
Chinese Physics C

PAPER

AdS/Deep-Learning made easy: simple examples*

To cite this article: Mugeon Song et al 2021 Chinese Phys. C 45 073111

View the article online for updates and enhancements.

You may also like
J Walcher-

Heavy quark in an expanding plasma in
AdS/CFT
G.C. Giecold

-

Real-time gauge/gravity duality:
prescription, renormalization and
examples
Kostas Skenderis and Balt C. van Rees

-

This content was downloaded from IP address 203.230.52.1 on 06/09/2024 at 09:13

https://doi.org/10.1088/1674-1137/abfc36
/article/10.1088/0264-9381/23/20/B02
/article/10.1088/1126-6708/2009/06/002
/article/10.1088/1126-6708/2009/06/002
/article/10.1088/1126-6708/2009/05/085
/article/10.1088/1126-6708/2009/05/085
/article/10.1088/1126-6708/2009/05/085

AdS/Deep-Learning made easy: simple examples*

Mugeon Song1,#† Maverick S. H. Oh1,2,#‡ Yongjun Ahn1§ Keun-Young Kima1♮

1Gwangju Institute of Science and Technology (GIST), Department of Physics and Photon Science, Gwangju, South Korea
2University of California–Merced, Department of Physics, Merced, CA, USA

Abstract: Deep learning has been widely and actively used in various research areas. Recently, in gauge/gravity
duality, a new deep learning technique called AdS/DL (Deep Learning) has been proposed. The goal of this paper is
to explain the essence of AdS/DL in the simplest possible setups, without resorting to knowledge of gauge/gravity
duality. This perspective will be useful for various physics problems: from the emergent spacetime as a neural net-
work to classical mechanics problems. For prototypical examples, we choose simple classical mechanics problems.
This method is slightly different from standard deep learning techniques in the sense that we not only have the right
final answers but also obtain physical understanding of learning parameters.

Keywords: gauge/gravity duality, holographic principle, machine learning

DOI: 10.1088/1674-1137/abfc36

I. INTRODUCTION

Machine learning or deep learning [1] techniques
have become very useful and novel tools in various re-
search areas. Recently, an interesting machine learning
idea was proposed by Hashimoto et al. in [2, 3], where
the authors apply deep learning (DL) techniques to prob-
lems in gauge/gravity duality [4, 5]. They showed that the
spacetime metric can be “deep-learned” by the boundary
conditions of the scalar field, which lives in that space.

The essential DL idea of [2, 3] is to construct the
neural network (NN) by using a differential equation
structure. The discretized version of the differential equa-
tion includes the information of physical parameters such
as a metric. The discretized variable plays the role of dif-
ferent “layers” of the NN and the dynamic variables cor-
respond to nodes. Therefore, training the NN means train-
ing the physical parameters so that, ultimately, we can ex-
tract the trained physical parameters. This idea is dubbed
AdS/DL (Deep Learning). See also [6] for an application.

In this paper, we apply the AdS/DL technique to
simple classical mechanics problems such as Fig. 1. By
considering simple examples, we highlight the essential
idea of AdS/DL without resorting to knowledge of
gauge/gravity duality. This perspective can facilitate vari-
ous applications of AdS/DL: from the emergent space-

time as an NN to classical mechanics problems. Further-
more, our work will be a good starting point to learn a
physics-friendly NN technique rather than the classical
way from computer science.

(xi,vi)
(x f ,v f)

F(x,v)

Let us describe a prototypical problem. Suppose that
we want to figure out the force in the black box shown in
Fig. 1. We are given only initial and final data, for ex-
ample, the initial and final position and velocity,
and , respectively. A standard method is to start
with an educated guess for a functional form of the force
(say,). One can use this “trial ” force to simulate
the system by solving Newton's equation. After trial-and-
error simulation and comparison with experimental data,
we may be able to obtain the approximate functional form
of the force. However, if the force is complicated enough,
it will not be easy to make a good guess at first glance,
and it will not be easy to modify the trial function in a
simple way. In this situation, machine learning can be a
very powerful method to obtain the force in the black
box.

