation,
such as modulation methods and computational complexity. In Section 6, we numerically
evaluate the BER performance of the proposed system. Finally, Section 7 summarizes our
results and concludes the paper.

2. Signal Design

In this section, we describe the proposed signal design. In the proposed system, the
codeword alphabet consists of Gaussian-distributed real numbers rather than a finite-field



Appl. Sci. 2021, 11, 3759 5 of 28

alphabet. The transmitted Gaussian codeword appears as additive white Gaussian noise
(AWGN) to Eve. In contrast, the receiver who knows the exact codebook can detect the
transmitted codeword even with a significantly low SNR setting. Figure 3a illustrates
the time-domain signal waveform of the proposed system at the 0 dB SNR setting. The
waveform with noise in Figure 3c is hardly distinguishable from the AWGN in Figure 3b.
A detailed analysis of this undetectability is presented in Section 4. In this section, we
consider two encoding methods used to construct such codewords. We first introduce
the simplest method, linear block coding (LBC), as proposed in previous studies [5,7].
Then, we present the limitations of that method and propose two methods to address these
limitations.
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2.1. Codeword Generation

A binary message vector m ∈ {−1, 1}L is encoded into a real-valued codeword
vector c ∈ R2N , where R is the set of real numbers. Each element of the codeword,
i.e., each time-frequency symbol, follows a Gaussian distribution. Here, the encoding
Enc : {−1, 1}L 7→ R2N can be any function that includes a redundancy to the codeword.
The redundancy can be exploited to estimate the jamming and correct the channel-induced
errors.

In the previous work of Candes and Tao [7], LBC-like encoding of the real-valued
message was studied. That is, EncLBC : RL 7→ R2N was previously investigated. As it is
a simple method, we can use it as a codeword generation method. We call this method
Gaussian-LBC. Let us define the probability density function (PDF) for a Gaussian random
variable with a mean µ and variance σ2 as N (µ, σ2). In the Gaussian-LBC, a codeword
vector becomes the product of a generator matrix and a message vector:

c = Gm, (1)

where m is the L-dimensional message vector, G ∈ R2N×L is the generator matrix of which
the entries follow N (0, 1/N), and c ∈ R2N is the codeword vector. Because the method
is similar to LBC in finite fields, one can define concepts and notations corresponding
to the parity-check matrix, syndromes, and error correction. However, error correction
using syndromes in real-valued code is a nonlinear pattern recognition problem that has
no simple solution for an arbitrary G [5]. A linear programming solution to this real-
valued syndrome decoding problem was described in [7]. The solution has been widely
accepted for several other sparse signal recovery (SSR) problems, under the name of CS [8].
Numerous algorithms have been proposed [16–19] to achieve this solution.

However, we require another approach with Gaussain-LBC. This is because EncLBC
cannot fully exploit the characteristics of the digital message; thus, one cannot obtain an
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adequate coding gain. In the following Section 2.2., we discuss an alternate design of
Enc : {−1, 1}L 7→ R2N to obtain the coding gain.

2.2. Gaussian Coding with Coding Gain

The Gaussian-LBC method has a limitation in that the method considers only the
real-valued message case. However, for modern communication systems that transmit a
variety of finite-field messages, the encoding of a finite-field message must be considered.
Unfortunately, the direct application of the Gaussian-LBC method to finite-field messages
is inefficient because there is no actual coding gain. In finite-field coding, the coding gain is
defined by how much the minimum Hamming distance between two codeword vectors
increases when compared to that between message vectors. This is because the finite-
field decoder maps the input vectors to the closest codeword in terms of the Hamming
distance. In contrast, the coding gain of a real-valued code cannot be defined by the
Hamming distance because the closeness of real-valued codewords to non-sparse noise is
meaningless. Instead, the Euclidean distance has to be used for real-valued code. It can be
noted that the minimum Euclidean distance is constant before and after the Gaussian-LBC,
i.e.,

(c− c̃)T(c− c̃) = (Gm−Gm̃)T(Gm−Gm̃)

= (m− m̃)TGTG(m− m̃)

= (m− m̃)T(m− m̃),
(2)

where (·)T is the transpose operator for the vector/matrix and GTG = I for large N. To
benefit from coding gain, we considered two approaches: concatenation coding and the
codebook method.

2.2.1. Concatenation Coding

To provide an encoding method with coding gain, concatenation coding was consid-
ered. Namely, the encoding of a digital message Enc : {−1, 1}L 7→ R2N becomes a serial
combination of two different coding methods, as depicted in Figure 4. The message is
encoded twice, first by an outer code Encout : {−1, 1}L 7→ {−1, 1}Nout and then by an inner
code Encin : {−1, 1}Nout 7→ R2N . We used a finite-field coding method, which yields a
coding gain, as the outer code, and then used the Gaussian-LBC as the inner code so that
the system could obtain the advantages of both the error-correcting coding and Gaussianity
of the signal.

The decoding procedure is also two-fold. Given a jamming-mitigated codeword c̃, the
Gaussian-LBC codeword is decoded first by Decin : R2N 7→ {−1, 1}Nout ; then, the outer
codeword is decoded by Decout : {−1, 1}Nout 7→ {−1, 1}L . Here, we focus on the decoding
of the Gaussian-LBC Decin. Because the decoding of the Gaussian-LBC is equivalent to an
overdetermined linear inverse problem (LIP), ML decoding can be performed using the
least-squares method with O(N · Nout) computations, where Nout is the length of the outer
codeword. If the code rate of the outer code is fixed (i.e., O(Nout) = O(L)), the complexity is
equivalent to O(NL). Based on the output of the Gaussian-LBC decoder Decin, the original
message is decoded using the outer code decoder Decout, i.e., the recovered message vector
m̂ := Decout(Decin(c̃)).
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2.2.2. Gaussian Codebook

The Gaussian codebook method is another coding method with coding gain. If the
length of the binary message vector is L, then 2L codeword vectors of length 2N are
pregenerated. Then, the one-by-one mapping encoding function Enc : {−1, 1}L 7→ R2N

can be constructed between 2L message vectors and codeword vectors. The codeword
can be decoded using the ML method. O(N2L) computations are required to decode the
original message from the proposed codeword generated by Enc. Here, we construct a
codebook G with a Toeplitz matrix of which the columns are cyclic shifts of a Gaussian
random vector g = [g1, g2, . . . , g2N ]

T , rather than generating every element of G with
an independent and identically distributed (i.i.d.) Gaussian. There are two benefits to
constructing the codebook as a Toeplitz matrix. First, the Toeplitz structure accelerates the
computation of the decoding method by using the fast Fourier transform (FFT). Second,
such a codebook can be stored in a more memory-efficient manner than a random codebook
because the Toeplitz codebook requires as much memory space as O(N), whereas the i.i.d.
codebook requires as much memory space as O(N2L). If the computational costs of the
FFT and inverse FFT (IFFT) are considered, the overall computational complexity becomes
O(N log N).

The concatenation method presented in Section 2.2.1 is attractive in practice because
well-studied finite-field coding methods can be directly exploited as the outer code. A
proper outer code can be selected according to the purpose and requirements of the system.
We used the codebook method in the following simulation section because the Toeplitz
codebook method provides a good restricted isometric property (RIP) condition and is
independent of the outer code design.

