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Abstract In expanding universes, the entanglement entropy
must be time-dependent because the background geometry
changes with time. For understanding time evolution of quan-
tum correlations, we take into account two distinct holo-
graphic models, the dS boundary model and the braneworld
model. In this work, we focus on two-dimensional expanding
universes for analytic calculation and comparison. Although
two holographic models realize expanding universes in
totally different ways, we show that they result in the qual-
itatively same time-dependence for eternal inflation. We
further investigate the time-dependent correlations in the
radiation-dominated era of the braneworld model. Intrigu-
ingly, the holographic result reveals that a thermal system in
the expanding universe is dethermalized after a critical time
characterized by the subsystem size.
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1 Introduction

For understanding strongly interacting systems at a low
energy scale, it is important to figure out the energy scale
dependence of physical systems via a nonperturbative renor-
malization group (RG) flow. At present, unfortunately, there
is no well-established nonperturbative and analytic tool. In
this situation, there was an interesting proposal in the string
theory, the so-called anti-de Sitter (AdS)/ conformal field the-
ory (CFT) correspondence or holography [1–4]. The hologra-
phy claims that a strongly interacting conformal field theory
(CFT) maps to a one-dimensional higher dual gravity theory.
Though it is a formidable task to account for a nonpertur-
bative quantum field theory (QFT), the AdS/CFT proposal
provides a new chance to uncover nonperturbative aspects
of strongly interacting systems. Due to this reason, people
widely exploited the holographic technique in studying non-
perturbative features of phase transition, linear response, and
quantum entanglement. In this work, we investigate time-
dependent quantum correlations, the entanglement entropy
and a two-point correlation function, in expanding universes
[5,6]

One of the important quantities revealing quantum fea-
tures is the entanglement entropy [7–9]. The entanglement
entropy represents the quantum correlation between two
distinct subsystems. In general, it is not easy to calculate
the entanglement entropy of an interacting QFT. Based on
the holography, Ryu and Takayanagi (RT) proposed that
the entanglement entropy of QFT is associated with the
area of the minimal surface extending to the dual geom-
etry [10,11]. Recent studies on the entanglement entropy
showed that the RT proposal is very successful. For example,
a two-dimensional CFT is special because it has infinitely
many symmetries and the modular invariance. These large
symmetries enable us to calculate the entanglement entropy
exactly [7,8]. When applying the RT formula, intriguingly,
it was shown that the holographic calculation exactly repro-
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duces the results of a two-dimensional CFT [10–12]. The
RT proposal was further applied to higher-dimensional cases
and showed that the entanglement entropy can characterize
important quantum properties like a- and F-theorems [13–
15].

When applying the RT formula, we have to consider a
space-like hypersurface at a given time and divide the bound-
ary space into two subsystems. If the dual geometry is static,
taking a space-like hypersurface looks natural because of the
time translation symmetry. In this case, the resulting entan-
glement entropy becomes time-independent. If we want to
know the time-dependence of the entanglement entropy, we
must break the time translation symmetry. One way to break
the time translation symmetry is to consider a time-dependent
geometry. In this case, we cannot directly apply the RT for-
mula because of the absence of the time translation symmetry.
It was argued that one must exploit a covariant or Hubeny–
Rangamanni–Takayanagi (HRT) formula, instead of the RT
formula, in the time-dependent background geometry [16].
Although the concept of the HRT formula is concrete, it is not
easy to evaluate such a time-dependent entanglement entropy
exactly even in the holographic setup. In this work, we take
into account a three-dimensional AdS space as a toy model,
whose boundary is given by a dS space representing two-
dimensional eternal inflation. On this time-dependent back-
ground geometry, we calculate the time-dependent entangle-
ment entropy exactly by applying the HRT formula beyond
the RT formula.

Except for the two-dimensional inflationary universe, the
dS boundary model cannot realize other universes expand-
ing by power-laws. In order to study the power-law expan-
sion, therefore, we take into account another holographic
model called the braneworld model [17–21], where we con-
sider a moving brane in an asymptotic AdS geometry. The
braneworld model allows us to describe the universes expand-
ing by power-law holographically [6]. Since the background
geometry of the braneworld model is time-independent,
the RT formula in the braneworld model describes time-
dependent quantum correlations. From now on, we concen-
trate on a two-dimensional braneworld model which can
be easily generalized to the higher-dimensional case. The
two holographic models, the dS boundary and braneworld
models, describe the expanding universes in totally differ-
ent ways. Despite this fact, we show that these two holo-
graphic models yield a similar time-dependent entangle-
ment entropy for an inflationary universe. We also investi-
gate a radiation-dominated universe in the braneworld model.
In this case, intriguingly, the time-dependent entanglement
entropy reveals a remarkable feature. A black hole geome-
try, in general, allows the thermodynamic interpretation. The
Bekenstein-Hawking entropy maps to the thermal entropy of
the dual QFT. In the IR regime, it has been shown that the
entanglement entropy approaches the thermal entropy [22–

25]. In the radiation-dominated universe, we show the expan-
sion of the universe prevents radiations from being thermal-
ized which we call ’dethermalization’.

The entanglement entropy represents the quantum correla-
tion between two macroscopic subregions, while a two-point
function of a local operator describes a microscopic quantum
correlation [26–28]. From the holographic viewpoint, these
two distinct quantum correlations are realized by geometri-
cal objects. For a three-dimensional dual gravity theory, in
particular, they are described by the same geodesic curve.
This fact may indicate a relation between the macroscopic
and microscopic correlations. To see the connection between
them, we investigate the time-dependent two-point function
of local operators in expanding universes. In the expanding
universe the entanglement entropy increases with time, while
the microscopic two-point function shows rapid suppression.
This is because the increase of the entanglement entropy in
the medium may yield a strong screening effect on the micro-
scopic two-point function.

