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AdS/Deep-Learning made easy: simple examples*
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Abstract: Deep learning has  been widely and actively used in  various research areas.  Recently,  in  gauge/gravity
duality, a new deep learning technique called AdS/DL (Deep Learning) has been proposed. The goal of this paper is
to explain the essence of AdS/DL in the simplest possible setups, without resorting to knowledge of gauge/gravity
duality. This perspective will be useful for various physics problems: from the emergent spacetime as a neural net-
work to classical mechanics problems. For prototypical examples, we choose simple classical mechanics problems.
This method is slightly different from standard deep learning techniques in the sense that we not only have the right
final answers but also obtain physical understanding of learning parameters.
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I.  INTRODUCTION

Machine  learning  or  deep  learning  [1]  techniques
have become  very  useful  and  novel  tools  in  various  re-
search  areas.  Recently,  an  interesting  machine  learning
idea  was  proposed  by  Hashimoto et  al.  in  [2, 3],  where
the authors apply deep learning (DL) techniques to prob-
lems in gauge/gravity duality [4, 5]. They showed that the
spacetime metric can be “deep-learned” by the boundary
conditions of the scalar field, which lives in that space.

The  essential  DL  idea  of  [2, 3]  is  to  construct  the
neural  network  (NN)  by  using  a  differential  equation
structure. The discretized version of the differential equa-
tion includes the information of physical parameters such
as a metric. The discretized variable plays the role of dif-
ferent “layers” of the NN and the dynamic variables cor-
respond to nodes. Therefore, training the NN means train-
ing the physical parameters so that, ultimately, we can ex-
tract the trained physical parameters. This idea is dubbed
AdS/DL (Deep Learning). See also [6] for an application.

In  this  paper,  we  apply  the  AdS/DL  technique  to
simple  classical  mechanics  problems  such  as Fig.  1.  By
considering  simple  examples,  we  highlight  the  essential
idea  of  AdS/DL  without  resorting  to  knowledge  of
gauge/gravity duality. This perspective can facilitate vari-
ous applications  of  AdS/DL:  from  the  emergent  space-

time as an NN to classical mechanics problems. Further-
more,  our  work  will  be  a  good  starting  point  to  learn  a
physics-friendly  NN  technique  rather  than  the  classical
way from computer science.

(xi,vi)
(x f ,v f )

F(x,v)

Let  us  describe a  prototypical  problem. Suppose that
we want to figure out the force in the black box shown in
Fig.  1. We  are  given  only  initial  and  final  data,  for  ex-
ample,  the  initial  and  final  position  and  velocity, 
and ,  respectively.  A  standard  method  is  to  start
with an educated guess for a functional form of the force
(say, ).  One  can  use  this  “trial ”  force  to  simulate
the system by solving Newton's equation. After trial-and-
error simulation and comparison with experimental  data,
we may be able to obtain the approximate functional form
of the force. However, if the force is complicated enough,
it  will  not  be  easy  to  make  a  good  guess  at  first  glance,
and  it  will  not  be  easy  to  modify  the  trial  function  in  a
simple  way.  In  this  situation,  machine  learning  can  be  a
very  powerful  method  to  obtain  the  force  in  the  black
box.

Usually, when there is a big enough input-output data
set, classical DL techniques with NN, even without con-
sidering  the  physical  meaning  of  NN or  the  structure  of
the  problem,  can  reliably  make  a  model  that  takes  input
data points and gives matching output values in a trained
region, because that is the strength of DL. Having a wide
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(x,v)

and deep  enough  feed-forward  NN with  linear  and  non-
linear transformations  can  trivially  make  such  conver-
gence  as  the  Universal  Approximation  Theorem  (UAT)
guarantees  [7, 8].  Retrieving  physical  parameters  from
such a model is not easy because the network in general
has  little  to  do  with  the  mathematical  structures  of  the
models  we want  to  understand.  However,  if  we build an
NN  in  a  way  that  reflects  the  mathematical  structure  of
the problem  as  in  AdS/DL,  we  can  retrieve  physical  in-
formation  from  the  model.  In  this  case,  the  discretized
time  (t) plays  the  role  of  a  layer  and  the  dynamic  vari-
ables  correspond to the nodes1). The unknown force
is encoded in the NN so it will be trained.

This paper is  organized as follows.  In Section II,  the
general  framework of  building  and training  an  NN from
an equation  of  motion  (EOM) is  introduced.  In  Sections
III and IV, example problems are tackled with the meth-
odology described in Section II. Section III covers a sim-
pler example  with  one  variable  (one-dimensional  velo-
city),  while  Section  IV  deals  with  a  problem  with  two
variables  (one-dimensional  position  and  velocity).  We
conclude the study in Section V. 