3. System Model

The codewords are transmitted by spreading over a wide block of time-frequency
OFDM slots. After demodulation and demultiplexing, the receiver obtains the codewords
that are distorted by noise and jamming. The jamming portion is removed using the SSR
technique [8]. The receiver decodes the original messages based on the jamming-free
codewords.

3.1. Time-Frequency Modulation

The real-valued codeword c of dimension 2N can be rewritten as a complex-valued
codeword vector of dimension N, i.e., x ∈ CN , where C is a set of complex numbers.
The real part of x is the first half of the vector c and the imaginary part of x is the latter
half of c. That is, for the real-valued codeword c = [c1, c2, . . . , c2N ]

T , the corresponding
complex expression is x = [c1 + jcN+1, . . . , cN + jc2N ]

T . Each element of x is assigned to the
time-frequency grid for transmission by OFDM. Let the number of OFDM subbands be NF
and the number of time slots be NT , where N = NF NT . Figure 5a illustrates the proposed
signal in the time-frequency domain, where NF = NT = 16. The signal is transmitted
through all 16 subbands, whereas the frequency-hopping spread spectrum (FHSS) signal
in Figure 5b uses only a single subband in a time slot. The energy of the proposed signal
remains under the noise floor at the plane where the energy = 1, whereas the energy of the
FHSS signal with the same power has peaks above the noise floor.

The complex codeword vector x is divided into NT column vectors, i.e., xk (k =

1, 2, . . . , NT), where x = [ xT
1 xT

2 · · · xT
NT

]
T

. The kth OFDM symbol is determined by
an IFFT of xk. Here, we omit the cyclic prefix (CP) for simplicity, as channel estimation and
the inter-symbol interference problem are beyond the scope of this paper. If one assumes
perfect channel estimation, then the CP being jammed cannot be a problem as the CP is
discarded on the receiver side. However, note that jamming attacks on the CP can distort
the OFDM system efficiently [20,21], thus degrading the performance of the system. Future
research should study the effect of CP jamming.
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3.2. Channel Model

There are two separate channels in the proposed system. One is the legitimate channel
from the transmitter, Alice, to the legitimate receiver, Bob. The other is a wiretap channel
from Alice to the eavesdropper Eve, who is not a legitimate user. We consider that the
legitimate channel suffers from hostile jamming, whereas the wiretap channel does not.
Figure 6 illustrates the channel model. Bob obtains the signal through the legitimate
channel, which is contaminated by jamming, whereas Eve receives the signal through the
wiretap channel. This modeling encompasses the following two scenarios within a single
logically equivalent scheme. The first scenario is that Eve and the jammer are combined
into a single actor. The follower jammer is an example. The second scenario is that the two
are located apart. For example, the jammer can be located close to the receiver, whereas
the eavesdropper can be placed near the transmitter for better performance. In addition,
Alice and Bob share a codebook C ∈ CN which is the set of possible codewords. To focus
on covert communication, we assume that Eve does not have the codebook.
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Let hk be the channel impulse response vector of which the length is NF. The kth
received vector after OFDM demultiplexing and CP removal is

yk = Hkxk + ek + wk, (3)

where ek ∈ CNF is a jamming vector, wk ∈ CNF is additive circularly symmetric complex
Gaussian (CSCG) noise, and Hk ∈ CNF×NF is a diagonal matrix of which the diagonal
elements are the FFT of hk. Assuming that the fading channel has no null, the matrix Hk is
invertible. The NT OFDM symbols can be expressed as a single-vector expression through

concatenation; as is the case with x = [ xT
1 xT

2 · · · xT
NT

]
T

, the single-vector expression

for the entire received vector y = [ yT
1 yT

2 · · · yT
NT

]
T

becomes

y = Hx + e + w, (4)

where the combined channel matrix H is the block-diagonal matrix consisting of H1, H2, . . . , HNT ,

e = [ eT
1 eT

2 · · · eT
NT

]
T

is the jamming vector, and w = [ wT
1 wT

2 · · · wT
NT

]
T

is
the CSCG noise vector.

3.3. Sparse Jamming Model

In our scenario, the jamming vector e is assumed as a spare vector because practical
jammers are modeled as band-limited or time-limited jammers. In fact, a jamming method
that interferes with every time-frequency symbol simultaneously would be a powerful jam-
ming method. However, in the proposed covert communication system, the jammer cannot
be sure of the exact time-frequency band of the target signal because the proposed system
is intended to provide undetectable characteristics of the transmitted waveform, as shown
in Section 4. Several studies on the energy optimization of jammers, including [22,23], have
indicated that a jamming policy without a precise signal power estimation is not optimal.
To achieve energy efficiency, the jammer must acquire the time-frequency band of the target
communication.

Without knowing the codebook and exact time-frequency band of target signals, the
jammer can have two options—blind barrage jamming and sparse jamming. On the one
hand, we consider a barrage jammer that aims to attack a target signal with its signal
bandwidth when the time duration is unknown. The jammer cannot launch an attack
with a wider bandwidth and longer time duration than those of the target communication
signal. Consider B as the bandwidth of the target signal and D as the time duration of the
target signal. Obviously, the bandwidth and time duration of the attack signal become
B + ∆B and D + ∆D for ∆B ≥ 0 and ∆D ≥ 0, respectively. Here, it can be observed that
the jammer would expend an excessive amount of energy due to the amount of excessive
time and bandwidth O(∆B∆D). Nevertheless, the attack by the jammer may still remain
ineffective, provided that the time and frequency band of the target signal is unknown. The
only option that the barrage jammer has is to spread jamming power over a wide range of
time-frequency regions with large ∆B and ∆D. However, the power budget of a practical
jammer is not infinite. Thus, to launch a barrage jamming attack, the energy density per
unit time-frequency region shall remain low. In such a case, the effective jamming energy,
i.e., the actual jamming energy spent on the target time-frequency region, shall remain
small, and the jamming becomes unsuccessful.

On the other hand, the jammer can choose a sparse jamming approach, aiming to
reduce the inefficiency of barrage jamming and concentrate the jamming energy onto a
specific time-frequency band. Many jammers therefore aim to identify the time-frequency
band of the ongoing communications. Once this is identified, an attack can be launched
in the form of partial-band noise jamming, such as pulse jamming, as discussed in [9],
and reactive jamming, which is discussed in [10]. Thus, the jammers can concentrate their
jamming power on a small, selected part of the entire time-frequency band. What does
this mean to the proposed covert anti-jamming communication system? The proposed
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system is supposed to provide undetectable characteristics of the transmitted waveform,
which results in two scenarios. On the one hand, jammers cannot detect the presence of the
signal or its time-frequency band at all. This is the case when Eve is physically located far
from the transmitter. In this case, the jammers do not launch any jamming attacks. On the
other hand, in the case in which Eve is close to the transmitter unit, the signal is partially
detectable. It can be recalled that our signals are wideband Gaussian signals. Thus, there
are a few time-frequency bands of which the energy levels pierce through the noise floor
(refer to the illustration in Figure 5). Eve can be deceived that the ongoing communication
exists only on those detected time-frequency bands; consequently, Eve will aim to launch
precise jamming attacks at the detected time-frequency bands. The previous discussion
explains why we have modeled the jamming attacks to be sparse in the time-frequency
domain. By exploiting the sparse nature of jamming, Bob can successfully estimate and
remove jamming from the received vector.