The rest part of this paper organizes as follows. In Sect. 2,
we first review the dS boundary model and then investigate
the macroscopic and microscopic correlations in an eternally
inflating universe. In Sect. 3, We discuss an inflationary uni-
verse appearing in the braneworld model and look into the
time dependence of the macroscopic and microscopic corre-
lations. In Sect. 4, we further investigate the quantum correla-
tion in the radiation dominated era of the braneworld model.
We close this work with some concluding remarks in Sect. 5.

2 Covariant entanglement entropy in dS space

We take into account a two-dimensional inflationary uni-
verse. In the holographic setup, there are two distinct models
realizing an inflationary universe. The first one considers a
three-dimensional AdS space whose boundary is given by
a dS space. For later convenience, we call this model a dS
boundary model [5,29–31]. The second describes a mov-
ing brane in the AdS space. This model was known as the
braneworld or Randall–Sundrum model [6,17,18,21]. In this
section, we first discuss the dS boundary model and investi-
gate the time-dependent correlations.

Relying on the boundary topology, there are several rep-
resentations of a three-dimensional AdS space. In the global
patch, the AdS space with a dS boundary is expressed as

ds2 = R2dz2

z2(1 + z2/R2)
+ R2

z2

[−dt2 + R2 cosh2(t/R) dθ2] ,

(2.1)

where dθ2 means a metric on a unit circle. To characterize the
boundary spacetime manifestly, we assume that the bound-
ary is located at a fixed radial position z = ε. Introducing a
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cosmological time τ defined as τ = Rt/ε, the boundary met-
ric reduces to the Friedmann–Lemaître–Robertson–Walker
(FLRW) type metric [32,33]

ds2 = −dτ 2 + cosh2(Hτ)

H2 dθ2, (2.2)

which is the metric of a two-dimensional dS space with a
Hubble constant H = ε/R2. According to the AdS/CFT
correspondence, this AdS geometry is dual to a CFT living
in a two-dimensional dS space.

In the Poincare patch, on the other hand, the AdS space
with a dS boundary can be represented as

ds2 = R2dz2

z2(1 + z2/R2)
+ R2

z2

[
−dt2 + e2t/R dx2

]
, (2.3)

where dx2 indicates the metric of a one-dimensional straight
line. At the boundary with z = ε, the AdS metric reduces to

ds2
B = R2

ε2

[
−dt2 + e2t/R dx2

]
, (2.4)

which is nothing but the metric of a two-dimensional dS space
with a flat spatial section. In terms of the cosmological time,
the boundary metric reduces to

ds2
B = −dτ 2 + e2Hτ

H2R2 dx2, (2.5)

where the Hubble constant is again given by H = ε/R2.
If we introduce a new time coordinate τ ′ with τ ′ = τ −
log (HR) /H , the boundary metric further reduces to a sim-
ple FLRW metric

ds2
B = −dτ ′2 + e2Hτ ′

dx2, (2.6)

This is the well-known dS metric representing eternal infla-
tion. Now, we assume that the dS space starts at τ = 0,
for simplicity, and that the universe, before τ = 0, is in the
Hartle–Hawking vacuum state satisfying the no boundary
condition [34]. Then, the eternal inflation allows the time
range of 0 ≤ τ < ∞. It is worth noting that the bulk metric
is invariant under the constant shift of time and rescaling of
x

τ → τ ′ = τ + a and x → x ′ = e−Hax . (2.7)

Due to this isometry, the shift of τ does not give any sig-
nificant effect. Moreover, the metric (2.5), without loss of
generality, reduces to (2.6) by redefining the spatial coordi-
nate x .

2.1 Entanglement entropy in the dS boundary model

Now, we consider the time-dependent entanglement entropy
in the inflating two-dimensional universe. In general, it is
not easy to calculate the entanglement entropy of interacting
quantum field theories. Even in this case, the holographic

technique based on the AdS/CFT correspondence may be
helpful. To calculate the entanglement entropy holographi-
cally, the authors of Refs. [10,11] proposed that the entan-
glement entropy is associated with the area of the minimal
surface extending to the dual geometry. This is the story when
the bulk metric is time-independent. If one considers a time-
dependent spacetime like an expanding universe, one must
exploit another method called HRT formula, instead of the
RT formula [16]. Although the HRT formula was well estab-
lished conceptually, it is still difficult to calculate the time-
dependent entanglement entropy exactly even in the holo-
graphic setup. In this situation, it was argued that the RT
formula in a small subsystem size limit leads to the leading
contribution to the HRT formula [5]. In this section, we inves-
tigate the entanglement entropy of the HRT formula, beyond
the RT formula. Note that the exact calculation of the HRT
formula is possible only for a two-dimensional inflationary
universe because the HRT formula is solvable only in this
case.

For later convenience, we introduce a new time coordinate

T = R e−t/R, (2.8)

which corresponds to the conformal time of the boundary dS
space. Then, the bulk AdS metric is rewritten as

ds2 = R2

z2

[
dz2

1 + z2/R2 + R2

T 2

(
−dT 2 + dx2

)]
. (2.9)

In this case, the range of T is restricted to 0 ≤ T ≤ Ti = R
where Ti corresponds to the initial time. On this background
geometry, let us take into account the holographic entangle-
ment entropy described by the HRT formula. On the dual field
theory side, this corresponds to a time-dependent entangle-
ment entropy because the boundary space changes in time. To
calculate the entanglement entropy, we divide the boundary
space into two parts, a subsystem and its complement, and
parameterize the subsystem as −l/2 ≤ x ≤ l/2. Regarding
z and T as functions of x , the HRT formula gives rise to the
following entanglement entropy

SE = 1

4G

∫ l/2

−l/2
dx

R

z

√
z′2

1 + z2/R2 + R2

T 2

(
1 − T ′2) ,

(2.10)

where G is a three-dimensional Newton constant and the
prime indicates a derivative with respect to x . This action
governs a minimal surface extending to the time-dependent
bulk geometry. It was shown that the equations of motion of
a minimal surface is solvable for a three-dimensional static
AdS space with a planar boundary [31]. In the present work
we take into account an expanding universe, so that we should
be careful to impose the boundary conditions.