II.  GENERAL FRAMEWORK

The general framework can be divided into three ma-
jor  parts.  First,  a  training  data  set  is  generated  using  the
EOM  of  a  system  and  a  numeric  ordinary  differential
equation  (ODE)  solver  (the  Euler  method).  Second,  an
NN is built from the EOM with randomly initialized para-
meters  based  on  the  Euler  method.  Third,  the  NN  is
trained with the training data sets. After these three steps,
the resultant learned parameters are compared against the
right parameters to see if the learning was successful. The
first  part,  training  data  set  generation,  is  trivial,  and
hence, we give an elaboration from the second part. 

A.    Designing an NN from EOM
In  this  section,  we  review how to  build  an  NN from

an  EOM,  following  the  framework  suggested  by  [3].

N+1

Figure 2 shows the basic structure of our NN of interest.
It is  a  feed-forward  network,  which  means  the  propaga-
tion  of  variables  is  one-directional  without  any  circular
feed-back.  Its  depth  (the  number  of  layers)  is  set  to  be

 (from 0 to N) excluding the input and output layers,
while the width (the number of nodes for a layer) is kept
as  two.  The  propagation  rule  from one  layer  to  the  next
layer is given by the differential equations from the EOM
with learning parameters of interest.

Tpre
0th

Tpost
Nth

Here,  is  the  transformation  from the  input  layer
to  the  layer  (pre-processing),  which  is  the  identity
transformation  in  our  cases,  and  is the  transforma-
tion  from  the  layer  to  the  output  layer  (post-pro-
cessing). The  input  layer  and  the  pre-processing  trans-
formation  is  used  when  pre-processing  of  experimental
data to the kinematic variables that appear in the EOM is
required. If there is no need for such pre-processing, one
may omit the input layer, which is the case for the rest of
this paper. We, however, chose to include the input layer
in  this  section  for  more  general  applications  that  require
pre-processing.  The  output  layer  corresponds  to  a  set  of
experimental measurements after the propagation of vari-
ables with  the  EOM. For  our  cases,  it  will  be  final  vari-
ables and/or flags showing whether or not the trained data
points give valid outputs2).  The details  of how we set  up
the output layer are discussed in the following sections.

There  are  two  main  differences  between  the  NN  in
our  setup  and  a  usual  feed-forward  NN.  First,  in  our
setup,  the  width  of  the  NN  stays  constant,  which  is

 

vi ti v f t f

Fig. 1.    (color online) A ball goes through a “black-box” and
the velocity of the ball  changes from  at  to  at .  It  is
very challenging to  retrieve the information inside the black-
box when the given data is limited by initial and final data.

 

(x(0),v(0))

I(in)
1 I(in)

2

Tpre

0th Nth

(x(N),v(N))

Ī(out)
1 Ī(out)

2

I(out)
1 I(out)

2

Fig. 2.    NN structure with two kinematic variables, x and v.
Each  circular  node  denotes  a  neuron  with  its  own  variable.
The lines  between  nodes  show which  nodes  are  directly  cor-
related with which nodes. Their initial values  are cal-
culated  from  two  input  information  nodes  and  by  a
pre-processing  transformation .  The  kinematic  variables
propagate  along  the  NN  from  the  layer  to  the  layer
with  the  rule  given  by  the  EOM.  The  final  values 
are  used  to  calculate  the  model's  output  information  nodes

 and ,  which  are  compared  against  the  true  output
values  and  given  from  the  training  data  set.  The
number of  nodes  in  the  input  and  output  layers  can  vary  de-
pending on the experimental setup.

Mugeon Song, Maverick S. H. Oh, Yongjun Ahn et al. Chin. Phys. C 45, 073111 (2021)

(ϕ,π,η) (x,v, t)1) For comparison, the variables  in Koji Hashimoto's original paper in 2018 correspond to  in Section IV of this paper.

Tpre Tpost

2) Measurement of velocity using Doppler effect can be a good example of an experimental setup requiring nontrivial pre- and post-processing transformations. In
that case, one input/output information node can be initial/final frequency information, while /  connects them to initial/final speed values in the NN layers, re-
spectively.
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simply  the  number  of  kinematic  variables  used  in  the
learning  process.  In  usual  cases,  however,  the  width  of
the NN may vary for different layers to hold more versat-
ility. Second, the propagation rule is set by the EOM, and
there  are  relatively  fewer  learning  parameters,  whereas
most  components  of  the  propagation  rule  of  a  usual  NN
are set  as  learning parameters.  From an NN perspective,
our setup  may  look  restrictive,  but  from  a  physics  per-
spective, it is more desirable because we may indeed ob-
tain  physical  understanding  of  the  inner  structure  of  the
NN:  we  want  to  “understand ”  the  system  rather  than
simply having answers.

ti t f

How is  the propagation rule  given by the EOM? Let
us assume that, as time changes from  to , the follow-
ing EOM holds: 

ẍ = f (x, ẋ) , (1)

or 

v = ẋ , v̇ = f (x,v) . (2)

If  we  discretize  the  time  of  (2)  and  take  every  time
slice  as  a  layer,  we  may  construct  a  deep  NN  with  the
structure  of Fig.  2 with  the  following  propagation  rule,
which is essentially the Euler method: 

x(k+1) = x(k)+ v(k)∆t , v(k+1) = v(k)+ f (x(k),v(k))∆t , (3)

x(k) v(k) ti+k∆t

∆t :=
t f − ti

N

where  and  are variables at time  (k-th lay-
er) where .