3.4. Sparse Jamming Estimation

Let us recall the received vector specified in Equation (4). There always exists a
nonzero annihilating matrix A such that AHx = 0, unless Hx spans CN . Let a matrix G
be a generator matrix or codebook matrix of which the columns span the range space of
the codewords. Here, note that the generator or codebook matrix G is constructed by a
random Gaussian distribution, as discussed in Section 2.

Because the codeword space is a subspace of CN , singular-value decomposition (SVD)
can be applied to determine the annihilating matrix A. Consider an SVD of (HG)H , i.e.,

(HG)H = U
[

D 0
][ VH

1
A

]
. (5)

It can be determined that A satisfies AHx = 0 for all possible values of x. By multiply-
ing A to both sides of Equation (4), Bob obtains the measurement vector b,

b = A(e + w)
= Aẽ,

(6)

where ẽ := e + w is the jamming-plus-noise vector. Because b and A are known to Bob, e
can be obtained by solving for the SJE problem of Equation (6), which is in the form of a
LIP. Unfortunately, the SJE problem is underdetermined because the annihilating matrix
A is the null space of HG. However, let us recall the assumption that e is a sparse vector.
It is known that a sparse vector can be recovered using SSR techniques even if the LIP is
underdetermined [7,8,16–18,24].

There are two conditions related to the successful reconstruction of the jamming vector
e from Equation (6) using SSR techniques. The first condition is that the LIP should have
good properties. The goodness of LIP is often measured using a condition referred to as
RIP [7] of the sensing matrix. In the proposed SJE problem, the sensing matrix corresponds
to the annihilating matrix A. Several studies have shown that a sensing matrix has a good
RIP if the matrix is created from an i.i.d. zero-mean Gaussian. However, the annihilating
matrix A in the SJE problem is not created from such a distribution, but is created from the
null space of HG.

Several studies have discussed the RIP of the null-space matrix. Candes et al. [7] and
Stojnic et al. [25] argued that the null-space matrix of an i.i.d. Gaussian random matrix
demonstrates a good property because the null space can consist of an i.i.d. Gaussian
random basis. Xu et al. [26] showed that the property of the sensing matrix that is created
from the null space of a Toeplitz matrix is good for SSR. Note that HG is a Gaussian
matrix because the OFDM channel matrix H is a Gaussian matrix and G is also a Gaussian
matrix (refer to Section 2 for more details). Further, HG can be an i.i.d. Gaussian matrix
or Gaussian Toeplitz matrix when the channel is a frequency nonselective channel. Thus,
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these results suggest that the SJE problem can be solved successfully, depending on the
channel.

The second condition for successful SSR is that the jamming with noise vector ẽ should
be close to the sparse vector. If the energy of a sparse vector is much larger than that of
a non-sparse vector, the sum of the two vectors is said to satisfy soft sparsity. Raskutti
et al. [27] discussed the convergence of the SSR under the soft sparsity model. Arias-
Castro and Eldar [28] studied the premeasurement noise model, which is similar to the soft
sparsity model. In their study, it was shown that the premeasurement noise model can
be reformulated into a general SSR model (i.e., measurement noise model), with a small
cost on RIP. Based on these studies, we can conclude that ẽ can be successfully recovered,
as ẽ also satisfies the soft sparsity model. To derive the SJE algorithms, we explored two
representative SSR algorithms: greedy algorithms and sparse Bayesian learning (SBL)
algorithms. In Section 3.4.1, we propose the GSJE algorithm. In Section 3.4.2., we propose
the BSJE algorithm.

3.4.1. Greedy Sparse Jamming Estimation Algorithm

To estimate the sparse jamming vector e from the measurement b, one can define a
support set S ⊂ {1, 2, . . . , N}, which is a set of indices k, such that the kth element of e
is nonzero. Thus, S = {k|êk 6= 0, k = 1, 2, . . . , N}. Let us define AS and eS as submatri-
ces/subvectors of which the columns/elements contain atom ak and coefficient êk for k ∈ S,
respectively. Then, ê can be determined by solving the following optimization:

ê = argmin
e
‖b−Ae‖2, subject to ‖e‖0 ≤ K, (7)

where K is the maximum number of nonzero coefficients in e. Equation (7) is an opti-
mization problem that determines the solution e that minimizes the approximation error
with the l0 norm constraint. To solve this problem, several greedy algorithms have been
proposed. The greedy algorithms iteratively pursue one column of the annihilating matrix
A at a time, which significantly reduces the approximation error. Thus, the estimate of
the support set S grows one by one as the iteration progresses, starting from the empty
set in the beginning. The matching pursuit (MP) [29], orthogonal MP (OMP) [18,19] and
their variants [30,31] are most relevant to the derivation presented in this Section. The
MP algorithm for SSR was first proposed by Mallat and Zhang [29]. By applying the MP
algorithm to our problem, we can determine one column of the annihilating matrix A that
maximizes the inner product with a residual vector at each iteration, and then calculate
the corresponding nonzero coefficient that minimizes the estimation error. Conversely,
the OMP algorithm has an additional procedure that updates all the coefficients in the
subvector eS at each iteration using the orthogonal projection of the measurement vector
onto the subspace AS.

In this section, we propose the GSJE algorithm, described as Algorithm 1. The al-
gorithm aims to estimate the sparse jamming vector from the received signal vector y in
Equation (4). Given H, G and y, the algorithm calculates A using Equation (5). Then, the
jamming vector e is estimated by approximating the solution of Equation (7) using the
greedy iteration. We assume that the channel matrix H and codeword space G are known
to the receiver. The annihilating matrix A can then be determined from the SVD of (HG)H ,
as given in Equation (5), and used to construct the SJE problem. We assume here that the
magnitudes of the nonzero coefficients of the jamming vector e are significantly larger
than those of the noise vector w, i.e., ||e||2 �||w||2. This assumption is called the high
jamming-to-noise ratio (JNR) assumption. Under this assumption, each iteration of the
GSJE will identify a member of the true support set with high probability. In contrast, if the
JNR is significantly low (for example, under −10 dB), the accuracy of SJE under the high
JNR assumption might be degraded. However, note that the overall system performance,
i.e., BER, is no longer affected by the accuracy of the SJE. However, if JNR is in the moderate
region, the failure of the GSJE may cause an overall performance degradation. Thus, the
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model mismatch becomes more significant in the moderate-JNR region. Another challenge
is that the GSJE requires certain prior knowledge about jamming. As discussed above, the
parameters δ and K that determine the termination condition depend on prior information
such as sparsity and energy of jamming. We limited the number of maximum iterations by
K, where the cardinality of the support set is known as K. At the same time, we set a lower
bound on ‖ρ‖ by δ. If the prior knowledge is inexact for determining a proper termination
condition, the GSJE might not be able to estimate the exact jamming. The assumption
that the receiver has exact prior information a priori might be unrealistic in practice as the
jammer and the receiver are adversarial to each other. These effects are of interest in the
discussion of our simulation results (refer to Section 6.1).

