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ABSTRACT: In this research, an electrically polarized graphene-polylactic acid (E-GRP) spacer is introduced for the first time by a
novel fabrication method, which consists of 3D printing followed by electrical polarization under a high voltage electric field (1.5
kV/cm). The fabricated E-GRP was tested in an osmotic-driven process (forward osmosis system) to evaluate its performance in
terms of water flux, reverse solute flux, and ion attraction compared to a 3D printed nonpolarized graphene-polylactic acid (GRP)
spacer and a polylactic acid (PLA) spacer. The use of the developed E-GRP as a draw spacer showed >50% water flux enhancement
(32.4 ± 2 Liter/m2/h (LMH)) compared to the system employing the GRP (20.5 ± 2.3 LMH) or PLA (20.8 ± 2.1 LMH) spacer.
This increased water flux was attributed to the increased local osmotic pressure across the membrane surface due to the ions
adsorbed by the polarized (E-GRP) spacer. As a feed spacer, the E-GRP also retarded the gypsum scaling on the membrane
compared to the GRP spacer due to the dispersion effect of electrostatic forces between the gypsum aggregation and negatively
charged surfaces. The electric polarization of the E-GRP spacer was shown to be maintained for >100 h by observing its salt
adsorption properties (in a 3 M NaCl solution).

KEYWORDS: electrostatic spacers, graphene spacers, membrane filtration, 3D printing, membrane scaling, forward osmosis

■ INTRODUCTION

Water scarcity has been a critical problem in the last few
decades due to drought accelerated by global warming.1 As
fresh water resources are already limited, the need for treating
nonpotable waters has emerged.2 As of 2020, we are
confronting a global pandemic and its indirect side effects,
one of which is the mixing of viruses with water.3−5 Although
the United States Environmental Protection Agency stated that
drinking water is still safe for drinking,6 Casanova et al. stated
that coronaviruses can remain infectious in water for days to
weeks.7 Since we are faced with this critical situation that is
endangering human lives, virus-selective water treatment
methods come to the front compared to other treatment
methods. When virus-selectivity is a concern, membrane-
treatment methods can be considered the primary approach
due to their excellent selectivity of water over other matter.8

For the success of the membrane process to secure clean water,

the membrane’s performance should be maintained with
minimal changes in energy consumption over long-term
operation; however, most studies have focused on the
development of novel membranes9,10 and are already at their
limit for the current technology.11 In addition, other parts of
the membrane processes should also be further developed to
increase the overall efficiency of the membranes processes.
The development of the channel spacer is one of the most

critical parts affecting the performance of the membrane
process as it distributes the feedwater stream and works as a
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protective guard to the membrane surface.12 To date, most
studies on spacers have been conducted by computer modeling
with a focus on the shape of the spacers.11 There are relatively
few investigations using in situ filtration tests, although
computational fluid dynamics (CFD) modeling of the
geometry has been extensively performed.13−16

The fabrication material, surface structure, and functionality
of spacers also carry great importance. In this regard, Yanar et
al. compared the performances of acrylonitrile butadiene
styrene (ABS), polylactic acid (PLA), and polypropylene (PP)
as the spacer materials by employing them in a forward
osmosis (FO) type membrane filtration system and clearly
observed differences in fouling and ion attraction by the
spacers.17 On the other hand, there have been a lot of studies
on different types of coatings for spacers to enhance their
surface properties. Some examples of such studies are a
nanosilver surface modification to a reverse osmosis (RO)
membrane and a spacer for mitigating biofouling,18 an
antibacterial spacer obtained by the sonochemical deposition
of ZnO nanoparticles,19 nanosilver-modified feed spacers for
antibiofouling of ultrafiltration (UF) membranes,20 a polyani-
line and polypyrrole (PPy) coating onto a stainless steel grid
for high selectivity oil−water separation,21 graphene coating on
a steel mesh for oil/organic-water separation,22 and the
formation of nanotubes on stainless steel meshes by electro-
polymerization.23 Nevertheless, surface coating has not always
been successful at enhancing the spacer performance. For
example, polydopamine, polydopamine-g-PEG, and copper
coatings on feed spacers did not show a high performance in
mitigating biofouling.24,25 Similarly, CuO modified spacers also