Before finding an analytic solution, let us first think of
natural boundary conditions that the minimal surface must
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satisfy. To calculate the entanglement entropy we divided
the boundary space into two parts, so that the border of two
subsystems called the entangling surface is located at the
boundary (z = 0). Since the minimal surface we want to
find must anchor to the entangling surface, the solution has
to satisfy z(±l/2) = 0. This is one of the natural boundary
conditions. Noting that the above entanglement entropy is
invariant under x → −x , this fact together with smoothness
of the minimal surface requires that z′ and T ′ have to vanish at
x = 0. Denoting the values of z and T at x = 0 as z0 and T0,
these two values characterize the turning point of the minimal
surface. In this case, the minimal surface extends only in the
range of 0 ≤ z ≤ z0 and T0 ≤ T ≤ TB where TB is the
time measuring the entanglement entropy at the boundary.
Therefore, the configuration of the minimal surface should
also satisfy three more boundary conditions, z′ = T ′ = 0 at
x = 0 and T = TB at x = ±l/2. These boundary conditions
uniquely determines the minimal surface’s configuration, as
will be shown later.

To find the minimal surface satisfying all boundary condi-
tions discussed before, we first look into the equations gov-
erning the shape of the minimal surface. Since the above
entanglement entropy depends on x implicitly, there exists
one conservation law which appears as a constraint

√
R2 + z2

√(
1 − T ′2) (

R2 + z2
) + T 2z′2

= T z

T0 z0
. (2.11)

We can also find two more dynamical equations which are not
independent. Combining these equations, we finally obtain a
simple dynamical equation of T [31]

0 = T T ′′ + T ′2 − 1. (2.12)

A general solution of this dynamical equation is given by

T =
√

(x + c1)2 − c2

4
, (2.13)

where c1 and c2 are two integral constants. Imposing one of
the natural boundary conditions, T ′ = 0 at x = 0, fixes the
value of one integral constant to be c1 = 0. The other natural
boundary condition, T = TB at x = ±l/2, further fixes the
remaining integral constant to be

c2 = l2 − 4T 2
B . (2.14)

Using these results, the value of T0 at the turning point is

given by T0 =
√

4T 2
B − l2/2 and the time on the minimal

surface is finally determined as a function of x

T (x) =
√
T 2

0 + x2. (2.15)

The time difference between T0 at the turning point and TB
at the boundary is given by

�T ≡ TB − T0 = TB

(

1 −
√

1 − l2

4T 2
B

)

. (2.16)

We can easily check that T ′ has a finite value at the boundary

T ′
(

± l

2

)
= l

2TB
. (2.17)

In the small subsystem size limit with l/TB � 1, since T ′
and �T vanish, the effect of T ′ in (2.10) is negligible. In
other words, the RT formula for l/TB � 1 gives rise to the
leading contribution to the HRT formula as mentioned in Ref.
[5].

Using the above solution T , z′ reduces to a function of z
and x

z′ =
T0

√
R2 + z2

√
z2

0 − z2

z
(
T 2

0 + x2
) , (2.18)

and its solution is given by

z(x) =
√

z2
0 cos2

(
c3 + tan−1

(
x

T0

))
− R2 sin2

(
c3 + tan−1

(
x

T0

))
,

(2.19)

with an additional integral constant c3. Imposing the bound-
ary condition, z(±l/2) = 0, the integral constant is fixed to
be

c3 = tan−1
( z0

R

)
− tan−1

(
l

2T0

)
. (2.20)

Since all integral constants have already been determined,
the last remaining boundary condition, z′ = 0 at x = 0,
determines z0 as a function of the other parameters

z0 = l R
√

4T 2
B − l2

. (2.21)

Finally, the solution z satisfying all boundary conditions
reduces to the following simple form

z(x) = R
√
l2 − 4x2

√
4T 2

B − (l2 − 4x2)

. (2.22)

As a consequence, the configuration of the minimal surface
is analytically determined by (2.15) and (2.22), which are the
exact solution of the HRT formula. In the small subsystem
size limit, the range of x satisfies the following inequality,
l2 −4x2 ≤ l2 � T 2

B , so that the leading behavior of z is well
approximated by

z(x) = R
√
l2 − 4x2

2TB
, (2.23)
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which is nothing but the solution of the RT formula at a given
time TB .

Now, we evaluate the time-dependent entanglement entropy
by using the obtained solutions. Substituting the solutions
into the HRT formula, we obtain the following integral

SE = Rl

G

∫ l/2−δ

0

dx

l2 − 4x2 = R

4G
log

l

δ
− Rδ

4Gl
+ O (

δ2) ,

(2.24)

where δ corresponds to an appropriate UV cutoff in the x-
coordinate. Rewriting δ in terms of the UV cutoff ε in the
z-coordinate

δ = T 2
Bε2

l R2

(

1 + T 2
B − l2

l2R2 ε2 + O
(
ε4

))

, (2.25)

the resulting entanglement entropy in terms of ε becomes

SE = cCFT

3
log

(
l R

ε TB

)
+ cCFT

6

(

1 − 2T 2
B

l2

)
ε2

R2 + O (
ε2) ,

(2.26)

where the central charge of the dual CFT is given by cCFT =
3R
2G [35]. Note that TB is the conformal time measured at the
boundary. To understand the time dependence of the entan-
glement entropy in the expanding universe, we need to repre-
sent the entanglement entropy in terms of the cosmological
time which is related to the conformal time by

TB = e−Hτ

H
. (2.27)

Then, the boundary metric of the AdS space reduces to (2.6)
and the entanglement entropy is rewritten as

SE = cCFT

3
log

(
l eHτ

R

)
+ cCFT H2R2

18

(
1 − 2e−2Hτ

H2l2

)

+O
(
e−4Hτ

)
. (2.28)

Now, let us focus on the entanglement entropy at the ini-
tial time τ = 0 to ignore the time evolution. Then, the
obtained time-dependent entanglement entropy reduces to
the entanglement entropy of a two-dimensional CFT which
is also the same as the entanglement entropy of a static dS
space. For a static dS space which is invariant under the
time translation, the entanglement entropy does not change.
In the time-dependent dS space, however, the entanglement
entropy evolves because the background geometry exponen-
tially expands. In (2.28), the factor eHτ is originated from
the expansion of the background geometry.