Algorithm 1 Greedy sparse jamming estimation (GSJE) algorithm

Input: H, G, y, δ, K
Initialize: A← svd(GHHH) , ρ← Ay , S← {}
1: do:
2: Find the maximum correlated column index, k← argmax

k\S
< ak,ρ >

3: Update the support set by storing the index in the support set, S ← S∪ {k}
4: Estimate the corresponding coefficient subvector by êS ← (AH

S AS)
−1

AH
S Ay

5: Update residual by subtracting the contribution of current support set, ρ ← ρ−Aê
6: while |S|≤ K and ||ρ||≥ δ

return: ê

3.4.2. Bayesian Spare Jamming Estimation Algorithm

As an alternative to GSJE, we propose a novel BSJE algorithm. In the previous section,
we discussed that GSJE requires prior knowledge of jamming, such as the sparsity or
power of jamming. Instead, we aim to develop the BSJE method in which the jamming is
modeled as a Gaussian mixture and Bayesian inference is sought to estimate the jamming
vector. From Equation (6), BSJE determines the posterior estimation of e by exploiting the
assumption that e is a realization of a zero-mean i.i.d. Gaussian-distributed random vector
of which the covariance matrix is Γ = diag[ γ1 γ2 . . . · · · γN ] (i.e., e ∼ CN (0, Γ)). A
simple suboptimal solution is to determine the maximum a posteriori probability (MAP)
estimation without exploiting Γ, i.e.,

ê = argmax
e

p(e|b), (8)

where p(e|b) is a conditional PDF. In contrast, the BSJE algorithm exploits the information
about Γ by applying SBL [24]. Let the ML estimation of Γ be Γ̂. The algorithm first
determines Γ̂ and then evaluates the MAP estimator for a given Γ̂. That is,

ê = argmax
e

p(e|Γ̂)p(Γ̂)p(b|e), (9)

where

Γ̂ = argmax
Γ

p(Γ
∣∣∣∣b)

= argmax
Γ

p(Γ) p(b
∣∣∣∣Γ)

= argmax
Γ

p(Γ)
∫

p(b|e)p(e|Γ)de .

(10)

To solve the optimization problem, the spirit of expectation-maximization (EM) is
exploited; rather than directly maximizing the log-likelihood, the algorithm maximizes the
Q function iteratively. The Q function is defined by

Q(Γ) = Ee|b;γ[log p(b|e) + log p(e|Γ) + log p(Γ)], (11)
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and the solution to Equation (10) is equivalent to the maximizer of Equation (11),

Γ̂ = argmax
Γ

Q(Γ). (12)

Let us recall the SJE problem in Equation (6). The given problem is a form of the
so-called input noise model:

b = A(e + w). (13)

The closed-form solution to Equation (12) is well known as

γ̂k = Ee|b,γk ,σ2 |ek|2, (k = 1, 2, . . . , N), (14)

which is a solution to ∂Q(Γ)/∂γk = 0 by assuming p(γk) = 1 and approximating Q(Γ) as

Q(Γ) ≈ Ee|b;γ,σ2

[
∑
k
−1

2
log γk −

|ek|2

γk
+ log p(γk)

]
. (15)

If we assume a CSCG jamming e ∼ CN (0, Γ) and a CSCG noise w ∼ CN (0, σ2I)
with given noise variance σ2, the conditional PDF p(e

∣∣b; Γ, σ2) becomes CSCG, with mean
vector µ and covariance matrix Σ, where

µ = ΓAH(AΓAH + σ2AAH)
−1

b, (16)

Σ = Γ− ΓAH(AΓAH + σ2AAH)
−1

AΓ. (17)

Thus, the ML estimator in Equation (12) becomes

γ̂k = Σkk + |µk|2, (18)

where µk is the kth element of µ and Σkk is the kth diagonal element of Σ. According to
Equations (16)–(18), Γ̂ can be determined by iteratively updating Γ(t) at the tth iteration,
and by repeating the iteration until convergence. A little is known about the convergence
of EM iteration, including the monotonicity property [32]. This property states that the
solution converges to at least a saddle point or local optimum. After Γ̂ is converged, the
MAP estimation is obtained by

ê = argmax
e

p(e
∣∣∣b; Γ̂, σ2)

= µe|b(Γ̂)

= Γ̂AH(AΓ̂AH + σ2AAH)
−1

b.

(19)

It can be recalled that our goal is to determine the complex-valued codeword x, not e
itself, which is obtained by the iteration above. To estimate, we must determine not only ê
but also ŵ; thus, x̂ can be calculated by

x̂ = H−1(ê + ŵ). (20)

Here, ŵ can be obtained during the BSJE iteration using the same method used
for determining ê, as ŵ also follows a CSCG distribution such that CN (0, σ2I). The
MAP estimation of w can be calculated within the same iteration for determining ê in
Equation (16):

ŵ = σ2AH(AΓAH + σ2AAH)
−1

b. (21)

Note that Equations (16) and (17) are equivalent to the equations presented by Giri
and Rao (numbered as Equations (36) and (37), respectively, in their paper) [24] if AH

is orthonormal. This implies that if all codewords are orthonormal with each other and
the channel matrix H is an identity matrix (i.e., a frequency-nonselective channel), the
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proposed BSJE algorithm is equivalent to the SBL algorithm for the general measurement
noise model.

The BSJE algorithm for the proposed system is described as Algorithm 2. To guarantee
the completeness of the algorithm, two parameters, tmax and δ, can be specified. tmax is
defined by the maximum number of iterations and δ is the lower bound on the minimum
required update, tr(

∣∣∣Γ(t) − Γ(t−1)
∣∣∣) , where tr() is the trace operator. These two parameters

can be set according to the time budget.
The BSJE algorithm does not require prior knowledge about jamming. The BSJE

algorithm only requires the channel, codebook, and noise variance as inputs, which can be
easily obtained by a legitimate receiver. This mild requirement on prior information is a
potential benefit of BSJE, making it more attractive than GSJE in practical implementation.
Furthermore, the BSJE algorithm has no model-mismatch problem in the arbitrary JNR
condition region, whereas GSJE suffers from estimation performance degradation in the
moderate-JNR region.

Algorithm 2 Bayesian sparse jamming estimation (BSJE) algorithm

Input: H, G, σ2, tmax, δ

Initialize: A← svd(GHHH) , b← Ay , Γ(0) ← I
1: for t = 0 to tmax do:

2: Compute T matrix by T← AH(AΓ(t)AH + σ2AAH)
−1

3: Update the mean vector µ← Γ(t)Tb
4: Update the noise vector w← σ2Tb
5: Update the covariance matrix Σ← Γ(t) − Γ(t)TAΓ(t)

6: Update the hyperparameter Γ(t+1) ← diag(
∣∣∣µk

∣∣∣2 + Σkk)
∣∣∣
k=1,2,...,N

7: while t ≤ tmax and tr(
∣∣∣Γ(t) − Γ(t−1)

∣∣∣) ≥ δ

return: ẽ← µ+ w

3.5. Decoding

Using GSJE and BSJE, we can successfully estimate the jamming with a noise vector ẽ.
Then, Bob can obtain the jamming-mitigated complex-valued codeword x̃ by subtracting
the estimation of ẽ from y. The corresponding real-valued codeword c̃ is obtained by
cascading the real and imaginary parts of x̃. Decoding the original codeword m from c̃ is
typically performed using MAP estimation, which is a procedure to obtain the most likely
input for a given output, i.e.,

m̂ = argmax
m

p(m; c̃). (22)

Assuming a message m has a uniform distribution, the MAP estimator is equivalent
to the ML estimator [33]. The ML estimator of m is defined by m̂, which maximizes the
likelihood function. This relationship is represented as follows:

m̂ = argmax
m

p(ĉ
′
; m). (23)

4. Undetectability Analysis

In this section, we present a comparison of the undetectability of the Gaussian-coded
time-frequency modulation and binary modulation methods in terms of detection proba-
bility for Eve. To measure undetectability, a privacy rate was proposed in [2]. The privacy
rate is defined by the number of bits that can be transmitted covertly through the use of
N channels. According to [2], only O

(√
N
)

bits can be transmitted covertly; thus, the
privacy rate cannot be a constant. However, [3,34] determined that a constant privacy rate
is achievable if Eve is uncertain of the channel noise level. Conversely, detection probability
is a simple and useful metric of undetectability. For example, the detection probability
of chaotic-sequence DSSS signals was studied in [13,14]. The authors assumed that Eve
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knows most of the protocols used by target communication systems, such as carrier fre-
quency, modulation, length of the spread sequence, and symbol duration, but not the exact
spreading sequence. Then, she can attempt matched filtering with all possible spreading
sequences for the received samples to determine if a signal exists. The studies determined
the detection probability of chaotic DSSS signals for several types of chaotic sequences and
compared the probability with that of conventional binary sequence DSSS signals.