did not improve the performance of RO systems in terms of
biofouling.26

Alternative techniques based on electrochemistry have been
applied to filtration systems to enhance the overall perform-
ance regarding water flux and fouling resistance. Self-cleaning
was first demonstrated in electrically conductive titanium
meshes used as spacers for microfiltration (MF).27 The electric
polarization of a spacer has also been utilized to enhance the
performance of water filtration membranes. An electrically
polarized titanium mesh was used for biofouling control in an
RO system.28 The effect of electrical polarization on the
movement of ions in water and on membrane systems has
been investigated by a variety of studies. Kim et al. introduced
the effect of electric field on the mitigation of salt ions and
showed that it also reduces the internal concentration
polarization (ICP).29 Son et al. investigated the ion migration
induced by an electrical field on the water flux in an FO
process by using a thin-film composite (TFC) membrane. This
research showed that the electric field that brings protons
closer to the membrane surface can provide enhanced osmotic
pressure due to the high localized concentration of protons.30

When functionalized graphene nanosheets were used as a
membrane, a faster movement of the salt ions under the
electric field was also reported.31

In this research, we propose an electrically polarized
graphene-blended (E-GRP) spacer as a salt adsorber prepared
by 3D printing followed by a polarizing step (Figure 1a and b).
3D printing is a versatile fabrication method, which allows to
control the size, scale, and material of the final product.16,32−34

As the ion movement (or concentration) and electric

Figure 1. Fabrication and application processes of the electrostatic graphene-blended PLA spacers (E-GRP): a) 3D printing, b) electric
polarization, and c) forward osmosis filtration.

Figure 2. a) The CAD model and the fabricated b) E-GRP, c) GRP, and d) PLA spacers.
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polarization on the draw side are crucially important in the FO
process, the developed E-GRP spacer was employed on the
draw side to investigate the changes in FO performance
(Figure 1c). We also employed E-GRP on the feed side of the
membrane by filtrating a feed solution with organic salts to
check its performance for the mitigation of membrane surface
scaling. To our knowledge, this is the first attempt to fabricate
an electrically polarized conducting spacer and apply it to a
membrane process.

■ MATERIALS AND METHODS
The spacers were designed with the same filament thickness of 50 mil
(1.27 mm) spacers with a pore size four times larger than that of
commercial spacers (Figure S1). The reason for the enlarged size
parameters was to allow the membrane to have a larger osmotic
concentration area and to avoid the precision limitations of Fused
Deposition Modeling (FDM) 3D printers. A Computer Aided Design
(CAD) model of the spacer with dimensions 45 mm × 60 mm ×
1.905 mm was prepared using Autodesk Meshmixer and Blender
(Figure 2).
For the 3D printing of the samples, we utilized an FDM 3D printer

(OpenCreators-Almond, Republic of Korea) (Figure 1a), since it
allows the freedom to choose the printing materials as opposed to
other types of 3D printers. The fabricated PLA, graphene-blended
PLA (GRP), and E-GRP were expected to have the same geometry, as
the same printing procedure was applied. For the pristine PLA spacer,
1.75 mm of natural PLA filaments (PLABS, Republic of Korea) were
used. For the GRP and E-GRP spacers, we utilized 1.75 mm of
conductive graphene blended PLA filaments with an 8% graphene/
PLA ratio and a volume resistivity of 0.6 Ohm·cm35,36 (Graphene
Laboratories, United States). The more amount of graphene blending
would result in huge amount of high dielectric loss, which would
result in lower electric polarization capacity.37 High dielectricity of
graphene provides high electric polarization capacity.38 High
insulating properties of PLA is considered to wrap graphenes for
keeping the electret property for longer time.39