In a time-dependent geometry, we can define two distinct
distances. From the boundary theory viewpoint, the subsys-
tem size l corresponds to a comoving distance which is mea-
sured in the comoving frame. The comoving distance is not

time-dependent. We also define a physical distance by mul-
tiplying the scale factor

D = leHτ . (2.29)

The physical distance usually changes with time because the
background geometry is time-dependent. The above holo-
graphic result shows that the entanglement entropy in the
late time era (Hτ 	 1) increases linearly with time

SE ≈ cCFT

3
Hτ. (2.30)

This is because the physical subsystem size increases expo-
nentially during the eternal inflation.

Now, let us consider how the c-function behaves in
the inflationary universe. Defining a c-function as c ≡
3 ∂SE/∂ log D, the time evolution of the c-function in the
late time era (D/ l 	 1) is given by

c(τ ) = 3
∂SE

∂ log D
= cCFT + 2cCFT

3

R2

l2
e−2Hτ + O

(
e−4Hτ

)
.

(2.31)

This result shows that, as time elapses, the c-function expo-
nentially suppresses and finally saturates c = cCFT /3. The
monotonic decrease of the c-function looks similar to the
well-known c-theorem that the c-function monotonically
decreases along the RG flow. If there exists a relation between
c-theorems evolving in time and along the RG flow, then we
may identify the direction of time with the direction of the
RG flow [36,37]. This relation may provide a clue for under-
standing why irreversibility appears in the macroscopic sys-
tem even after the unitary time evolution of reversible micro-
scopic quantum systems [25,38].

2.2 Two-point function of a local operator during inflation

In the previous section, we studied the holographic time-
dependent entanglement entropy during the eternal inflation.
The entanglement entropy gives us information about the
quantum correlation between two macroscopic subregions.
From the more fundamental viewpoint, this macroscopic
quantum correlation may be associated with the sum of all
microscopic quantum correlations. In this section, we dis-
cuss the connection between the macroscopic entanglement
entropy and microscopic two-point functions in the eternal
inflationary cosmology.

In the holographic study, it was argued that the geodesic
curve connecting two local operators represents an equal time
two-point function [26]
〈
O(x) O(x ′)

〉 ∼ e−mL(|x−x ′|), (2.32)

where L(|x − x ′|)) denotes a geodesic length extending to
the dual geometry. This holographic two-point function is
valid in a (d + 1)-dimensional asymptotic AdS geometry,
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regardless of the dimension d. In the holographic study, the
entanglement entropy of a d-dimensional CFT is governed by
a (d−1)-dimensional minimal surface extending to a (d+1)-
dimensional AdS space. On the other hand, the geodesic
length governing the two-point function is described by a
one-dimensional curve. Due to the different dimensions, the
geodesic length is usually different from the minimal surface
for a general d-dimension. However, if we concentrate on a
two-dimensional CFT with d = 2, the geodesic length and
the minimal surface have the same dimension and they are
described by the same geodesic curve. Therefore, the follow-
ing direct relation occurs in a three-dimensional asymptotic
AdS space [28]

l = |x − x ′|, mR = �O , and L(|x − x ′|) = 4GSE ,

(2.33)

where �O indicate the conformal dimension of a local oper-
ator. On the field theory side, this relation may give us a
hint about a certain connection between macroscopic and
microscopic correlations. In the late time era of the two-
dimensional inflationary universe, a two-point function of a
local operator evolves as
〈
O(τ, x) O(τ, x ′)

〉 ∼ e−2�0Hτ
〈
O(0, x) O(0, x ′)

〉
, (2.34)

where we assume that ε ∼ H → 0. In this case, the two-point
function at the initial time τ = 0 is given by

〈
O(0, x) O(0, x ′)

〉 = 1

|x − x ′|2�O
, (2.35)

where |x − x ′| indicates the comoving distance. As a result,
the microscopic correlation exponentially suppresses by
e−2�0H�τ in the exponentially inflating universe.

3 Entanglement entropy in the braneworld model

By using the dS boundary model in the previous section,
we studied the time-dependent entanglement entropy and
the microscopic two-point correlation in a two-dimensional
inflationary universe. Although we exactly calculated the
HRT formula beyond the RT formula, the dS boundary
model has several demerits. First, it is difficult to apply the
dS boundary model to higher-dimensional inflationary uni-
verses. This is because of the ambiguity of boundary con-
ditions in calculating the higher order corrections. Second,
we cannot apply the dS boundary model to other universes
expanding by a power-law. In order to investigate time-
dependent correlations in expanding universes by a power-
law, we can apply another model called the braneworld model
[6]. In this section, we first study the time-dependent entan-
glement entropy in an inflationary universe of the braneworld
model.