To measure undetectability, we considered the detection probability as a metric. The
eavesdropping problem was formulated as a hypothesis test. We explored the problem
by dividing it into three cases according to uncertainty of noise for Eve. In the first case,
Eve is assumed to have no information on the noise level. That is, Eve has an infinitely
large uncertainty in terms of the noise level. In such extreme cases, the only option for
Eve is to test whether the received samples are from a white Gaussian distribution or from
other random distributions, i.e., Eve aims to determine the existence of a signal using a
normality test. The second case is the other extreme scenario on the opposite side. In the
second case, Eve has no uncertainty regarding the noise level. Thus, Eve knows the exact
noise energy. In such a case, Eve can apply a hypothesis test based on a threshold of the
symbol energy to distinguish whether the signal exists or not. However, the two extreme
cases rarely occur in practice. Thus, in the third case, we define a parameter ρ to quantify
the amount of uncertainty Eve has on the noise level. In the following subsections, we
measure and compare the undetectability of the proposed signal and conventional signals.

4.1. Undetectability under an Unknown Noise Level

In the first case, Eve is assumed to have no information on the noise level (Case
1). In the following section, we provide a simple analysis and example showing that Eve
cannot distinguish the proposed signal, although she has a chance of detecting conventional
signals. Let us recall the channel model depicted in Figure 6 to determine the eavesdropping
problem. Using the same vectorizing process as the legitimate channel model as presented
in Equations (3) and (4), Eve obtains

z = H
′
x + w

′
, (24)

where H
′

is a combined wiretap channel matrix and w
′

is a CSCG noise vector, which are
derived using the same method as those of a legitimate channel, as discussed in Section 3.2.

Consider that Eve monitors the communication channel and obtains a measurement
vector assuming an exact carrier frequency, phase, and symbol duration. Moreover, con-
sider a perfect channel state information and flat fading at Eve, which is a threat scenario
for a WCS. Then, the receiving model is simplified to

z = h′x + w
′
, (25)

where h′ is the channel coefficient satisfying H
′
= h′I. In this scenario, Eve has to determine

whether there is a signal using the hypothesis test:{
H0 : d = n
H1 : d = c + n,

(26)

where c = [ real(x)T imag(x)T ]
T

is the real-valued codeword of which the entries are zero-

mean Gaussian random variables with variance σ2
c , n = [ real(w

′
/h′)

T
imag(w

′
/h′)

T ]
T

is the AWGN whose entries are zero-mean Gaussian random variables with variance σ2
n ,

and d = [ real(z/h′)T imag(z/h′)T ]
T

is the channel-compensated measurement vector.
In Case 1, Eve has to determine which hypothesis is true based on the PDF of d. Let

the variance of d be σ2
d. To test the two hypotheses, the only thing Eve can do is compare

how close the sample distribution is to the distribution of Gaussian noise. This test is
well known as the normality test. First, assume that Eve demonstrates perfection while
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calculating the sample distribution. Perfect here implies that Eve can collect an infinite
number of samples each with infinite resolution; thus, the histogram distribution of the
perfect Eve is identical to the distribution according to the true hypothesis.

Lemma 1. Assume that Eve is perfect while calculating the sample distribution. Let Eve not know
the noise level. Then, she cannot detect the existence of the proposed signal, but she can detect
finite-field modulated signals.

Proof of Lemma 1. Eve does not know the noise level. The addition of the Gaussian
signal sample to the Gaussian noise sample produces a Gaussian sample. Thus, what Eve
observes are Gaussian samples; Eve can only treat it as Gaussian noise. When Eve observes
finite-level signal samples, a perfect Eve will notice that the observed signal deviates from
the Gaussian samples. Thus, Eve can detect the presence of an ongoing communication
signal. �

It is worth noting that Lemma 1 is satisfied in the ideal case. Namely, it holds when
the degree of freedom of the codebook is infinite and Eve can correct an infinite number of
samples. However, both conditions cannot be perfect in practice. The degree of freedom of
a fixed codebook is limited by the size of the codebook. It causes a distortion between the
distributions of the actual symbol and desired Gaussian symbols. In addition, Eve must
perform the normality test with a finite number of samples and a finite level of precision.
This means that the error probability of the normality test is not zero even for the Gaussian
signal. However, the distortion of the distribution can be compensated for by the limited
resolvability [35] of the channel between the transmitter and Eve. Since the channel is noisy,
small distortions of the input distribution cannot affect the test output of Eve. Moreover,
despite all these limitations, it is obvious that the probability of being detected for the
proposed signal is far lower than the probability of any conventional non-Gaussian signal.

4.2. Undetectability under an Exact Noise Level

Now, let us focus on Case 2. In this case, Eve is assumed to have perfect information
on the noise level. The simplest solution for this testing strategy is to use an energy detector
of which the goal is to determine whether the signal is present by comparing the energy of
the received symbol.

In the energy detection, the test statistic of Equation (26) becomes the squared sum
of symbols. As we assumed, Eve does not know the exact time-frequency band of the
target signals. Then, Eve has two strategies for testing. The first is obtaining a single
test statistic by integrating the whole energy over a suspected time-frequency band. It is
obvious that the test statistic depends on both the SNR and the suspected region, regardless
of the coding and modulation method of the target signal. Then the test result depends
only on how accurate the suspected region is. Rather than this trivial case, we focus on
the other strategy: dividing the suspected region with as fine a grid as Eve can produce,
and applying per-symbol energy detection to determine the signal existence according to
each time-frequency slot. By this strategy, Eve can evaluate the slot-by-slot possibility of
signal presence. Based on this possibility, Eve can jointly estimate the suspected region and
probability of signal presence. The performance of this joint detection of possibility and
region depends on the per-symbol test. From this aspect, we derive the true positive of
the per-symbol hypothesis test (i.e., probability of detection). We compare the probability
for the proposed method and that for the conventional binary method, which follows
Lemma 2.
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Lemma 2. Let Eve, using an energy-detecting strategy, know the exact noise level. If Eve has a false
alarm probability PF, then the per-symbol detection probabilities of the proposed signal PD,Gaussian
and BPSK-modulated signal PD,Binary are

PD,Binary = Q
(
α−

√
β
)
+ Q

(
α +

√
β
)
,

PD,Gaussian = 2Q
(

α√
1+β

)
,

(27)

where α = Q−1(PF/2)/σn, β = σ2
c /σ2

n , and the Q-function is defined by

Q(x) =
1√
2π

∫ ∞

x
e−t2/2dt. (28)