W (k) kth

φ(k) kth kth

Another  way  of  writing  (3)  is  separating  the  linear
part and the nonlinear part. The linear transformation can
be represented by a weight matrix,  for the , while
the non-linear transformation is called an activation func-
tion,  for the , so that the  layer variable set, 

x(k) =
(
x(k),v(k)

)T
, (4)

(k+1)thpropagates to the  layer by 

x(k+1) = φ(k)
(
W (k)x(k)

)
, (5)

where 

W (k) =

(
1 ∆t
0 1

)
, φ(k)

(
a
b

)
=

(
a

b+ f (x(k),v(k))∆t

)
.

(6)

In this way, the NN is built from the EOM and differ-
ent  layers  mean different  times,  except  for  the input  and

f (x(k),v(k))

x̄(out)

output layers. The learning parameters,  in our
case,  are  randomly  set  within  a  reasonable  range.  The
model  output  can be  expressed  as  follows.  To  dif-
ferentiate  the  true  output  (training  data)  from  the  model
output,  the  model  output  is  specified  as  a  variable  name
with a bar on it, whereas the true output is without a bar. 

x̄(out) ≡ Tpost

(
φ(N−1)

(
W (N−1) · · ·φ(0)

(
W (0)(Tpre(x(in))

))))
, (7)

x(in) =
(
I(in)
1 , I

(in)
2

)T
x̄(out) =

(
Ī(out)
1 , Ī(out)

2

)T

x(out) =
(
I(out)
1 , I(out)

2

)T

where  and .  The
true  output  from  the  training  data  is  denoted  as

.
 

B.    Training neural network
W (k)

φ(k)

f (x(k),v(k))
(x(in),x(out))

{(x(in),x(out))}

Note  that  the  weight  matrix  and  the  activation
function  of  the  NN are  constructed according to  the
EOM as shown in (6). Thus, our goal is to train the func-
tion  using  the  NN  and  input/output  data.  A
single pair  is called a training data point, and
a whole collection of them  is called a train-
ing data set. From the training data set, one can define an
error function (a.k.a. loss function) as 

E =
1

nbatch

∑
batch

∣∣∣x̄(out)−x(out)
∣∣∣+Ereg , (8)

nbatch

nbatch

where  a  batch  is  a  part  of  the  data  set  chosen  for  one
learning cycle and  is the number of data points for
one  batch.  For  example,  if  there  are  500  data  points  in
total  and  100  data  points  are  used  for  one  batch  of  the
learning  process,  is  100  and  five  learning  cycles
cover  the  whole  data  set,  which  is  called  one  epoch  of
learning.  The  summation  over  a  “batch”  means  that  we
add up the term from every data point from the batch. Di-
viding the  data  set  into  batches  makes  the  learning  pro-
cess  more  efficient,  especially  when  the  data  set  is  big.
To  make  multiple  parameters  optimized  with  sufficient
stability, many epochs of learning are required.

L1

x̄(out)

x(out)

Ereg

Ereg

The first term in (8) is the -norm error of the batch
calculated from the difference of the output from the NN
model  and the true output from the training data set

, which  is  one  of  the  most  widely-used  error  func-
tions.  The  second  term, ,  is  the  regularization  error
which makes unphysical solutions (e.g. unnecessarily zig-
zagging solutions) unfavorable in learning. The details on

 are provided in the following sections. Note that the
error  function  defined  here  is  one  example  of  possible
choices.  The  structure  of E can  vary  depending  on  the
nature of problems. Please refer to Sec. IV for a variation.

In general, the value of E depends on both the weight
matrix  and  the  activation  function1).  For  our  model,

AdS/Deep-Learning made easy: simple examples Chin. Phys. C 45, 073111 (2021)

1) In a usual NN, the activation function is fixed as a nonlinear function, such as a sigmoid function or a rectified unit function, and the weight matrix is trained.
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φ(k)

f (x(k),v(k))

however,  the  weight  matrices  are  constant  in  the  sense
that they are not learning parameters in the NN so that the
activation  functions , or  more  specifically,  the  para-
meters ,  are  the  only  parameters  to  be  learned
while minimizing the value of E. As an optimizer (learn-
ing  mechanism),  the  two  most  classic  choices  are
stochastic  gradient  descent  and  Adam,  where  the  former
is  more  stable  and  the  latter  is  faster  in  many  cases  [9].
We used the Adam method with Python 3 and PyTorch as
a general machine learning environment. 