The way to obtain an inflationary universe in the braneworld
model is totally different from that in the dS boundary model.
To obtain an inflationary universe in the dS boundary model,
we considered a time-dependent AdS space which allows a
dS boundary. In the braneworld model, however, we have to
prepare two static AdS spaces and assume that those two AdS
spaces are bordered through a one-dimensional lower brane.
In this case, the cosmological constants of two bulk spaces
and the brane’s tension cause a nontrivial radial motion of the
brane. This radial motion is governed by the so-called junc-
tion equation. To an observer living in the brane, the brane’s
radial motion is reinterpreted as the time evolution of the
spacetime. The big difference between two models studied
here is that the bulk geometries of the braneworld model
are still given by static AdS geometries. Therefore, we do
not need to apply the HRT formula for calculating the time-
dependent entanglement entropy of the braneworld model. In
other words, the RT formula gives us an exact result, unlike
the previous dS boundary model. Another important point
is that the braneworld model allows us to describe various
expanding universes with matter. Therefore, it would be inter-
esting to study the time-dependent entanglement entropy of
expanding universes with various matter in the braneworld
model.

3.1 Entanglement entropy in the cutoff AdS

Parameterizing the Poincare AdS space as

ds2 = r2

R2

(
−dt2 + dx2

)
+ R2

r2 dr2, (3.1)

the boundary of the AdS space is usually located at r =
∞. If we put a brane as a cutoff at a finite distance and
denote its radial position as r̄ , the range of the AdS space is
restricted to 0 ≤ r ≤ r̄ . To construct the braneworld model,
we assume that there exists another AdS space beyond the
cutoff. Assuming the Z2 symmetry, for simplicity, under r →
2r̄ − r , the range of the other AdS is limited to r̄ ≤ r ≤ 2r̄ .
Introducing a new time coordinate τ on the brane

− dτ 2 = − r2

R2 dt
2 + R2

r2 dr2. (3.2)

where r indicates the time-dependent radial position of the
brane, an induced metric on the brane becomes

ds2
B = −dτ 2 + r2

R2 dx
2. (3.3)

In this case, τ and r/R correspond to the cosmological time
and the scale factor of the braneworld, respectively. In the
braneworld model, the brane’s radial motion is determined
by the junction equation

Tμν = π(1)
μν − π(2)

μν , (3.4)
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where Tμν and π
(i)
μν denote a brane’s stress tensor and a met-

ric’s canonical momentum of the i-th AdS space, respec-
tively. Using the Z2 symmetry represented by r → 2r̄ − r ,
the canonical momenta satisfies π

(1)
μν = −π

(2)
μν and the junc-

tion equation further reduces to

Tμν = 2π(1)
μν . (3.5)

Denoting the tension of the brane as σ̄ , the vacuum stress
tensor of the brane is given by

Tμν = σhμν, (3.6)

where σ = 8πGσ̄ and hμν means an induced metric on
the brane. Then, the relation between r and τ is determined
by the following junction equation (see the details in Refs.
[6,39])
(
dr

dτ

)2

=
(

σ 2 − 4

R2

)
r2

4
, (3.7)

From now on, we call σ a brane tension for convenience.
Except for the critical tension σc = 2/R, the brane usually
moves in the radial direction and its velocity is determined
by the junction equation. The radial motion of the brane, as
mentioned before, is associated with the scale factor of the
braneworld

r(τ ) = ReHτ , (3.8)

with the Hubble constant

H =
√

σ 2

4
− 1

R2 . (3.9)

For simple calculation, we introduce a new coordinate
z = R2/r and then represent the three-dimensional AdS
metric as

ds2 = R2

z2

(
dz2 − dt2 + dx2

)
. (3.10)

In this case, the range of the radial coordinate z is restricted
to z̄ ≤ z ≤ ∞ where z̄ indicates the position of the brane.
From the viewpoint of the holographic renormalization, the
position of the brane corresponds to a finite UV cutoff. This
setup is very similar to that of the cutoff AdS space recently
studied in T T̄ -deformation [40–44]. When the brane does
not move, the RT formula leads to the entanglement entropy
of the T T̄ -deformation. To investigate the time-dependent
entanglement entropy, however, we must consider the brane
moving in the radial direction. Despite this fact, the entangle-
ment entropy calculation in the cutoff AdS space is very use-
ful to understand the time-dependent entanglement entropy
we are interested in. Therefore, we start with explaining the
entanglement entropy in the cutoff AdS.

In the cutoff AdS space, if we divide the boundary space
into a subsystem of −l/2 ≤ x ≤ l/2 and its complement, the

entanglement entropy derived from the RT formula is given
by

SE = R

4G

∫ l/2

−l/2
dx

√
1 + z′2
z

, (3.11)

where the prime means a derivative with respect to x . This
action leads to the equation of motion, which determines the
configuration of the minimal surface,

0 = 1 + z′2 + zz′′. (3.12)

The general solution of this equation is given by

z(x) =
√
c1 − (c2 + x)2, (3.13)

where c1 and c2 are two integral constants.
In order to determine the exact configuration of the min-

imal surface, we have to fix two undetermined integral con-
stants by imposing appropriate boundary conditions. To do
so, it is worth noting that the above entanglement entropy is
invariant under the parity transformation x → −x . Together
with this fact, the smoothness of the minimal surface requires
that z′ must vanish at x = 0. If we denote the value of z(0)

as z0, z0 becomes a turning point of the minimal surface at
which the value of z′ changes its sign. The turning point gives
rise to an upper bound for the range of z extended by the min-
imal surface. The existence of such a turning point enforces
c2 = 0. When we calculate the area of the minimal surface,
the end of the minimal surface must be identified with the
entangling surface defined on the brane. This implies that
we must impose another boundary condition, z̄ = z (±l/2).
This additional boundary condition fixes the remaining inte-
gral constant to be

c1 = l2

4
+ z̄2. (3.14)

As a consequence, the coordinates of the minimal surface
satisfies the following circular trajectory

z2 + x2 = l2

4
+ z̄2. (3.15)

Here, the ranges of z and x are restricted to z̄ ≤ z ≤ z0 and
−l/2 ≤ x ≤ l/2 respectively and the turning point appears
at

z0 =
√
l2

4
+ z̄2. (3.16)

After plugging the obtained solution into (3.11), perform-
ing the integral results in

SE = cCFT

6
log

(√
l2 + 4z̄2 + l√
l2 + 4z̄2 − l

)

, (3.17)

where cCFT means the central charge of a two-dimensional
CFT [35]. When the boundary position approaches the UV
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regulator (z̄ → 0), this result reproduces the well-known
entanglement entropy of a two-dimensional CFT

SE = cCFT

3
log

l

z̄
. (3.18)

When we calculate the time-dependent entanglement entropy
in the next section, this simple example in the cutoff AdS
shows how to impose the appropriate boundary conditions in
the braneworld model.