Usually, when there is a big enough input-output data
set, classical DL techniques with NN, even without con-
sidering the physical meaning of NN or the structure of
the problem, can reliably make a model that takes input
data points and gives matching output values in a trained
region, because that is the strength of DL. Having a wide

 Received 18 February 2021; Accepted 28 April 2021; Published online 18 June 2021
 * Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Plan-
ning (NRF-2017R1A2B4004810, NRF-2021R1A2C1006791) and the GIST Research Institute (GRI) grant funded by GIST in 2021
 † E-mail: gx7179@gmail.com
 ‡ E-mail: maverick.sh.oh@gmail.com
 # These authors contributed equally as the first authors
 § E-mail: yongjunahn619@gmail.com
 ♮ E-mail: fortoe@gist.ac.kr

Chinese Physics C Vol. 45, No. 7 (2021) 073111

 ©2021 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese
Academy of Sciences and IOP Publishing Ltd

073111-1

(x,v)

and deep enough feed-forward NN with linear and non-
linear transformations can trivially make such conver-
gence as the Universal Approximation Theorem (UAT)
guarantees [7, 8]. Retrieving physical parameters from
such a model is not easy because the network in general
has little to do with the mathematical structures of the
models we want to understand. However, if we build an
NN in a way that reflects the mathematical structure of
the problem as in AdS/DL, we can retrieve physical in-
formation from the model. In this case, the discretized
time (t) plays the role of a layer and the dynamic vari-
ables correspond to the nodes1). The unknown force
is encoded in the NN so it will be trained.

This paper is organized as follows. In Section II, the
general framework of building and training an NN from
an equation of motion (EOM) is introduced. In Sections
III and IV, example problems are tackled with the meth-
odology described in Section II. Section III covers a sim-
pler example with one variable (one-dimensional velo-
city), while Section IV deals with a problem with two
variables (one-dimensional position and velocity). We
conclude the study in Section V.

II. GENERAL FRAMEWORK

The general framework can be divided into three ma-
jor parts. First, a training data set is generated using the
EOM of a system and a numeric ordinary differential
equation (ODE) solver (the Euler method). Second, an
NN is built from the EOM with randomly initialized para-
meters based on the Euler method. Third, the NN is
trained with the training data sets. After these three steps,
the resultant learned parameters are compared against the
right parameters to see if the learning was successful. The
first part, training data set generation, is trivial, and
hence, we give an elaboration from the second part.

A. Designing an NN from EOM
In this section, we review how to build an NN from

an EOM, following the framework suggested by [3].

N+1

Figure 2 shows the basic structure of our NN of interest.
It is a feed-forward network, which means the propaga-
tion of variables is one-directional without any circular
feed-back. Its depth (the number of layers) is set to be

 (from 0 to N) excluding the input and output layers,
while the width (the number of nodes for a layer) is kept
as two. The propagation rule from one layer to the next
layer is given by the differential equations from the EOM
with learning parameters of interest.

Tpre
0th

Tpost
Nth

Here, is the transformation from the input layer
to the layer (pre-processing), which is the identity
transformation in our cases, and is the transforma-
tion from the layer to the output layer (post-pro-
cessing). The input layer and the pre-processing trans-
formation is used when pre-processing of experimental
data to the kinematic variables that appear in the EOM is
required. If there is no need for such pre-processing, one
may omit the input layer, which is the case for the rest of
this paper. We, however, chose to include the input layer
in this section for more general applications that require
pre-processing. The output layer corresponds to a set of
experimental measurements after the propagation of vari-
ables with the EOM. For our cases, it will be final vari-
ables and/or flags showing whether or not the trained data
points give valid outputs2). The details of how we set up
the output layer are discussed in the following sections.