F1(v)III.  CASE 1: FINDING A FORCE 

F1,True(v)

In  this  section,  we  describe  the  basic  idea  of  our
method using one of the simplest examples. Here, we use
only one  kinematic  variable,  the  one-dimensional  velo-
city v,  to  extract  information  of  the  velocity-dependent
drag  force  of  a  given  system.  This  example  is
very  simple,  but  the  application  of  DL  methodology  is
relevant and clear. The drag force is designed to be non-
trivial to fully test the capability of the methodology.

vi ti
F1(v)

t f
v f ti t f

vi v f{(
vi, v f

)}
F1(v)

Problem definition We consider a problem setup de-
scribed in Fig. 3. A ball with mass m is dropped with ini-
tial  velocity  at  time  through a  medium with  an  un-
known  complicated  drag  force  under  a  constant
downward gravitational acceleration g. At time , the ve-
locity  is  recorded.  The  times  and  are  fixed,
whereas  varies as well as  so that we have the input-
output  data  set  for  training.  The  EOM is  given
as follows, and we want to find the drag force : 

v̇ = −g+
F1(v)

m
. (9)

0th Nth

v(0) v(N)

vi v̄ f

Method Because we  only  have  one  kinematic  vari-
able v, it is enough to build an NN with one node per lay-
er  (the width of  one)  as  described in Fig.  4.  We omitted
the input and output layers in Fig. 4, since the  and 
layer values,  and , are themselves used as the in-
put and output layers,  and , without any pre- or post-
processing. The propagation rule of the NN is written as
follows. 

v(k+1) = v(k)−
g− F1(v(k))

m

 ∆t . (10)

vi ∈ [−250,0]
−250,−245, · · · ,0

v f

The  initial  velocity  values  are  set  by ,
evenly  spaced  by  a  gap  of  5  (i.e. )  and
the  corresponding  is  calculated  from  an  ODE  solver
independent  from the NN, which is  shown as  thick gray
points  in Fig.  5(a).  Thus,  the  total  number  of  collected

vi,v f ndata = 51data points ( ) is .

F1
N = 10

F1 L = 251
ith F1,i

|v| = i i = 0,1,2, · · · ,250 F1,i = F1(i)

|v| ∈ [0,250] 250

F1,true(v)

v = 0.4
F1(0.4) = (1−0.4)×F1(0)+0.4×F1(1)

As  mentioned  above,  it  is  possible  to  build  an  NN
with one kinematic variable v and learn  from the train-
ing  data  set.  The  depth  of  the  NN is  set  by .  The
drag  force  is  modeled  as  an  array  of  size ,
where its  element  corresponds to the value of the
drag  force  when  ( ); .
The array can hold the information of  the drag force for
integer speed values , where  is the upper
limit  of  the speed of  ball  during the data  collection with
the  true  drag  force 1).  When  the  speed  is  not  an
integer, which is true for most cases, the value is linearly
interpolated from the two nearest  integer values.  For ex-
ample,  if ,  the  drag  force  value  is  calculated  by

.
F1 F1,True

( j)
F( j)

1
F(0)

1 L = 251
(10,20)

E( j)

Our goal is to train  to yield . Let us now re-
fine  our  notation by adding the  superscript  to  denote
the  intermediate  outputs  by .  The  initial  drag  force

 is set  by  uniform random numbers between
, as a “first guess”. See the red wiggly line in Fig.

5(b). The L elements of the drag force array are learning
parameters, which  are  updated  in  the  direction  of  redu-
cing the value of  the error  function.  The error  is  minim-
ized as learning proceeds,  and the error at  the j-th learn-
ing cycle  is 

 

F1(v)

vi v f

ti t f

Fig.  3.    (color  online)  Problem setup  of  case  1.  A  ball  in  a
known  constant  downward  gravitational  acceleration g goes
through  a  “black-box ”  filled  with  a  homogeneous  medium
with  an  unknown  drag  force . From  experiments,  mul-
tiple initial and final velocity values  and  are recorded at
fixed initial and final times  and .

 

Fig. 4.    Diagram of the deep NN for case 1.

Mugeon Song, Maverick S. H. Oh, Yongjun Ahn et al. Chin. Phys. C 45, 073111 (2021)

|v| > 250
F1(v = 250)

1) During the learning process, however, some data points can have  by chance because of their initial random drag force profile. In that case, they referred
to the drag force value .
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E( j) =
1

nbatch

∑
batch

∣∣∣∣v̄( j)
f − v f

∣∣∣∣+ (
F( j)

1 (0)
)2

+ c1

L−1∑
i=0

(
F( j)

1 (i+1)−F( j)
1 (i)

)2
. (11)

L1

v̄ f = v(N) v f

vi

nbatch=

ndata=51
F1

(F1(0))2

F1(0) = 0
v = 0 c1

∑N−1
i=0

(
F1,i+1−F1,i

)2

F1

c1 = 0.03
c1

m = 1 ti = 0 t f = 4 g = 10

Here, the first term is the -norm error to train the para-
meters to match the model output of final velocity values,

, with the true final velocity values, , for a giv-
en batch input .  Meanwhile,  the number of  data points
is  small  enough  in  this  case,  so  we  choose  to  use  the
whole  data  set  for  every  learning  cycle: 

. To set a preference on a physically sensible pro-
file  of ,  two  regularization  terms  are  introduced.  The
first  term, ,  reflects  a  physical  requirement:

,  which  means  there  should  be  no  drag  force
when .  The second term, ,  is  a
mean  squared  error  between  adjacent  array  values
which  gives  a  preference  for  smoother  profiles;  it  is  not
plausible for the drag force to have a spiky zigzag profile.
In our computation  is used, and we explain how
to choose a proper value of  at the end of this section.
As an optimizer, the Adam method is used1). For numer-
ical work, we choose , , , .