3.2 Entanglement entropy on the moving brane

Now, let us consider the entanglement entropy in the eternal
inflationary cosmology. In the braneworld model, the eternal
inflation on the brane appears when we consider an AdS bulk
geometry with a noncritical brane tension σ �= σc. Even in
this case, since the bulk geometry has nothing to do with the
brane’s motion, the dual geometry remains static. Although
calculating the time-dependent entanglement entropy of the
moving brane is almost the same as the previous calculation,
there exists one big difference caused by the radial motion
of the brane [6]. When we take into account the circular
trajectory of the minimal surface, the boundary condition
must be modified because the boundary moves. Requiring
that the end of the minimal surface must attach to the moving
brane, the consistent solution is given by a function of τ and
x

z(τ, x) =
√
l2

4
+ z̄(τ )2 − x2. (3.19)

It is worth to noting that the time dependence of the
holographic entanglement entropy in the braneworld model
appears due to the time-dependent boundary condition at
z̄(τ ). Performing the integration in (3.11) with the obtained
time-dependent solution, the resulting entanglement entropy
again yields (3.17) with the time-dependent brane position
z̄(τ ), instead of a constant z̄,

z̄(τ ) = Re−Hτ . (3.20)

Despite the fact that the same entanglement entropy again
appears on the moving brane, the physical implication dra-
matically changes due to the time-dependence of the bound-
ary metric. In the braneworld model, the comoving distance
is not physical because of the nontrivial scale factor of the
expanding universe. The physical distance in the inflating
universe is given by

D(τ ) = R

z̄(τ )
l = eHτ l. (3.21)

Notice that, since the scale factor generally relies on the mat-
ter, the resulting entanglement entropy and its time depen-
dence also crucially depend on the matter. In the inflationary

universe, the resulting entanglement entropy becomes

SE = c

6
log

(√
e2Hτ l2 + 4R2 + eHτ l√
e2Hτ l2 + 4R2 − eHτ l

)

. (3.22)

At the initial time (τ = 0), the entanglement entropy reduces
to becomes the result of the cutoff AdS in (3.17).

In the late time era, the time-dependent entanglement
entropy becomes perturbatively

SE = cCFT

3
Hτ − cCFT

3
log

(
R

l

)

+cCFT

3

R2

l2
e−2Hτ + O

(
e−4Hτ

)
. (3.23)

Similar to the previous dS boundary model, the entanglement
entropy of the braneworld model increases linearly with time
during eternal inflation. This also implies that, similar to the
previous result, the two-point function of a local operator
exponentially suppresses with time
〈
O(τ, x) O(τ, x ′)

〉 ∼ e−2�O Hτ
〈
O(0, x) O(0, x ′)

〉
. (3.24)

where

〈
O(0, x) O(0, x ′)

〉 = 1

|x − x ′|2�O
. (3.25)

This result shows that the microscopic two-point function of
a local operator suppresses more rapidly as the expansion rate
increases and the conformal dimension of the local operator
becomes large.

3.3 c-function in the braneworld model

Let us think of the c-theorem of the braneworld model. In
the braneworld model unlike the dS boundary model, there
exist two characteristic energy scales. One is the inverse of
the subsystem size which is the energy scale used in the dS
boundary model. The other energy scale is represented by
the radial position of the brane. In the dS boundary model,
since we considered a static boundary located at the infinity
of the AdS space, the boundary position does not give an any
new scale. On the other hand, the boundary of the braneworld
model can change its radial position which, in the usual holo-
graphic setup, is reinterpreted as the energy scale of the dual
field theory. From the holographic renormalization point of
view, it seems to be more natural to take into account the
radial coordinate as the energy scale rather than the inverse
of the subsystem size. Note that in the braneworld model, the
subsystem size and the radial position of the brane are given
by two independent variables depending on the initial con-
ditions. However, the on-shell configuration of the minimal
surface relates these two independent values via the time-
dependent turning point z0(τ ). Inversely, the turning point is
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determined by two independent variables, z̄(τ ) and D(τ )

z0(τ ) = z̄

2R

√
D2 + 4R2, (3.26)

and gives rise to a unique IR energy scale. This IR energy
scale is the lowest energy measured by the entanglement
entropy. Therefore, it would be more reliable to identify the
IR energy scale with the RG scale of the dual field theory.
Then, the c-function in the braneworld model is redefined
in terms of z0 rather than l or L . To do so, we rewrite the
entanglement entropy as a function of the time-dependent
turning point, z0,

SE = cCFT

6
log

⎛

⎝
z0 +

√
z2

0 − z̄2

z0 −
√
z2

0 − z̄2

⎞

⎠ . (3.27)

For z0/z̄ → ∞ which is the same limit as D → ∞ in (3.26),
the c-function reads in terms of the RG scale z0

c ≡ 3
∂SE

∂ log z0
= z0√

z2
0 − z̄2

cCFT . (3.28)

Rewriting z0 in terms of the physical subsystem size D in
the D → ∞ limit

z0 ≈ z̄

2R
D, (3.29)

the resulting c-function becomes perturbatively in the late
time era

c =
[

1 + 2
R2

l2
e−2Hτ + O

(
e−4Hτ

)]
cCFT . (3.30)

This prescription is consistent with the result (2.31) obtained
in the dS boundary model. Since z0 in the dS boundary model
monotonically increases with l, as shown in (2.21), rewriting
the c-function in terms of z0 instead of l does not change the
qualitative behavior in (2.31). After this prescription for the
RG scale, the two models considered in this work give rise
to the almost same time-dependent c-function which mono-
tonically decreases with time and finally approaches the CFT
result.