There are two main differences between the NN in
our setup and a usual feed-forward NN. First, in our
setup, the width of the NN stays constant, which is

vi ti v f t f

Fig. 1. (color online) A ball goes through a “black-box” and
the velocity of the ball changes from at to at . It is
very challenging to retrieve the information inside the black-
box when the given data is limited by initial and final data.

(x(0),v(0))

I(in)
1 I(in)

2

Tpre

0th Nth

(x(N),v(N))

Ī(out)
1 Ī(out)

2

I(out)
1 I(out)

2

Fig. 2. NN structure with two kinematic variables, x and v.
Each circular node denotes a neuron with its own variable.
The lines between nodes show which nodes are directly cor-
related with which nodes. Their initial values are cal-
culated from two input information nodes and by a
pre-processing transformation . The kinematic variables
propagate along the NN from the layer to the layer
with the rule given by the EOM. The final values
are used to calculate the model's output information nodes

 and , which are compared against the true output
values and given from the training data set. The
number of nodes in the input and output layers can vary de-
pending on the experimental setup.

Mugeon Song, Maverick S. H. Oh, Yongjun Ahn et al. Chin. Phys. C 45, 073111 (2021)

(ϕ,π,η) (x,v, t)1) For comparison, the variables in Koji Hashimoto's original paper in 2018 correspond to in Section IV of this paper.

Tpre Tpost

2) Measurement of velocity using Doppler effect can be a good example of an experimental setup requiring nontrivial pre- and post-processing transformations. In
that case, one input/output information node can be initial/final frequency information, while / connects them to initial/final speed values in the NN layers, re-
spectively.

073111-2

simply the number of kinematic variables used in the
learning process. In usual cases, however, the width of
the NN may vary for different layers to hold more versat-
ility. Second, the propagation rule is set by the EOM, and
there are relatively fewer learning parameters, whereas
most components of the propagation rule of a usual NN
are set as learning parameters. From an NN perspective,
our setup may look restrictive, but from a physics per-
spective, it is more desirable because we may indeed ob-
tain physical understanding of the inner structure of the
NN: we want to “understand ” the system rather than
simply having answers.

ti t f

How is the propagation rule given by the EOM? Let
us assume that, as time changes from to , the follow-
ing EOM holds:

ẍ = f (x, ẋ) , (1)

or

v = ẋ , v̇ = f (x,v) . (2)

If we discretize the time of (2) and take every time
slice as a layer, we may construct a deep NN with the
structure of Fig. 2 with the following propagation rule,
which is essentially the Euler method:

x(k+1) = x(k)+ v(k)∆t , v(k+1) = v(k)+ f (x(k),v(k))∆t , (3)

x(k) v(k) ti+k∆t

∆t :=
t f − ti

N

where and are variables at time (k-th lay-
er) where .

W (k) kth

φ(k) kth kth

Another way of writing (3) is separating the linear
part and the nonlinear part. The linear transformation can
be represented by a weight matrix, for the , while
the non-linear transformation is called an activation func-
tion, for the , so that the layer variable set,

x(k) =
(
x(k),v(k)

)T
, (4)

(k+1)thpropagates to the layer by

x(k+1) = φ(k)
(
W (k)x(k)

)
, (5)

where

W (k) =

(
1 ∆t
0 1

)
, φ(k)

(
a
b

)
=

(
a

b+ f (x(k),v(k))∆t

)
.

(6)

In this way, the NN is built from the EOM and differ-
ent layers mean different times, except for the input and

f (x(k),v(k))

x̄(out)

output layers. The learning parameters, in our
case, are randomly set within a reasonable range. The
model output can be expressed as follows. To dif-
ferentiate the true output (training data) from the model
output, the model output is specified as a variable name
with a bar on it, whereas the true output is without a bar.

x̄(out) ≡ Tpost

(
φ(N−1)

(
W (N−1) · · ·φ(0)

(
W (0)(Tpre(x(in))

))))
, (7)

x(in) =
(
I(in)
1 , I

(in)
2

)T
x̄(out) =

(
Ī(out)
1 , Ī(out)

2

)T

x(out) =
(
I(out)
1 , I(out)

2

)T

where and . The
true output from the training data is denoted as

.