F1,True{(
vi,v f

)}Examples As an example force,  the following hypo-
thetical (complicated) form of  is assumed, and the
training data set  is collected.
 

F1,True(v)=
v(300− v)

1000

[
1+

1
10

sin
( v
20

)
+

1
10

cos
( v
40

)]
+

( v
70

)2
,

(12)

which is shown as the gray line in Fig. 5(b).

{
v̄ f

}{
v f

}
F1(v)

F1(v){
v̄ f

} {
v f

}
F1,True

The learning result is shown in Fig. 5. In Fig. 5(a), the
model output set  is shown with the training data set

 with different epoch numbers. The NN model learns
how to match those two precisely by modifying the learn-
ing parameters  as  the number of  epochs increases.
How  is  trained  over  different  epoch  numbers  is
shown  in Fig.  5(b).  As  these  plots  show,  the  NN model
matched  with  accurately  and  discovered  the

 profile  with  high  accuracy  with  a  big  enough
epoch number.

F1,True

epoch = 1000
Fv(0) = 0

To  further  test  the  capability  of  the  NN  to  discover
the  drag  force,  different-shaped  drag  force  profiles  are
tested  with  the  same  scheme.  As Fig.  6 shows,  the  NN
discovered the  right  profiles  accurately  as  well  at

2). From the figures, it is clear that both reg-
ularization terms (one for setting  and the other
for smoothness) are guiding the learning correctly by fil-
tering out unphysical solutions.

c1 c1
F1

c1

c1 = 3 F1

{v̄ f }
c1 = 0.003 F1

c1 = 0.03
F1

F1,True

We conclude this section by discussing the choice of
 for  regularization.  The  value  of  controls  the

smoothness of the  profile. Figures 7(a) and 7(b) show
the effect of different  values on the drag force and the
error.  If  it  is  too  large  ( ,  yellow dots),  the  pro-
file after the learning process ends up being too flat, and
the error remains very high, because the learning process
overly  focuses  on  smoothing  the  profile,  which  ends  up
giving incorrect output  values and greater error. If it
is  too  small  ( ,  red  dots),  the  profile  stays
spiky and  the  error  remains  relatively  high  as  well,  be-
cause the regularization is  not  sufficient,  and it  becomes
stuck  at  local  minima  of  the  error.  Evidently, 
(green dots) is suitable, showing that the trained  over-
laps  very well  with  while resulting in  the minim-

Fig. 5.    (color online) Case 1: comparison of trained data for different epochs and true data. With a sufficiently large epoch, for ex-
ample 1000, the trained data (blue points/curve) agree with the true data (gray points/curve).
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0.41) With the learning rate of .

1.05135v−4.24475×10−2v2 +5.03648×10−4v3 +2.73048×10−6v4 −9.34265×10−8v5 +6.91675×10−10v6 −2.16279×10−12v7 +2.50634×10−15v8

(2.898644×10−1v−8.043560×10−3v2 +9.985840×10−5v3 −5.537040×10−7v4 +1.284692×10−9v5 −8.786800×10−13v6)
(
tanh( v−25

20 )+ tanh( 75−v
20 )+1.5

)2) For  the  purpose  of  the  test  of  our  method,  these  force  profiles  are  generated  by  fitting  artificially  chosen  complicated  data.  Their  functional  are
,  and

respectively.
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c1

c1

um error. Indeed, this value of  can be found by invest-
igating how the error decreases as learning proceeds.  As
shown in Fig. 7(b), the  value that gives the minimum
error can serve as the best value for regularization1). 

F2(x)IV.  CASE 2: FINDING A FORCE 

F2,True(x)

In  the  second  case,  two  one-dimensional  kinematic
variables x and v come into play to retrieve the position-
dependent  force  of  a  system  from  the  given
data. Again, the force is designed to be non-trivial to fully
examine  the  capability  of  the  methodology.  The  content
is divided into three subsections as well: problem defini-
tion, method, and examples.

xi vi ti
xi (xmin

i , x
max
i )

Problem definition As shown in Fig. 8, a ball is shot
at  the  position  with  initial  velocity  at  time .  The
initial position  belongs to the range , and the
initial velocity is also chosen in a certain range so that we
can have a window of the training data set.

t f

x f x f ± ϵ (xi,vi)
κ=0

v f x f ± ϵ

At a fixed final time , if the ball is at the vicinity of
 (within ), the initial kinematic variable set 

is taken as a positive data point (kind ) and its velo-
city  is  recorded.  If  the  ball  is  not  within  when

t = t f (xi,vi)
κ=1

v f

κ=0 v f

κ=1
ẍ=F2(x)/m F2

,  the  data  point  is  taken  as  a  negative  one
(kind ) and we assume that we cannot measure a cor-
responding  value. In other words, a positive data point
holds  two  output  values,  and ,  while  a  negative
point holds one output value, . The EOM is given as

 and we want to find the force . The EOM
can be  separated  into  two  first  order  differential  equa-
tions as follows. 