Proof of Lemma 2. In Case 2, Eve has information about the wiretap channel noise level.
Without the loss of generality, the hypothesis test in Equation (26) is simplified into a
per-symbol hypothesis test, as shown below:{

H′0 : d = n
H′1 : d = c + n,

(29)

where d, c, and n are the corresponding single samples of d, c, and n. We determine a
threshold α and use the following likelihood ratio test to determine which hypothesis is
true:
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The threshold α is selected according to the desired false alarm probability PF. Because
the noise is Gaussian, α can be calculated using the Q-function:

α = Q−1
(

PF
2

)
. (31)

We can now compare the probability of detection for the traditional binary modulation
and proposed modulation methods. The probability of detection can be calculated as the
ασn-tail probability of the distribution of d given that H′1 is true, through a process similar
to that used in [13,14]. For a binary modulation scheme of which the constellation is
distributed uniformly at the points ±σc, the distribution of d when H′1 is true becomes

fb(x) =
1

2
√

2πσ2
n

e
− (x−σc)2

2σ2
n +

1
2
√

2πσ2
n

e
− (x+σc)2

2σ2
n . (32)

The probability of detection for a uniformly distributed binary signal is

PD,Binary = Q
(

ασn − σc

σn

)
+ Q

(
ασn + σc

σn

)
. (33)

In contrast, consider the proposed signal of which the sample value obeys a Gaussian
random distribution with zero mean and variance σ2

c . Then, the PDF of (d|H′1) is also a
Gaussian PDF with zero mean and σ2

c + σ2
n variance. The α-tail probability is calculated

directly as

PD,Gaussian = 2Q

(
ασn√

σ2
n + σ2

c

)
. (34)
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Letting β = σ2
c /σ2

n , the two probabilities obtained using Equations (33) and (34) are
equivalent to Equation (27). �

Lemma 2 shows that if the normalized SNR of Eve is β << 1, the two probabilities
are nearly identical. In contrast, if β→ ∞ , the detection probability of a Gaussian signal is
lower than that of a binary signal. Thus, if the SNR of the channel between Alice and Eve
is higher, a Gaussian signal is superior to a binary signal in terms of undetectability.

At a moderate SNR, the false alarm probability of Eve (parameter α) determines the
detection probability. As the false alarm probability increases (i.e., Eve is more sensitive), a
Gaussian symbol becomes more undetectable than a binary symbol.

4.3. Undetectability under an Uncertain Noise Level

In practice, Eve must estimate the noise level, σ2
n , to determine the proper threshold, α.

The estimation error affects the tradeoff between the detection probability and the false
alarm probability. Let the estimated noise variance be σ2

est := ρσ2
n using an uncertainty

parameter, ρ ∈ [ρmin, ρmax]. Under this definition, the uncertainty increases when the
interval [ρmin, ρmax] grows. In contrast, the uncertainty becomes smaller when the interval
becomes narrower, and finally becomes zero when ρmin = ρmax = 1. In this scenario, Eve
sets the parameter α by using σ2

est instead of σ2
n to set the decision threshold, ασest. Then,

the detection and false alarm probabilities in Lemma 2 change according to ρ, as shown
below.

Lemma 3. Let Eve, using an energy-detecting strategy, estimate the noise level to be σ2
est := ρσ2

n
with the uncertainty parameter ρ. Then, for the target false alarm probability of Eve, PF,target =
2Q(α), the per-symbol detection probabilities of the proposed signal PD,Gaussian and BPSK-modulated
signal PD,Binary are

PD,Binary = Q
(
α
√

ρ−
√

β
)
+ Q

(
α
√

ρ +
√

β
)
,

PD,Gaussian = 2Q
(

α
√

ρ√
1+β

)
,

(35)

and the actual false alarm probability becomes PF = 2Q(α
√

ρ).

One can easily prove Lemma 3 by calculating the ασest-tail probability using the same
procedure as used in Equations (32)–(34). Lemma 3 shows that the uncertainty of the
noise level of Eve only causes a shift in the tradeoff between the detection probability
and the false alarm probability. This implies that PF increases and PD decreases if Eve
underestimates (ρ < 1) the noise level; in contrast, PF decreases and PD increases if Eve
overestimates (ρ > 1) the noise level. The results for different ρ are illustrated in Figure 7.

In conclusion, Lemma 1 shows that the proposed method is more undetectable than
the finite-field modulation method, regardless of the eavesdropping scenario. Lemmas
2 and 3 show that the proposed method is more undetectable than the traditional binary
modulation method, especially when the eavesdropping scenario is more threatening.
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5. Implementation Problems

Showing how the proposed system is implemented in real time is important. In
this section, we aim to present two problems in real-time implementation and address
solutions for each. The first is modulation. The proposed system achieves undetectability
from Gaussian-distributed codeword samples. However, digital signal processing units
do not usually support Gaussian samples. Therefore, in Section 5.1, we discuss how the
Gaussian samples can be represented with finite precision, and determine the number of
quantization levels required for sufficient precision. The possible adoption of commercially
applicable solutions such as analog-to-digital converters and digital signal processing units
are discussed as well in order to tackle this finite precision problem. The second problem
is computational complexity. The SSR algorithms include the matrix inversion operation
in each iteration. In Section 5.2, we aim to show that hardware/software solutions such
as parallel processing, field-programmable gate array (FPGAs), and application-specific
integrated circuits (ASICs) can achieve high throughput and satisfy power constraints.

5.1. Modulation Method

In our proposed system, we used Gaussian samples. This has a noise-mimicking
property that is highly likely to remain undetected by the watchful Eve. This undetectable
characteristic of the Gaussian code is bolstered with the time-frequency modulation, which
is not available with traditional digital modulation constellations, such as quadrature
phase-shift keying (QPSK) and quadrature amplitude modulation (QAM). We can recall
that in Section 4, the proposed method showed higher undetectability than the traditional
method, especially in the scenario in which Eve is the most threatening.

The proposed system has to be implemented in signal processing processors that
have a finite dynamic range and a finite number of precision levels. Hence, truncation
and quantization must be considered when implementing the Gaussian constellation. For
several decades, optimal quantization methods have been studied in signal processing
and machine learning communities. Well-known quantization methods include Lloyd’s
algorithm I [36]. It determines a partition with respect to k mean points or quantization
points and then updates these points by calculating the center of each partition. Generalized
vector quantization [37] is a relaxation of Lloyd’s algorithm. It combines Lloyd’s algorithm
with a global optimization method to avoid local minimums. There are several other
heuristic algorithms for determining optimal quantization, such as competitive learning
vector quantization [38].
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The most important parameter for these methods is the number of quantization
points, which determines the truncation limits and quantization precision. If the number
of quantization points is large, the undetectability performance of the quantized Gaussian
signal becomes closer to that of an ideal Gaussian signal. As the number of quantization
points increases, a more precise analog-to-digital converter is required.