B. Training neural network
W (k)

φ(k)

f (x(k),v(k))
(x(in),x(out))

{(x(in),x(out))}

Note that the weight matrix and the activation
function of the NN are constructed according to the
EOM as shown in (6). Thus, our goal is to train the func-
tion using the NN and input/output data. A
single pair is called a training data point, and
a whole collection of them is called a train-
ing data set. From the training data set, one can define an
error function (a.k.a. loss function) as

E =
1

nbatch

∑
batch

∣∣∣x̄(out)−x(out)
∣∣∣+Ereg , (8)

nbatch

nbatch

where a batch is a part of the data set chosen for one
learning cycle and is the number of data points for
one batch. For example, if there are 500 data points in
total and 100 data points are used for one batch of the
learning process, is 100 and five learning cycles
cover the whole data set, which is called one epoch of
learning. The summation over a “batch” means that we
add up the term from every data point from the batch. Di-
viding the data set into batches makes the learning pro-
cess more efficient, especially when the data set is big.
To make multiple parameters optimized with sufficient
stability, many epochs of learning are required.

L1

x̄(out)

x(out)

Ereg

Ereg

The first term in (8) is the -norm error of the batch
calculated from the difference of the output from the NN
model and the true output from the training data set

, which is one of the most widely-used error func-
tions. The second term, , is the regularization error
which makes unphysical solutions (e.g. unnecessarily zig-
zagging solutions) unfavorable in learning. The details on

 are provided in the following sections. Note that the
error function defined here is one example of possible
choices. The structure of E can vary depending on the
nature of problems. Please refer to Sec. IV for a variation.

In general, the value of E depends on both the weight
matrix and the activation function1). For our model,

AdS/Deep-Learning made easy: simple examples Chin. Phys. C 45, 073111 (2021)

1) In a usual NN, the activation function is fixed as a nonlinear function, such as a sigmoid function or a rectified unit function, and the weight matrix is trained.

073111-3

φ(k)

f (x(k),v(k))

however, the weight matrices are constant in the sense
that they are not learning parameters in the NN so that the
activation functions , or more specifically, the para-
meters , are the only parameters to be learned
while minimizing the value of E. As an optimizer (learn-
ing mechanism), the two most classic choices are
stochastic gradient descent and Adam, where the former
is more stable and the latter is faster in many cases [9].
We used the Adam method with Python 3 and PyTorch as
a general machine learning environment.

F1(v)III. CASE 1: FINDING A FORCE

F1,True(v)

In this section, we describe the basic idea of our
method using one of the simplest examples. Here, we use
only one kinematic variable, the one-dimensional velo-
city v, to extract information of the velocity-dependent
drag force of a given system. This example is
very simple, but the application of DL methodology is
relevant and clear. The drag force is designed to be non-
trivial to fully test the capability of the methodology.

vi ti
F1(v)

t f
v f ti t f

vi v f{(
vi, v f

)}
F1(v)

Problem definition We consider a problem setup de-
scribed in Fig. 3. A ball with mass m is dropped with ini-
tial velocity at time through a medium with an un-
known complicated drag force under a constant
downward gravitational acceleration g. At time , the ve-
locity is recorded. The times and are fixed,
whereas varies as well as so that we have the input-
output data set for training. The EOM is given
as follows, and we want to find the drag force :

v̇ = −g+
F1(v)

m
. (9)

0th Nth

v(0) v(N)

vi v̄ f

Method Because we only have one kinematic vari-
able v, it is enough to build an NN with one node per lay-
er (the width of one) as described in Fig. 4. We omitted
the input and output layers in Fig. 4, since the and
layer values, and , are themselves used as the in-
put and output layers, and , without any pre- or post-
processing. The propagation rule of the NN is written as
follows.

v(k+1) = v(k)−
g− F1(v(k))

m

 ∆t . (10)

vi ∈ [−250,0]
−250,−245, · · · ,0

v f

The initial velocity values are set by ,
evenly spaced by a gap of 5 (i.e.) and
the corresponding is calculated from an ODE solver
independent from the NN, which is shown as thick gray
points in Fig. 5(a). Thus, the total number of collected

vi,v f ndata = 51data points () is .