4 In the expanding universe by a power-law

Now, let us consider a braneworld model in the black hole
geometry

ds2 = r2

R2

(
− f (r)dt2 + dx2

)
+ R2

r2 f (r)
dr2, (4.1)

with a blackening factor given by

f (r) = 1 − m

r2 . (4.2)

Assuming that the brane has a critical tension σ = σc, the
radial motion of the brane is governed by the following junc-
tion equation

dr̄

dτ
= ±

√
m

R
. (4.3)

Therefore, the radial position of the brane is given by

r̄ = ±
√
m

R
τ + r̄0, (4.4)

where r̄0 indicates the brane’s initial position. The induced
metric on the brane reduces to

ds2
B = −dτ 2 + r̄2

R2 dx
2. (4.5)

Since r̄ depends on the cosmological time, the induced met-
ric is an FLRW type metric. In this case, a = r̄/R plays
a role of a scale factor and the resulting geometry repre-
sents an expanding universe with a ∼ τ . This expansion
rate is the same as that of a two-dimensional universe with
radiations. Therefore, the braneworld with critical brane ten-
sion in a three-dimensional black hole geometry realizes the
radiation-dominated universe in the brane. Noting that the
initial position r̄0 can be ignored for τ → ∞, the scale fac-
tor in the late time era reduces to

a =
√
m

R
τ. (4.6)

For convenience, we introduce a new coordinate z =
R2/r . Then, the black hole metric is rewritten as

ds2 = R2

z2

(
− f (z)dt2 + dx2 + 1

f (r)
dz2

)
, (4.7)

with

f (r) = 1 − z2

z2
h

. (4.8)

where z2
h = R4/m. On this black hole geometry, the holo-

graphic entanglement entropy is defined as

SE = R

4G

∫ l/2

−l/2
dx

√
z′2 + f

z
√

f
. (4.9)

Using the conserved quantity, the size of the subsystem is
determined in terms of the turning point z0

l = −
∫ z0

z̄
dz

2z
√

f
(
z2

0 − z2
)

= zh

[
2 log

(√
z2
h − z̄2 +

√
z2

0 − z̄2

)
− log

(
z2
h − z2

0

)]
.

(4.10)
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The corresponding entanglement entropy becomes

SE = Rz0zh
2G

∫ z0

ε

dz
1

z
√
z2
h − z2

√
z2

0 − z2

= c

6
log

⎛

⎜
⎝
z0

√
z2
h − z̄2 + zh

√
z2

0 − z̄2

z0

√
z2
h − z̄2 − zh

√
z2

0 − z̄2

⎞

⎟
⎠ . (4.11)

In the limit of zh → ∞, the leading part of this result reduces
to the previous one (3.27)

SE = c

6
log

⎛

⎝
z0 +

√
z2

0 − z̄2

z0 −
√
z2

0 − z̄2

⎞

⎠ + cz0

6z2
h

√
z2

0 − z̄2. (4.12)

Moreover, when the brane is located in the UV region, it is
further reduced to

SE = c

3
log

2z0

z̄
+ c

24

(
2(2z2

0 − z̄2)

z2
h

− z̄2

z2
0

)

, (4.13)

where z̄ exactly plays a role of the UV cutoff.
Now, let us consider another interesting limit, z0 → zh .

In this case, the system size is given by

l = zh

[

log

(
z2
h − z̄2

z2
h − z2

0

)

+ 2 log 2

]

, (4.14)

and diverges for z0 → zh . This fact indicates that the limit
of z0 → zh corresponds to the large subsystem size limit.
Using this result, the corresponding entanglement entropy is
rewritten in terms of the subsystem size l

SE = c

6

l

zh
+ c

3
log

zh
z̄

+ · · · . (4.15)

When the brane is located near the black hole horizon,
the entanglement entropy is proportional to the volume of
the subsystem rather than the area of the entangling sur-
face. In this case, the leading term is exactly the same as
the Bekenstein-Hawking entropy. In the time-independent
geometry, this result shows that the entanglement entropy
approaches the thermal entropy in the IR limit [25,38]. How-
ever, this is not case in the expanding universe. Recalling that
the initial position of the brane in (4.4) is negligible in the late
time era, the radial position of the brane is simply approxi-
mated by

z̄ = R

a
, (4.16)

where a denotes the scale factor a = τ/zh . In addition,
remembering that the physical distance in the expanding uni-
verse is given by D = al, the entanglement entropy of the
large subsystem in the late time era reduces to

SE = Sth + c

3
log

2τ

R
, (4.17)

where Sth = Rl/(4Gzh) corresponds to the thermal entropy
contained in the subsystem [10,25,38,45,46].

It has been shown that in the time-independent black hole
geometry, the quantum entanglement entropy evolves to the
thermal entropy in the IR region which follows the volume
law. The first term of the above result indicates such a ther-
mal entropy corresponding to the IR entanglement entropy.
On the other hand, the second term corresponds to the quan-
tum correction which increases logarithmically with time.
In the time-independent geometry, the thermal entropy con-
tribution is usually dominated in the IR regime and leads to
thermalization of matter [25]. However, the time dependence
of the entanglement entropy in the expanding universe spoils
thermal equilibrium in a sufficiently late time and prevents
the matter from being thermalized, dethermalization. The
typical time scale of dethermalization is given by

τ∗ ≈ R

2
el/(2zh). (4.18)

This implies that the dethermalization time is exponentially
proportional to the subsystem size.