After the printing procedure, the spacers were washed first with
ethyl alcohol and then with deionized (DI) water with the resistivity
of 18.2 mΩ·cm at 25 °C.40 An ultrasonicator (B8510-MT, Branson,
USA) was used to remove the remaining filament particles from the
spacers.
After the spacers were dried, one of the graphene-PLA spacers was

placed into a lab-scale electric field system consisting of two parallel-
plates at a distance of 20 cm. We subsequently applied ±15 kV
between the plates for 2 h to electrically polarize the GRP spacer to
obtain an E-GRP one. The electric field was calculated with the
following formula:41

= ΔV
d

E
(1)

where E is the electric field (V/cm), ΔV is the potential difference
between the plates (V), and d is the distance between the plates (cm).
The surface charge densities of graphene spacers were also

measured. Two flat graphene/PLA samples with an area of 3 cm ×
1.5 cm and a thickness of 200 μm were fabricated. One of these
samples was electrically polarized for 2 h in the same electrical field
conditions above. Then, the zeta potentials of the samples were
measured to calculate the surface charge densities using the Graham
equation:

σ ε ε ζ= i
k
jjj

y
{
zzzkTI

ze
kT

8 sinh
2r 0 (2)

where σ is the surface charge density, which is the hyperbolic function
of the measured zeta potential ζ. I is the total electrolyte
concentration, ε0 is the vacuum permittivity, which is 8.854 × 10−12

F·m−1, εr is the relative dielectric permittivity of the solvent, e is the
elementary charge, equal to 1.602 × 10−19 C, kT is the thermal energy
(k is the Boltzmann constant, which is 1.381 × 10−23 J·K−1 and T is

the temperature in Kelvin), and z is the ion valence.42 For a 0.6 M
NaCl solution, εr can be calculated as follows:

ε ε δ= + ̅c2r w (3)

where εw is the dielectric permittivity of water, which is 78.2 at 25
°C43 and δ represents the relative contributions of the two ions in a

single case (δ ̅ = δ δ++ −

2
). The value of δ+Na+ was taken as − 8, δ−Cl‑ as

− 3, which led to δ being equal to −5.5. Finally, c is the concentration
of the solution.44

The Debye length in the NaCl electrolyte solution is also
considered to observe the effect of electrolyte concentration for
solid charge carrier’s net electrostatic effect.

∑
λ

ε ε
ρ

=
∞

kT

e zD
r

i
i i

0
2 2

(4)

where ρ∞i is the number density of ion type i and zi is the ion
valency.45

In order to observe the relative osmotic change on the membrane
surfaces regarding to its distance to the electrically polarized spacer
filament, we placed physically attached membrane-spacer couples
(spacers on the draw side of membranes) of GRP and E-GRP for 12 h
to the bottom of 300 mL glass beakers filled with 0.6 M NaCl solution
(Figure S2a). After 12 h, membrane-spacer couples are dried, and
concentrated salt volumes on the middle parts of three designated
zones (Figure S2b) of the membrane surfaces were measured with an
x−y scanning distance of 500 μm at 10 steps by using a Surface Nano-
Profiler (Nanomap-D/Alpha-steps, HTSK, Gyeonggi, Korea). It
should be noted that average surface volume of the pristine membrane
is extracted from the results to obtain net values.

The thickness of each spacer was first characterized at the
millimeter scale by a scanning field emission electron microscope (FE-
SEM, S-4700 Hitachi, Japan). The junction points of the spacers were
also visualized to ensure that intermembrane spaces were provided.
SEM images were also taken for the surfaces of polarized and
nonpolarized flat graphene blended PLA samples to observe if electric
polarization creates any surface integrity change.