F1
N = 10

F1 L = 251
ith F1,i

|v| = i i = 0,1,2, · · · ,250 F1,i = F1(i)

|v| ∈ [0,250] 250

F1,true(v)

v = 0.4
F1(0.4) = (1−0.4)×F1(0)+0.4×F1(1)

As mentioned above, it is possible to build an NN
with one kinematic variable v and learn from the train-
ing data set. The depth of the NN is set by . The
drag force is modeled as an array of size ,
where its element corresponds to the value of the
drag force when (); .
The array can hold the information of the drag force for
integer speed values , where is the upper
limit of the speed of ball during the data collection with
the true drag force 1). When the speed is not an
integer, which is true for most cases, the value is linearly
interpolated from the two nearest integer values. For ex-
ample, if , the drag force value is calculated by

.
F1 F1,True

(j)
F(j)

1
F(0)

1 L = 251
(10,20)

E(j)

Our goal is to train to yield . Let us now re-
fine our notation by adding the superscript to denote
the intermediate outputs by . The initial drag force

 is set by uniform random numbers between
, as a “first guess”. See the red wiggly line in Fig.

5(b). The L elements of the drag force array are learning
parameters, which are updated in the direction of redu-
cing the value of the error function. The error is minim-
ized as learning proceeds, and the error at the j-th learn-
ing cycle is

F1(v)

vi v f

ti t f

Fig. 3. (color online) Problem setup of case 1. A ball in a
known constant downward gravitational acceleration g goes
through a “black-box ” filled with a homogeneous medium
with an unknown drag force . From experiments, mul-
tiple initial and final velocity values and are recorded at
fixed initial and final times and .

Fig. 4. Diagram of the deep NN for case 1.

Mugeon Song, Maverick S. H. Oh, Yongjun Ahn et al. Chin. Phys. C 45, 073111 (2021)

|v| > 250
F1(v = 250)

1) During the learning process, however, some data points can have by chance because of their initial random drag force profile. In that case, they referred
to the drag force value .

073111-4

E(j) =
1

nbatch

∑
batch

∣∣∣∣v̄(j)
f − v f

∣∣∣∣+ (
F(j)

1 (0)
)2

+ c1

L−1∑
i=0

(
F(j)

1 (i+1)−F(j)
1 (i)

)2
. (11)

L1

v̄ f = v(N) v f

vi

nbatch=

ndata=51
F1

(F1(0))2

F1(0) = 0
v = 0 c1

∑N−1
i=0

(
F1,i+1−F1,i

)2

F1

c1 = 0.03
c1

m = 1 ti = 0 t f = 4 g = 10

Here, the first term is the -norm error to train the para-
meters to match the model output of final velocity values,

, with the true final velocity values, , for a giv-
en batch input . Meanwhile, the number of data points
is small enough in this case, so we choose to use the
whole data set for every learning cycle:

. To set a preference on a physically sensible pro-
file of , two regularization terms are introduced. The
first term, , reflects a physical requirement:

, which means there should be no drag force
when . The second term, , is a
mean squared error between adjacent array values
which gives a preference for smoother profiles; it is not
plausible for the drag force to have a spiky zigzag profile.
In our computation is used, and we explain how
to choose a proper value of at the end of this section.
As an optimizer, the Adam method is used1). For numer-
ical work, we choose , , , .

F1,True{(
vi,v f

)}Examples As an example force, the following hypo-
thetical (complicated) form of is assumed, and the
training data set is collected.

F1,True(v)=
v(300− v)

1000

[
1+

1
10

sin
(v
20

)
+

1
10

cos
(v
40

)]
+

(v
70

)2
,

(12)

which is shown as the gray line in Fig. 5(b).