The quantized Gaussian constellation methods allow us to transmit and receive
an approximation of the proposed Gaussian-coded signal by bounding the maximum
magnitude with finite values. For example, Pages and Printems [38] designed a 500-point
quantized constellation that closely approximates the ideal Gaussian signal. For this
constellation, the maximum magnitude of a sample is bounded by 3

√
Es, where Es is the

average energy of the signal constellation. This result shows that the proposed method
with quantization can be achieved in modern radios. For example, the commercial mobile
radio platform of Qualcomm, called Snapdragon 855, includes a long-term evolution
modem that supports 256-QAM [39]. When 256-QAM is used, the maximum magnitude
of a sample is bounded by 1.6

√
Es. Thus, the dynamic range required for a quantized

Gaussian constellation is not significantly far from the dynamic range of the specifications
of commercial hardware.

If the quantized Gaussian signal is used instead of the true Gaussian signal, perfor-
mance degradation might occur due to the gap between the two distributions. However,
the difference will be negligible if the quantization precision is sufficiently high. In Table 1,
the results of the Anderson–Darling test for samples from a quantized and truncated
Gaussian distribution are listed. If the quantized Gaussian distribution is close to the
real Gaussian distribution, the test returns 0; otherwise, it returns 1. In the numerical
simulation, 1024 realizations of 8-, 10-, 12-, 14-, and 16-bit quantized distributions were
considered; moreover, a [–3, 3]-truncated standard normal distribution was tested. The
results of the tests were averaged from 10,000 simulations per simulation point. The results
show that with a significance level of 5%, the probability of distinguishing between the
samples from 12-bit quantization and the samples from the true Gaussian distribution is as
small as 6.24%. It can be noted that a $1000 software-defined radio device includes a 12-bit
digital-to-analog converter [40]. Thus, we can conclude that the quantized Gaussian signal
is sufficiently close to the real Gaussian signal despite the hardware limitation.

Table 1. Average results of the Anderson–Darling test for quantized Gaussian distribution.

Quantization Level [bits] 16 14 12 10 8

Average Return 0.0557 0.0583 0.0624 0.0661 0.1969

5.2. Computational Complexity and Power Consumption

The computational complexity is another important consideration for real-time im-
plementation. The receivers of the proposed system include the SSR algorithm for solving
the SJE problem and removing it from the received vector. The additional computation of
the SSR algorithm requires a certain amount of processing time and power consumption.
On the one hand, for the GSJE algorithm, the dominant complexity term is that of the
least-squares method for obtaining nonzero coefficients. The computational complexity of
the least-squares or the equivalent matrix inversion method is O(NK) per iteration, because
the Cholesky decomposition of AH

S AS can be precalculated for all possible support sets,
S. The amount of overall computations for K number of iterations is O(NK2). Conversely,

the BSJE algorithm has to calculate an inversion of the matrix (AΓAH + σ2AAH)
−1

for
each iteration, resulting in O(MN) computations, where A ∈ CM×N and M < N. We
now discuss the complexity of two other conventional covert anti-jamming methods. The
simplest conventional method is the DSSS, which is compared with the proposed method
in Section 4. The receiver for DSSS requires O(N) computations to perform a matched
filtering of length 2N. The other conventional method, FHSS-type cognitive radio [41,42],
also requires O(N) computations for spectrum sensing of NF subbands within O(NT) hops.
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The results show that the complexity of the SSR algorithm is marginally higher than that
of these conventional methods. However, owing to the recent advances in software and
hardware solutions, this complexity increase does not pose any limitation to real-time
implementation. We aim to show this in the following section.

Let the block size be N = 29 for transmitting a message of length lm = 16. Then, the
computational complexity of the GSJE algorithm is approximately 223 ≈ 8× 106 floating-
point operations per second (FLOPS), assuming the worst case where K = N/4. We can
use serial processing with modern digital signal processing chips to compute the algorithm.
For example, a single core of the TMS320C6678 digital signal processor offers a few tens
of giga-FLOPS. When we employ these chips, we can process a few thousand blocks in
real time, while consuming 1 W [43]. This implies that the throughput that the proposed
transceiver offers can easily support communication speeds on the order of kilobits per
second(kbps), while offering covert communication with strong anti-jamming protection.

We can increase the speed of the SSR algorithm. To achieve this, we can utilize
recent advances in research on parallel computation for matrix inversion and multithread
processing on GPUs. Examples include Gauss–Jordan-based implementations [44] and
squared Givens rotation-based implementations [45]. Sharma et al. [44] claimed that the
time complexity of the matrix inversion decreased up to O(N) and Yu et al. [45] showed
that their CPU/GPU-combined implementations achieved more than 20 times higher
throughput than CPU-only implementations. These examples suggest the possibility of a
real-time implementation on the order of megabits per second based on a GPU or a cluster
of GPUs. However, the challenge of power consumption remains. For example, the GPU
cores used in [45] consume a maximum of 49 W. These additional power requirements
might not be bearable for certain power-critical applications, such as a mobile radio device.

To satisfy the power constraints of real-time applications, hardware solutions such
as FPGAs and ASICs can be utilized. FPGA implementations [46,47] can process the SSR
algorithm sufficiently fast, within the order of 10 µs. The implementations in [46,47] run the
SSR algorithm for N = 128 within 18.3 µs and 27.0 µs, respectively. If we assume N = 128
and L = 4, the throughputs of the implementations become 218.6 and 148.1 kbps, respec-
tively. ASICs can be used to further increase the throughput. A 65-nm complementary
metal-oxide-semiconductor ASIC design [48] can process the GSJE algorithm for N = 256
within 591.36 ns. By assuming N = 256 and L = 8, a throughput of 13.53 Mbps can be
achieved.

It may appear that adding an ASIC for the sole purpose of eliminating jamming is
too expensive. However, it must be noted that hardware costs decrease rapidly each year.
Furthermore, it should be noted that achieving covert communication capability with
anti-jamming protection in any battlefield situation is highly desired. Imagine a situation
in which the entire communication link between allied forces is disabled and destroyed by
hostile jamming. Multiple studies emphasize how detrimental it is to have even a minor
information loss in mission-critical military communications [49,50].

6. Results

In this section, we present numerical results to demonstrate the anti-jamming perfor-
mance of the proposed system. First, we compare the SJE qualities of the two algorithms,
GSJE and BSJE, in terms of the mean squared error (MSE). Second, we demonstrate the
BER at the receiver under a jamming attack using several channels (AWGN and frequency-
selective fading), coding methods (linear Gaussian and codebook), and jamming estimation
algorithms (GSJE and BSJE).

6.1. Sparse Jamming Estimation Error

We evaluated the SJE performance of the GSJE and BSJE algorithms for the proposed
system. In general, the BSJE algorithm shows better SJE performance than the GSJE.
However, as the two algorithms have advantages and disadvantages, we must select an
algorithm for practical applications.
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• Limitations in BSJE implementation

In practical implementations, the appropriate maximum number of iterations should
be chosen to ensure the completeness of the iterative algorithm. As the maximum number
of iterations for BSJE is empirically selected, the output of the algorithm may not sufficiently
converge to the solution. In contrast, GSJE has a fixed maximum number of iterations,
which is N in the worst case. Owing to the aforementioned implementation limitations of
BSJE, there are several regions in which the BSJE algorithm performs equivalently to, and
sometimes worse than, GSJE.

• Time complexity

The BSJE algorithm calculates several matrix products and matrix inversions in a
single iteration, whereas the GSJE algorithm requires only a single matrix product and
the inversion of a smaller submatrix. In general, GSJE is significantly faster than BSJE,
especially when the size of the system becomes larger.