As we proposed these spacers for its ion attraction and for
employing in a forward osmosis system, we applied it first on the draw
side, where a highly concentrated sodium chloride (NaCl) solution is
used. For comparison, the spacer was also tested on the feed side.

A forward osmosis system with an effective membrane area of
19.35 cm2 and a total effective height of 2.6 mm was used in the cross-
flow mode with a flow velocity of 200 cm3·min−1 on both the feed and
draw sides. A commercially available woven permeate spacer and
commercial FO membranes extracted from an FO module (Toray
Korea) were used in AL-FS (active layer facing feed side) orientation
to test the performance of the system (Figure 1).

For the case where the driving force was the osmotic pressure
across the membrane, a 0.6 M NaCl solution (draw solution) was
paired with DI water (feed solution). The water weight and electrical
conductivity on the feed side were automatically recorded by a
computer every minute. Filtration tests were conducted for 1 h for
each sample once the system was stabilized (i.e., stable water flux).
The water flux, Jw, and the reverse solute flux, Js, were calculated as
given below:

=
Δ

J
V

A tw
m (5)

=
−

J
V C V C

A ts
t t

m

0 0

(6)

where Jw is the water flux, V is the volume of filtrated water (L), Am is
the effective membrane area of the testing module, and Δt is the
permeation time (h).46,47 The reverse solute flux was obtained from
the change in feed conductivity per minute and converted into g/m2/
h (gMH). Ct (g·L

−1) and Vt (L) are the concentration and volume of
the feed solution measured at time t, respectively, and C0 (g L

−1) and
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V0 (L) are the initial concentration and volume of the feed solution,
respectively. The concentration values were determined from the
solution conductivities.48 Further the investigation was done by using
3 M NaCl solution (draw) paired with DI water (feed) for
understanding the performances of spacers under highly concentrated
draw concentrations. In order to confirm the polarization longevity of
E-GRP in draw solution, 10 h flux declines of E-GRP and GRP are
also compared while 3 M NaCl in draw side and DI water in feed side
are used.”
The performance of E-GRP as the feed spacer was further tested by

placing a feed solution containing inorganic salts19 mM NaCl, 20
mM sodium sulfate (Na2SO4), and 35 mM calcium chloride
(CaCl2)and placing 0.6 M NaCl solution on the draw side. The
solubility product of the Ca2+ and SO4

2− concentrations in the feed
solution was slightly higher (with a saturation index [SI] of 1.3),
which can create gypsum scaling on the membrane at a reasonable
flow rate, which was 200 cm3·min−1 for this experiment, as stated
above.49,50

To further understand the effect of electric polarization on the ion
attraction on the spacers, the spacers were each placed in 300 mL of 3
M NaCl solution for 12 h. This procedure was done right after the E-
GRP polarization for 100 h. After a 12 h deposition of Na+ and Cl−

ions on the spacers, each was first placed in a 300 mL beaker filled
with DI water and then in an ultrasonicator for 1 h. The conductivity
of each solution with the released ions was subsequently measured
after removing the spacers. Next, the conductivities were converted
into total dissolved solids (ppm) and osmotic pressure unit (bar).

∑= + *P 1.19(T 273) (m )osm i (7)

In this formula, Posm = osmotic pressure (in psi), T is the
temperature (in °C), and Σ(mi) is the sum of molal concentrations in
the solution.51

The surface charge density in the 3 M NaCl solution was also
calculated by taking εr as 54.

44,52

For the cost analysis of E-GRP, we obtained the business electricity
prices53,54 of top 12 countries according to latest available data from
World Bank for Gross Domestic Product (GDP).55 Actual power P

(kW) is calculated from the following formulas. In here, S (kW) is the
apparent power, P.F. (taken as 1) is the power factor (unitless) while
V is voltage and I (A) is the current.

= ×S V I (8)

= ×P S P. F (9)

Total consumed energy (E) is calculated by multiplying actual
power P with time t (time).