{
v̄ f

}{
v f

}
F1(v)

F1(v){
v̄ f

} {
v f

}
F1,True

The learning result is shown in Fig. 5. In Fig. 5(a), the
model output set is shown with the training data set

 with different epoch numbers. The NN model learns
how to match those two precisely by modifying the learn-
ing parameters as the number of epochs increases.
How is trained over different epoch numbers is
shown in Fig. 5(b). As these plots show, the NN model
matched with accurately and discovered the

 profile with high accuracy with a big enough
epoch number.

F1,True

epoch = 1000
Fv(0) = 0

To further test the capability of the NN to discover
the drag force, different-shaped drag force profiles are
tested with the same scheme. As Fig. 6 shows, the NN
discovered the right profiles accurately as well at

2). From the figures, it is clear that both reg-
ularization terms (one for setting and the other
for smoothness) are guiding the learning correctly by fil-
tering out unphysical solutions.

c1 c1
F1

c1

c1 = 3 F1

{v̄ f }
c1 = 0.003 F1

c1 = 0.03
F1

F1,True

We conclude this section by discussing the choice of
 for regularization. The value of controls the

smoothness of the profile. Figures 7(a) and 7(b) show
the effect of different values on the drag force and the
error. If it is too large (, yellow dots), the pro-
file after the learning process ends up being too flat, and
the error remains very high, because the learning process
overly focuses on smoothing the profile, which ends up
giving incorrect output values and greater error. If it
is too small (, red dots), the profile stays
spiky and the error remains relatively high as well, be-
cause the regularization is not sufficient, and it becomes
stuck at local minima of the error. Evidently,
(green dots) is suitable, showing that the trained over-
laps very well with while resulting in the minim-

Fig. 5. (color online) Case 1: comparison of trained data for different epochs and true data. With a sufficiently large epoch, for ex-
ample 1000, the trained data (blue points/curve) agree with the true data (gray points/curve).

AdS/Deep-Learning made easy: simple examples Chin. Phys. C 45, 073111 (2021)

0.41) With the learning rate of .

1.05135v−4.24475×10−2v2 +5.03648×10−4v3 +2.73048×10−6v4 −9.34265×10−8v5 +6.91675×10−10v6 −2.16279×10−12v7 +2.50634×10−15v8

(2.898644×10−1v−8.043560×10−3v2 +9.985840×10−5v3 −5.537040×10−7v4 +1.284692×10−9v5 −8.786800×10−13v6)
(
tanh(v−25

20)+ tanh(75−v
20)+1.5

)2) For the purpose of the test of our method, these force profiles are generated by fitting artificially chosen complicated data. Their functional are
, and

respectively.

073111-5

c1

c1

um error. Indeed, this value of can be found by invest-
igating how the error decreases as learning proceeds. As
shown in Fig. 7(b), the value that gives the minimum
error can serve as the best value for regularization1).

F2(x)IV. CASE 2: FINDING A FORCE

F2,True(x)

In the second case, two one-dimensional kinematic
variables x and v come into play to retrieve the position-
dependent force of a system from the given
data. Again, the force is designed to be non-trivial to fully
examine the capability of the methodology. The content
is divided into three subsections as well: problem defini-
tion, method, and examples.

xi vi ti
xi (xmin

i , x
max
i)

Problem definition As shown in Fig. 8, a ball is shot
at the position with initial velocity at time . The
initial position belongs to the range , and the
initial velocity is also chosen in a certain range so that we
can have a window of the training data set.

t f

x f x f ± ϵ (xi,vi)
κ=0

v f x f ± ϵ

At a fixed final time , if the ball is at the vicinity of
 (within), the initial kinematic variable set

is taken as a positive data point (kind) and its velo-
city is recorded. If the ball is not within when

t = t f (xi,vi)
κ=1

v f

κ=0 v f

κ=1
ẍ=F2(x)/m F2

, the data point is taken as a negative one
(kind) and we assume that we cannot measure a cor-
responding value. In other words, a positive data point
holds two output values, and , while a negative
point holds one output value, . The EOM is given as

 and we want to find the force . The EOM
can be separated into two first order differential equa-
tions as follows.