ẋ = v , v̇ =
1
m

F2(x) . (13)

Tpost x̄ f = x(N)

x̄ f x f t f

κ̄ = Tpost(x̄ f ) ≃ 0
∣∣∣x̄ f − x f

∣∣∣ ⩽ ϵ ≃ 1∣∣∣x̄ f − x f
∣∣∣ ⩾ ϵ

Tpost κ=0
v̄ f = v(N)

Method Because  we  have  two kinematic  variables x
and v, a two nodes per layer (width of two) setup is used
for building the NN, as shown in Fig. 9. The input layer
is omitted while the output layer is formed using a post-
processing  transformation  on ,  which
judges whether or not  is in the vicinity of  at  by

 for  (model-positive) and 
for  (model-negative). More discussions about

 follow shortly. For positive data points ( ), their
 values  are  recorded  as  well.  The  propagation

rule from the EOM is written as follows. 

F1,TrueFig. 6.    (color online) Learning results from different  profiles.
 

c1 c1

c1 c1

Fig.  7.    (color  online)  Regularization  dependence  of  the  training  results.  (a)  If  is  too  small,  the  force  profile  is  not  smooth
enough, and if  is too big, the profile becomes flat and deviates from the true profile. (b) We may choose  such that the error satur-
ates to the smallest value.
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c11) This is true in the coarse grain sense. If we want to fine tune the value of , we need to be more careful to remove the artificial effect of the regularization term
on the entire error.
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x(k+1) =x(k)+ v(k)∆t ,

v(k+1) =v(k)+
F2(x(k))

m
∆t . (14)

N = 20
F1 F2

F2 L = 21
x ∈ [0,20] ith F2

x = i F2,i = F2(i)

The depth of the NN is set by . As in the drag
force field  of case 1, the force field  is modeled as
an  array  that  holds  the  force  value  for  integer  positions;

 is modeled as an array of size  covering integer
position .  The  component of  is  the force
at ; . When a  position value is  not  an in-
teger,  the force is  linearly interpolated from those of  the
two nearest integer positions.

F2 F2,True

jth F( j)
2

F2,True

F2 F(0)
2

−0.4

Our  goal  is  to  train  to  yield .  The  model's
force  profile  at  the  learning  cycle, ,  approaches

 as j increases, if the learning is correctly designed
and  performed.  The  initial  array, , is  set  by  nor-
mal  random  numbers  with  an  average  of  and  a

standard  deviation  of  0.1  as  a  “first  guess”.  See  the  red
wiggly line in Fig. 11(e).

κ̄ (xi,vi)

v̄ f = v(N)

v f (xi,vi, κ = 0)

There are two things for the NN model to learn. First,
the model needs to distinguish positive and negative data
points—it should match the  of a given data point 
with  its  actual κ properly.  Second,  the  model  should  be
able to match the model's final velocity  with the
true final velocity  at positive data points .

κ̄ v̄ f v f

jth

To reflect these, we need two terms for the error func-
tion, one for  and κ and the other for  and , in addi-
tion  to  the  regularization  error  which  gives  a  preference
on  smoother  profiles.  The  error  function  at  learning
cycle is as follows. 

E( j) =N1
1

nbatch

∑
batch

∣∣∣κ̄( j)− κ
∣∣∣+N2

1
nbatch,κ=0

∑
batch,κ=0

∣∣∣∣v̄( j)
f − v f

∣∣∣∣
+ c2

L−1∑
i=0

(F( j)
2,i+1−F( j)

2,i )
2 ,

(15)

L1

nbatch nbatch,κ=0
N1 N2

F2
c2 κ̄ = Tpost(x̄ f =

x(N))
Tpost Tpost(

∣∣∣x− x f
∣∣∣ ⩽ ϵ) ≃ 0

Tpost(
∣∣∣x− x f

∣∣∣ > ϵ) ≃ 1

where the first and second terms are -norm errors nor-
malized  with  their  size  and ,  respectively,
scaled by the coefficients  and  that can control rel-
ative  importance  between  the  two terms  (both  are  set  as
one for our case). The third term is the regularization er-
ror for smoothness of the profile (the mean squared error
between adjacent  array elements) with the coefficient

.  The  model  output  of  the  kind  variable 
 is  calculated  using  the  following  post-processing

transformation ,  which  gives 
and .
 