= ×E P t (10)

By using actual power, 2 h price of used electricity for electric field
production and 20 min price of used electricity for FDM type 3D
printing machine are calculated for the spacer.56 Material cost per cm2

spacer area is calculated by taking the gram price of graphene blended
filament as reference which was 100 dollars for 100 g. In the end, total
cost is indicated by summing up the electricity costs and the material
cost (Minor costs such as transportation cost or postproceeding cost
are ignored).

■ RESULTS AND DISCUSSION
The 3D printed samples were successfully fabricated with
marginal differences from the CAD model (Figure 2). The
original design was 50 mil (1.27 mm) thick; however, the
printed samples showed a relatively lower thickness due to the
limited resolution of the layer by layer printing method of the
FDM 3D printer. While the thicknesses of the GRP and E-
GRP spacers were equal to 1.20 mm, that of the PLA spacer
was 1.15 mm (<4% difference). It can be noticed that blending
graphene increased the rigidity of the melted filament, which
resulted in a relatively higher precision than for the PLA spacer
without blending (Figure 3). Surface integrity of graphene-
blended PLA spacer after and before polarization was also
observed in order to see if electric polarization creates any
change. However, we did not observe any visible change
(Figure S3).

Figure 3. Top and cross-sectional SEM images of the a, b) GRP and E-GRP and c, d) PLA spacers.
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After the E-GRP was polarized under a calculated electric
field of 1.5 kV/cm, the prepared spacers were first tested by
placing them on the draw side, as our purpose was to analyze
the effect of ion attraction on the spacers. When the E-GRP
spacer was used as a draw spacer, 32.4 ± 2 Liter/m2/h (LMH)
of water flux (WF) and 13.4 ± 1.5 gMH of reverse solute flux
(RSF) were measured. This measured WF was higher than that
of the PLA (20.8 ± 2.1 LMH) or GRP (20.5 ± 2.3 LMH)
spacers (Figure 4a). Since the reverse solute flux is generally
proportional to the water flux in the FO process, less solute
permeation was observed for PLA (8.7 ± 1.2 gMH) or GRP
(10.5 ± 2.1 gMH) compared to E-GRP. We explain this effect
with the Gouy−Chapman theory, which states that there
should be exactly balanced by an equal and oppositely charged
ions or counterions in the solution adjacent to the charged
surface and a deficit of similarly charged ions or co-ions.57

Based on this, the interfacial potential at the polarized surface
should increase the number of ions attached to it to an equal
number of ions of opposite charge in the solution. Thus, the
surface near to the spacer is expected to have a higher
counterion concentration (Figure S4), which will also increase
the local osmotic concentration, resulting in higher flux. To
further understand this phenomenon, we calculated the surface
charge density on the E-GRP and GRP spacers as a hyperbolic
function of the surface zeta potential using the Grahame
equation. As we were not able to measure the surface zeta
potential of the spacers due to their shapes, we prepared 200
μm flat samples from the same printing material and polarized
one of them in the same conditions as the E-GRP spacer. From
the measured zeta potentials, the calculated surface charge
density of the E-GRP (−4.2 mC/m2) spacer was found to be
higher than that of the GRP (−0.27 mC/m2) one (Figure S5).
Therefore, the surface charge density was enhanced through
the polarization of the graphene-blended spacer, an effect that
could provide higher local osmotic concentration at the
membrane surfaces near the polarized spacers. Furthermore,
the collection of ions on the spacer reduced the external
concentration polarization on the surface of the membrane.
We also investigated the performances of spacers at draw side
while high concentration draw solution (3 M NaCl) is used.
When the E-GRP spacer was used, 42.5 ± 0.7 LMH of WF and
24.7 ± 3 gMH of RSF were measured. WFs for PLA and GRP
were 38.6 ± 1.1 LMH and 37.5 ± 0.8 LMH, respectively. RSFs
of PLA and GRP were observed as 19 ± 1.4 gMH or 20 ± 2.1