In this two-dimensional radiation-dominated universe, the
equal time two-point function suppresses by the following
power law
〈
O(τ, x) O(τ, x ′)

〉 ∼ τ−2�O
〈
O(0, x) O(0, x ′)

〉
, (4.19)

where the initial two-point function is given by
〈
O(0, x) O(0, x ′)

〉 ∼ e−�O |x−x ′| for |x − x ′| � zh,

∼ 1

|x − x ′|2�O
for |x − x ′| 	 zh .

(4.20)

As the conformal dimension of the local operator becomes
larger, its two-point function decreases more rapidly.

5 Discussion

In the standard cosmology, it was well known that our uni-
verse expands with a different speed relying on the matter
content contained in the universe. To understand the quantum
features of such an expanding universe, it would be inter-
esting to investigate the quantum entanglement entropy of
an expanding universe. The entanglement entropy usually
measures the macroscopic correlation between two subsys-
tems across their border. In an expanding universe, since
the background spacetime is time-dependent, one can eas-
ily expect that the entanglement entropy is also given by
a time-dependent function. In this case, a nontrivial time-
dependent background geometry even for a free QFT can
cause a nontrivial interaction between fields. Therefore, it
is not easy to evaluate the time-dependent entanglement
entropy on the QFT side. In the present work, we took into
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account a two-dimensional QFT as a toy model and investi-
gate how to realize time-dependent background geometries
by using the holographic technique. We considered two dis-
tinct holographic models, the dS boundary and braneworld
models. Although the eternal inflation was realized in both
models, it is not easy to find the dual geometry of the power-
law expansion in the dS boundary model. In the braneworld
model, on the other hand, the eternal inflation and the power-
law expansion can be described by the motion of the brane in
the AdS space without and with an appropriate bulk matter.

It was proposed that the entanglement entropy of a
strongly interacting QFT is proportional to the area of the
minimal surface extending to the dual geometry. If the dual
background geometry becomes time-dependent, we must
exploit the HRT formula instead of the RT formula. In
this work, we calculated the time-dependent entanglement
entropy by applying the HRT formula and found that the
RT formula gives rise to the leading contribution of the HRT
formula in the late time era, which is consistent with the argu-
ment in Ref. [5]. The exact calculation of the time-dependent
entanglement entropy is possible only for a two-dimensional
dS boundary model. If we are interested in a more realis-
tic cosmological model, we must further take into account
four-dimensional universes with a power-law expansion. In
general, it is not easy to generalize the dS boundary model
to a higher-dimensional theory with a power-law expansion.
Due to this reason, we also considered the braneworld model
which can describe the power-law expansion. For the two-
dimensional toy model, both models considered here give rise
to the similar time-dependent entanglement entropy which
increases linearly with time in the late time era.

From the time-dependent entanglement entropy, we also
investigated how the central charge varies during the time
evolution of the expanding universes. In the dS boundary
model, since the observation energy scale is directly con-
nected only to the subsystem size, we studied the time-
dependent c-function in terms of the subsystem size. As a
result, the c-function in the inflationary universe monoton-
ically decreases with time similar to the RG flow of the c-
function and finally approaches the central charge of the dual
CFT after infinite time. In the braneworld model unlike the
dS boundary model, two dimensionful parameters specify the
energy scale of the boundary theory. One is the subsystem
size similar to the dS boundary model and the other is given
by the position of the brane. In the holographic renormal-
ization procedure, the energy scale of the dual QFT is char-
acterized by the radial position of the boundary. Due to the
existence of two-dimensionful parameters in the braneworld
model, understanding the change of the c-function becomes
obscure. In this work, we considered the turning point of the
minimal surface, instead of the subsystem size and the brane’s
position, as the energy scale of the dual QFT. The reason is
that the turning point determines the lowest energy scale the

entanglement entropy can measure. Under this new reinter-
pretation, we showed that the c-functions of two holographic
models give rise to the same qualitative features, decreasing
with time and finally approaching the central charge of the
dual CFT.

In the braneworld model, we also considered a brane mov-
ing in a three-dimensional AdS black hole. In the holographic
setup, the AdS black hole usually gives rise to a nonvanish-
ing boundary stress tensor which is traceless. On the dual
field theory side, this traceless stress tensor represents exci-
tation of the massless gauge boson. As a consequence, the
brane’s motion in the AdS black hole corresponds to the
radiation-dominated universe on the brane where the equa-
tion of state parameter is given by w = 1. In this holo-
graphic setup, we showed that a two-dimensional universe in
the radiation-dominated era expands linearly with time, as it
should do. We also found that the entanglement entropy in
the radiation-dominated era increases by log τ . In general, a
static black hole geometry allows the well-defined Hawking
temperature, so that the holographic dual theory maps to a
finite temperature thermal field theory. In the expanding uni-
verse, the braneworld model shows that the thermal system
becomes dethermalized after the typical time scale in (4.18).

For a two-dimensional dual QFT, intriguingly, the entan-
glement entropy is directly associated with the two-point cor-
relation function of a local operator. This fact becomes man-
ifest on the dual gravity side where the entanglement entropy
and two-point function are described by the same geodesic
length. Using this relation, we also investigated how the two-
point function of a local scalar operator changes in time. In
the expanding universes, we showed that the two-point func-
tion of a scalar operator suppresses exponentially for eternal
inflation or by a power law in the radiation-dominated uni-
verse. In the present work, we seriously exploit the conjecture
(2.33) which relates the macroscopic entanglement entropy
to the microscopic two-point function for a two-dimensional
field theory. Although this relation looks obvious on the dual
gravity side, it would be important to understand the under-
lying structure of this relation from the QFT viewpoint. We
hope to report more results in future works.
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