Tpost(x̄ f ) =
1
2

(
tanh

[
20

((
x̄ f − x f

)
− ϵ

)]
− tanh

[
20

((
x̄ f − x f

)
+ ϵ

)])
+1

=
1
2

(
tanh

[
20

(
x̄ f − ϵ

)]
− tanh

[
20

(
x̄ f + ϵ

)])
+1

(∵ x f = 0) (16)

Tpost

c2 = 0.003
nbatch = 200 nbatch,κ=0 = 100 ϵ = 0.5

epochs = 500
m = 1

The reason to use an analytic function form for 
rather  than  a  step  function  is  to  enable  the  optimizer  to
differentiate the error function in the parameter space and
find  the  direction  to  update  parameters  to  minimize  the
error;  if  it  is  a  step  function,  an  optimizer  would  not  be
able  to  find  the  direction  to  update  the  parameters.  For
learning  setup,  following  values  are  used: ,

,  and , 1). The  termina-
tion condition is . As an optimizer, the Adam
method is  used2).  For  numerical  work,  we choose ,

 

F2(x)

vi

ti xi ∈ (xmin
i , x

max
i ) t f

x f v f

(xi,vi)

κ=0 κ=1

Fig.  8.    (color  online)  Problem setup of  case 2.  A ball  goes
through  a  black-box  with  an  unknown  force  field 
without any friction. The ball is dropped with speed  at time

 and position . At , if the ball is in the vicin-
ity  of ,  a  speedometer  reads  its  velocity  and  the  initial
kinetic  variable  set  is  taken  as  a  positive  data  point
(kind ); else, the data point is negative ( ).

 

0th (x(0),v(0)) Nth

κ̄ = Tpost
(
x(N)

)
v(N)

κ = 0

Fig.  9.    Diagram of  the  deep  NN for  case  2.  An  input  data
point  at  the  layer  propagates  to  the  layer.
Every data point gives the first output  while the
second output  is given only from one of the positive data
points ( ).
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c2 c11) The coefficient  is determined similarly to  of case 1.
1×10−22) With the learning rate of .
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ti = 0 t f = 4 (xmin
i , x

max
i ) = (10,20) x f = 0

vi ∈ (−5,0)
, , , ,  and

, which is a sufficient range of velocity to col-
lect positive data points in our setting.

F2,True{(
xi,vi, κ,v f

)}Examples As  an  example  force  field,  the  following
hypothetical (complicated) form of  is assumed and
the training data set  is collected:
 

F2,True(x) =
1

8000
(x−1)(x−11)2(x−23)2−0.7 , (17)

(xi,vi)

{κ=0,v f } {κ=1}

F2,True(x)

ndata = 2000

(xi,vi) κ=0 κ=1

v f

xi

which is shown as the gray line in Fig. 11(a). The experi-
mental  input  data  points  are  generated  uniform-
randomly in their preset range, and the output data points
(  for positive data points and  for negative
data  points)  are  collected  using  an  ODE  solver  with

. The  number  of  collected  data  points  for  train-
ing  is  2,000  in  total  (1,000  for  positive,  and  1,000  for
negative; )1). Figure  10 shows  the  training
data points. Figure 10(a) shows the initial kinematic vari-
ables  where  positive  ( )  and  negative  ( )
data points  are  marked  with  blue  and  orange,  respect-
ively. Figure 10(b) shows the distribution of the final ve-
locity  of positive data points with respect to the initial
position .

(xi,vi) κ=0
κ̄≃0

κ̄

The  learning  process  and  result  are  put  together  in
Fig.  11.  In Figs.  11(a) and 11(b),  the  before-learning
training data points  are put  together with the model data
points. Figure 11(a) shows the initial kinematic variables

 of  the  positive  data  points  ( )  in  blue  and  the
model-positive ( )  in  orange,  where their  intersection
is marked as green; the green portion shows the extent to
which  the  model  is  correct  in  matching  with κ.  Note
that  the  intersection  of  negative  and  model-negative

κ=1 κ̄≃1

v f

v̄ f

v̄ f v f

κ̄ v̄ f v f

points (  & ) are omitted for clarity. Figure 11(b)
shows  the  distribution  of  the  final  velocity  values  from
positive  data  points  ( )  in  blue  and  those  from  model
propagation ( ) in green, respectively; their discrepancy
means the model is not matching  with  correctly. It
is clear that the NN model before learning is incorrect in
matching either  with κ or  with .

F2(x)
F2

F2,True κ̄

v̄ f v f

F2,True

Figures  11(c) and 11(d) show  the  “after-learning ”
plots corresponding to Figs. 11(a) and 11(b), respectively.
From the increased portion of green dots in Fig. 11(c) and
the  accurate  matching  between  blue  and  green  dots  in
Fig.  11(d), it  is  clear  that  the  NN  model  after  learning
matches  the  outputs  correctly.  Meanwhile, Fig.  11(e)
shows  how  is  trained  over  different  epochs.  It
shows how the profile of  proceeds from the initial ran-
dom distribution to the true profile  by matching 
with κ and  with  while guided by the regularization
error.  From  these  plots,  we  can  see  that  the  NN  model
matched both sets of output variables correctly as well as
accurately discovering .