gMH, respectively (Figure S6). Compared to the performance
at the draw solution of 0.6 M NaCl, flux increasing
performance of E-GRP was relatively less at 3 M NaCl
solution. This shows us that E-GRP is more efficient for lower
concentration draw solutions (<3 M) such as seawater (∼0.6
M). In this point, it should also be noted lower concentration
draw solutions are more preferred for indirect desalination or
water reuse applications, because (i) concentrates or brines
contain high concentration of salts, and residuals of seawater
pretreatment that can negatively affect the membrane perform-
ance; (ii) more efficient dilution of draw solution at the end of
osmotic operation; (iii) lower cost of for the desalination of
diluted draw solution as a result of using low pressure.
Therefore, current seawater desalination plants are preferring
to use seawater as draw solution rather than brines of
concentrates.58 Using E-GRP at lower concentration draw
solutions will be beneficial to obtain the osmotic effect of
higher concentration draw solutions by avoiding the draw-
backs.
Further investigation was done by profiling accumulated salt

volumes on the different zones of membrane surface after
placing membranes with E-GRP and GRP in 0.6 M NaCl
solutions for 12 h. The results showed that salt concentration
on the membrane surface of E-GRP is proportionally
increasing regarding to the distance of membrane surface to
the electrically polarized spacer filament. When GRP was used,
middle regions of designated A1, A2 and A3 zones of
membrane surface had 4626 ± 1882 μm3, 7015 ± 2465 μm3

and 8431 ± 428 μm3 accumulated salt volumes, respectively
(Figure S7a). These volumes were 18607 ± 4794 μm3 (A1),
10332 ± 630 μm3 (A2) and 7767 ± 1380 μm3 (A3) for the
case of E-GRP (Figure S7b). These results show that local
osmotic pressure on membrane surface is also proportional in
macro scale to the distance of membrane surface from the
filaments of electrically polarized spacer. When the results
belonging to unpolarized GRP is seen, this kind of correlation
was not found. Topographic images obtained from Surface
Nano-Profiler can also be seen from Figure S8.
Flux decline of GRP and E-GRP for 10 h for was also

observed in order to understand if there is any loss in the
performance of E-GRP. However, similar flux declines were
observed for both polarized and nonpolarized spacers (Figure
S9).

Figure 4. Pure water flux of each spacer on the a) draw side and b) feed side.
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The effect of using E-GRP as a feed spacer was also
investigated (Figure 4b). On the feed side, E-GRP (WF: 28.8
± 0.6 LMH and RSF: 14.7 ± 4.4 gMH) had a performance
similar to GRP (WF: 25.1 ± 0.8 LMH and RSF: 15.8 ± 2.25
gMH) and PLA (WF: 27.1 ± 0.5 LMH and RSF: 15 ± 3.8
gMH). As there were no ions present in the feed solution, the
E-GRP spacer was not able to adsorb ions; thereby, only
marginal changes in the water flux and reverse solute flux were
found.59

Ion adsorption and desorption capacities of each spacer were
further investigated by measuring the amount of collected ions
on E-GRP, GRP and PLA by dipping in 3 M NaCl solutions
(Figure S10). E-GRP clearly showed the greater amount of
collected ions on it compared to PLA and GRP spacers. E-
GRP collected 129,000 ± 3650 ppm ions (100 ± 2.8 bar in
terms of osmotic pressure) on it during 12 h dipping right after
the polarizing, whereas it decreased to 106,000 ± 3500 ppm
100 h after polarization (82 ± 2.7 bar in terms of osmotic
pressure). In contrast, GRP had 92,450 ± 450 ppm (72 ± 0.3
bar in terms of osmotic pressure), while PLA had 73,700 ±
1150 ppm (57 ± 0.9 bar in terms of osmotic pressure) as
average (Figure 5). Thus, the effect of electrostatic forces on