• Level of prior knowledge in the GSJE algorithm

The above two problems discourage the use of the BSJE algorithm. However, the GSJE
algorithm requires prior knowledge about the signal to define its termination conditions,
and this assumption about prior knowledge might be unrealistic. For example, if the
maximum cardinality of the support set is given as the termination condition, a receiver
executing the GSJE algorithm must know the support set of the jammer. This assumption
that the receiver will know the information a priori is impractical. If this prior information
is unknown, the optimum K is the maximum possible number of jamming coefficients for
GSJE. Unfortunately, this value depends on the RIP of the annihilating matrix A. Since A is
constructed from the random matrix G, the K must be calculated every time the codebook
changes. However, evaluating the RIP takes considerable time. The overhead further
increases since the codebook must vary over time to guarantee security. Thus calculating
the optimum K for each codebook change is not practicable. Instead, we heuristically
evaluated the average RIP for multiple realizations of A, and roughly set K = N/4 by
applying Wakin’s bound [51].

Accordingly, we performed a numerical simulation to compare the GSJE and BSJE al-
gorithms. The two algorithms were compared in terms of jamming estimation performance
(as measured by MSE) and time complexity (as measured by running time) at various JNRs
and levels of prior knowledge for the GSJE algorithm. We set the level of prior knowledge
as how much Bob precisely knows about the cardinality of jamming (e.g., sparsity, K). The
measure of prior knowledge is classified into two levels as a function of the true value of K,
as listed in Table 2.

Table 2. Definitions for the level of prior knowledge.

Level of Prior Knowledge Perfect Unknown

Maximum iteration of GSJE K̂ = K K̂ = N/4

Using the above values, we compared the normalized MSE of the jamming estimation
and the corresponding running time. The block length of the complex-valued codeword
was set to 1024, and the number of possible message vectors was eight. Thus, the code rate
was 8/2048 = 1/256. Among the 1024 complex samples, 128 samples were contaminated by
jamming; thus, the jamming rate was 128/1024 = 1/8. We compared the results according
to three different JNRs: 10, 5, and 0 dB. The results are listed in Table 3.
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Table 3. Mean squared error (MSE) comparison results between BSJE and GSJE algorithms, according
to jamming-to-noise ratio (JNR).

JNR 10 dB 5 dB 0 dB

Prior Knowledge Perfect Unknown Perfect Unknown Perfect Unknown

MSE
(BSJE) 0.0525 0.0523 0.166 0.166 0.523 0.523

MSE
(GSJE) 0.0446 0.0880 0.193 0.295 0.754 0.992

Run time
(BSJE) 11,300 11,500 10,900 11,800 12,600 11,600

Run time
(GSJE) 977 2530 900 2510 896 2440

• MSE performance according to prior knowledge

The results reveal the jamming estimation performance of the GSJE and BSJE algo-
rithms. The MSE of the GSJE algorithm increases as the uncertainty of prior knowledge
increases. For example, the MSE of the GSJE with perfect knowledge is 0.0446 at a JNR of
10 dB, which is higher than that of BSJE; however, the MSE decreases to 0.0880 under the
same conditions, except for the condition in which prior knowledge is unknown. Its MSE
value with unknown prior knowledge is lower than that of BSJE.

• MSE performance according to JNR

The performance of both algorithms degrades as the JNR decreases. However, the
degree of performance degradation is greater for the GSJE algorithm. For example, the
MSEs of the GSJE with perfect knowledge are 0.193 at a JNR of 5 dB and 0.754 at a JNR
of 0 dB, which are lower than those of BSJE. It can be recalled that the MSE of GSJE is
higher than that of BSJE at a JNR of 10 dB. Thus, BSJE is more suitable for environments
with large JNR ranges than the GSJE. This agrees with the theoretical expectation that the
output noise model of GSJE becomes more distinguishable with the true signal model as
JNR decreases from 10 dB to 0 dB.

• Running time

The results indicate that the BSJE algorithm is far slower than the GSJE algorithm.
However, the running time of GSJE increases when it suffers from a lack of prior knowledge.
For example, GSJE is more than ten times faster when it has perfect knowledge and
approximately four times faster when it does not have any prior knowledge. In contrast,
the running time of BSJE is almost constant regardless of the prior knowledge since BSJE
does not explicitly exploit the information.

6.2. Bit Error Rate under Jamming

We evaluated the BER at the receiver under jamming attacks in multiple scenarios. The
results presented in Figures 7 and 8 illustrate the BER performance of the proposed system
in the AWGN channel under a jamming attack with a JNR of 0 dB. The block length of the
complex-valued codeword was set to 512 and the number of possible message vectors was
four. Thus, the code rate was 4/1024 = 1/256. At the same time, we evaluated the BER
of an uncoded DSSS that had same rate in order to use this as a baseline. Among the 512
complex-valued samples, 64 samples were contaminated by jamming; thus, the jamming
rate was 64/512 = 1/8. We evaluated the BER under jamming over the Eb/N0 region
from 0 dB to 16 dB, corresponding to SNRs from −24 dB to −8 dB, as SNR is calculated
by (Eb/N0) · (code rate) ≈ (Eb/N0)− 24 dB. Note that the SNR is far below the noise
floor. As illustrated in Figure 8, the BER of the proposed method using the BSJE and GSJE
algorithms with perfect prior knowledge approaches the BER of jamming-free QPSK as
Eb/N0 grows. In contrast, the BER of the GSJE without any prior knowledge cannot achieve



Appl. Sci. 2021, 11, 3759 24 of 28

anti-jamming performance. Furthermore, if the proposed codeword is drawn using the
codebook method, the BER of the proposed method with the BSJE algorithm outperforms
that of the jamming-free QPSK, as illustrated in Figure 9. Thus, the proposed method
achieves a coding gain while simultaneously having an anti-jamming property.

Figures 9 and 10 illustrate the BER performance of the proposed system over a
frequency-selective fading channel. The simulation was performed over a frequency-
selective fading channel with frequency-domain channel coefficients following an i.i.d.
CSCG random distribution CN (0, I), with the other parameters being identical to those in
the AWGN channel simulation. Because several subbands have significantly low gain, the
BER of the uncoded QPSK signal is significantly more degraded than that in the AWGN
channel simulation. In contrast, the BER degradation of the proposed method is tolerable
when compared to that of the uncoded QPSK. The method using BSJE demonstrates the
highest performance, and the method using GSJE shows the lowest performance among
the proposed methods. Consistent with the AWGN channel simulation, the performance
of the codebook method illustrated in Figure 11 is superior to that of the linear Gaussian
method illustrated in Figure 10.
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7. Conclusions

In this paper, a novel covert anti-jamming communication system was proposed.
The proposed system exploited the Gaussian-coded time-frequency modulation method
to obtain covertness. As the signal samples of the proposed system followed Gaussian
distributions, the signal was less detectable than the traditional binary modulated signals.
We proposed the SSR-algorithm-based SJE algorithms to estimate and remove the effects of
hostile jamming. In contrast to previous studies, the proposed system used the Gaussian
codebook method to achieve a coding gain when the finite-field messages were encoded.
We analyzed the undetectability of the proposed system as a measurement of the covert-
ness of communications, and compared the undetectability with that of the conventional
binary modulated system. We also demonstrated its BER performance through numerical
simulations. The proposed system can be applied in eavesdropping- and jamming-critical
applications, such as military communications in electronic warfare scenarios.
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