F2,True
epoch = 500

To further  test  the  capability  of  the  NN in  discover-
ing  force  fields,  different-shaped  force  field  profiles  are
tested with the same scheme.  As Fig.  12 shows,  the NN
discovered  the  right  profiles  accurately  for  both
cases  at 2).  From  this  result,  we  can  certify
that  the  NN  built  with  this  methodology  is  capable  of
learning different shapes of complicated force fields. 

V.  CONCLUSIONS

In this  paper  we  analyzed  classical  mechanics  prob-
lems using  DL.  The  main  idea  of  our  problem  is  ex-
plained  in Fig.  1:  how  to  find  the  unknown  force,  via  a
DL  technique,  only  from  the  initial  and  final  data  sets.

Fig. 10.    (color online) Input data for case 2.
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ndata = 51
ndata = 2000

(vi, v f )

1) The number of data points are set to be a big enough number to learn the true force field. Note that case 1 requires less data points ( ) compared to case 2
( ).  This  comes  mainly  from the  uncertainty  of  the  experimental  data.  Case  1's  data  points  are  exact  in  the  sense  that  the  input  and  output  data  points,

, do not have uncertainty whereas case 2's data points have intrinsic observational uncertainty defined by ϵ.

(
cos

(
πx
10

)
−1

) 3
16 + ( x

40 −
1
2 ) − 1

5 (tanh(x−5)+ tanh(x−15)+3)

2) For  the  purpose  of  the  test  of  our  method,  these  force  profiles  are  generated  by  fitting  artificially  chosen  complicated  data.  Their  functional  forms  are

 and  respectively.
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When the EOM of a system is given with a set of initial
conditions, calculating  the  propagation  of  variables  nu-
merically  is  usually  not  difficult.  In  contrast,  retrieving
the EOM (or the unknown force in the equations) from a
given data  set  can be  a  very challenging task,  especially
with limited types/amounts of information (e.g., only ini-

tial and final data).
By constructing the NN reflecting the EOM (Fig. 2),

together with enough input  and output  data,  we success-
fully  obtained  the  unknown  complicated  forces.  The
learning  progress  in  estimating  the  unknown  forces  is
shown in Figs. 5(b), Fig. 6, 11(e), and Fig. 12. They show

F2(x) (xi,vi)

κ κ̄

(xi,v f ) (xi, v̄ f ) v f v̄ f

(xi,vi) κ κ̄

(xi,v f ) (xi, v̄ f ) v f v̄ f

F2(x) F2,True(x)

Fig. 11.    (color online) Model output before (a, b) and after (c, d) learning. The learning progress of  is shown in (e). (a) 
plot of positive and model-positive data points before learning. Most points'  values are incorrectly guessed as  by the model NN. (b)

 and  plots  for  positive  data  points  before  learning.  Most  values  are  incorrectly  guessed  as  by  the  model  NN.  (c)
 plot of positive and model-positive data points after learning. Most points'  values are correctly learned as  by the model NN.

(d)  and  plots for positive data points before learning. Most  values are correctly learned as  by the model NN. (e) As
the epoch increases, the  profile approaches .
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(xmin
i , x

max
f )

that our DL method successfully discovers the right force
profiles  without  becoming  stuck  at  local  minima,  or  the
multiplicity  of  mathematically  possible  solutions.  There
are some factors that can be studied in more depth in fu-
ture studies. For example, we have observed that limiting
the  number  or  range  of  data  points  (e.g.,  narrowing  the

 range of case 2) results in slower learning and
greater  deviation  from the  true  force  field.  In  this  sense,
studies on how much the number and range of data points
are  correlated  with  the  quality  of  the  learned  force  field
can be valuable.

There are two major advantages of our method. First,
the approach  with  DL can  easily  find  a  complicated  an-
swer,  which does  not  allow much intuition  to  “correctly
guess” the right form of the answer. Second, contrary to
usual NN techniques, our approach trains physical quant-
ities  such  as  the  unknown  force  assigned  in  the  NN,
which is important for understanding the physics.

Our framework  can  be  generalized  in  a  few  direc-
tions.  First,  we  can  consider  many  particle  cases  and/or
higher dimensional problems. In this case, the number of
kinematic  variables  increases,  which means the width of
the NN increases in Fig.  2.  Second, we can improve our

discretization method (2)  by adding higher  order  correc-
tions  or  using  the  neural  ODE  technique  developed  in
[10]. For better data generation we may also use more ac-
curate  ODE  solvers  such  as  the  Runge-Kutta  method  of
order 4(5) [11]. Third, we may apply our method to more
complicated  problems.  For  example,  we  may  consider
scattering experiments by unknown forces, which are not
simple power-law forces or even central  forces.  Last  but
not  least,  this  work  will  be  pedagogical  and  useful  for
those  who  want  to  apply  AdS/DL  to  the  emergence  of
spacetime as an NN and other areas of physics governed
by differential equations.

From a broader  perspective,  the examples in  this  pa-
per can enhance the mutual understanding of physics and
computational  science  in  the  context  of  both  education
and  research  by  providing  an  interesting  bridge  between
them. 
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