the collection of ions on spacers instead of the membranes
could be expected. In order to support this data, surface charge
densities of E-GRP (−7.4 C/m2) and GRP (−0.53 C/m2)
were also calculated for 3 M NaCl solution from Grahame
Equation (Figure S11). It shows that surface charge densities
are increasing with the increasing solvent concentration, which
also affect total collected ions on spacer surfaces. Therefore, E-
GRP’s superior ion adsorption capacity was proportionally
increased to the solvent concentration. Although relatively thin
Debye length of 4.61 nm for 3 M NaCl was calculated, it was
also previously studied that the Debye length is not applicable
for higher solvent concentrations of >0.1 M as it does not also
consider the effect of surface charges of the solid surface.60,61

E-GRP as a feed spacer was further tested to observe the
scaling performance, when the feed was concentrated with
inorganic salts of NaCl, Na2SO4, and CaCl2. The use of the E-
GRP as a feed spacer has suppressed the gypsum scaling on the
membrane surface at the feed side. Only ∼20% of flux
reduction was found for E-GRP, whereas >80% of water flux
was declined for the pristine GRP during 4 h of operation
(Figure 6). This improved gypsum scaling resistance of the E-

GRP spacer could be attributed to the electrostatic forces
between the gypsum aggregation and membrane surface. For
instance, collection of cations on polarized spacer surface could
disrupt the gypsum formation on membrane surface because
the electrostatic forces are well-known to effectively disperse
gypsum aggregation.62 Furthermore, some gypsum could also
be attracted by the polarized spacer instead of blocking the
membrane surface, as it is known from the literature that there
is an enhanced ionic interaction between the negatively
charged surfaces (E-GRP) and gypsum particles.63 This was
further supported by SEM images as less gypsum formation
was observed for E-GRP compared to that of GRP (Figure 7).
Above, we discussed the advantages of using E-GRP for the

enhancement of water flux, and prevention of membrane
surface scaling. To make this approach more feasible in
practical application, periodic polarization (or self-polar-
ization) of spacers should be further investigated. One
suggestion could be the use of E-GRP in self-polarizing
systems by connecting external circuit. In addition, other types
of fouling such as organic and biofouling should be also tested
by considering larger scale applications.
At last, we shortly discuss about the cost of fabrication of E-

GRP. The main cost comes from the electricity. Electricity
costs from different countries for polarizing the spacer is given
at (Figure S12a). For our case, we utilized 3 kW electricity per
hour which costed us 0.678 dollars for 2 h. However, the other
fabrication costs are relatively low. When we consider about
the spacer material it is relatively low (0.057 dollars for 1 cm2

spacer area). Furthermore, thanks to 3D printing, the
fabrication did not require any labor price. Only the electricity
cost of 3D printing which was 0.0027 dollars (for Korea) for
20 min of printing of our sample. Price calculation for different
countries can be find at (Figure S12b).

■ CONCLUSION
In this research, we propose a novel E-GRP spacer to maximize
water flux and minimize gypsum scaling in FO application. The
developed E-GRP has collected ions on itself and thereby
enhanced local osmotic concentration near the membrane
surface. When electrically polarized graphene blended polymer
spacer E-GRP was used as draw spacer, it showed over 50%

Figure 5. Total collected ion on each spacer right after and 100 h
after electric field application to E-GRP.

Figure 6. Normalized Water Flux for 4 h gypsum scaling of
membranes with GRP and E-GRP
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higher water flux compared to the pristine nonconducting
spacer (PLA) and graphene-blended spacer (GRP). When E-
GRP was used as a feed spacer, it did not show highly
enhanced performance due to the absence of ion present in the
feed solution. However, when scaling test was performed by
dissolving inorganic salts in feed side, E-GRP showed a great
performance to mitigate membrane scaling by disrupting
gypsum formation on membrane surface as result of collection
of gypsum forming ions on spacer surface rather than
membrane active layer and its effect on the dispersion of
gypsum aggregation.
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