ẋ = v , v̇ =
1
m

F2(x) . (13)

Tpost x̄ f = x(N)

x̄ f x f t f

κ̄ = Tpost(x̄ f) ≃ 0
∣∣∣x̄ f − x f

∣∣∣ ⩽ ϵ ≃ 1∣∣∣x̄ f − x f
∣∣∣ ⩾ ϵ

Tpost κ=0
v̄ f = v(N)

Method Because we have two kinematic variables x
and v, a two nodes per layer (width of two) setup is used
for building the NN, as shown in Fig. 9. The input layer
is omitted while the output layer is formed using a post-
processing transformation on , which
judges whether or not is in the vicinity of at by

 for (model-positive) and
for (model-negative). More discussions about

 follow shortly. For positive data points (), their
 values are recorded as well. The propagation

rule from the EOM is written as follows.

F1,TrueFig. 6. (color online) Learning results from different profiles.

c1 c1

c1 c1

Fig. 7. (color online) Regularization dependence of the training results. (a) If is too small, the force profile is not smooth
enough, and if is too big, the profile becomes flat and deviates from the true profile. (b) We may choose such that the error satur-
ates to the smallest value.

Mugeon Song, Maverick S. H. Oh, Yongjun Ahn et al. Chin. Phys. C 45, 073111 (2021)

c11) This is true in the coarse grain sense. If we want to fine tune the value of , we need to be more careful to remove the artificial effect of the regularization term
on the entire error.

073111-6

x(k+1) =x(k)+ v(k)∆t ,

v(k+1) =v(k)+
F2(x(k))

m
∆t . (14)

N = 20
F1 F2

F2 L = 21
x ∈ [0,20] ith F2

x = i F2,i = F2(i)

The depth of the NN is set by . As in the drag
force field of case 1, the force field is modeled as
an array that holds the force value for integer positions;

 is modeled as an array of size covering integer
position . The component of is the force
at ; . When a position value is not an in-
teger, the force is linearly interpolated from those of the
two nearest integer positions.

F2 F2,True

jth F(j)
2

F2,True

F2 F(0)
2

−0.4

Our goal is to train to yield . The model's
force profile at the learning cycle, , approaches

 as j increases, if the learning is correctly designed
and performed. The initial array, , is set by nor-
mal random numbers with an average of and a

standard deviation of 0.1 as a “first guess”. See the red
wiggly line in Fig. 11(e).

κ̄ (xi,vi)

v̄ f = v(N)

v f (xi,vi, κ = 0)

There are two things for the NN model to learn. First,
the model needs to distinguish positive and negative data
points—it should match the of a given data point
with its actual κ properly. Second, the model should be
able to match the model's final velocity with the
true final velocity at positive data points .

κ̄ v̄ f v f

jth

To reflect these, we need two terms for the error func-
tion, one for and κ and the other for and , in addi-
tion to the regularization error which gives a preference
on smoother profiles. The error function at learning
cycle is as follows.

E(j) =N1
1

nbatch

∑
batch

∣∣∣κ̄(j)− κ
∣∣∣+N2

1
nbatch,κ=0

∑
batch,κ=0

∣∣∣∣v̄(j)
f − v f

∣∣∣∣
+ c2

L−1∑
i=0

(F(j)
2,i+1−F(j)

2,i)
2 ,

(15)

L1

nbatch nbatch,κ=0
N1 N2

F2
c2 κ̄ = Tpost(x̄ f =

x(N))
Tpost Tpost(

∣∣∣x− x f
∣∣∣ ⩽ ϵ) ≃ 0

Tpost(
∣∣∣x− x f

∣∣∣ > ϵ) ≃ 1

where the first and second terms are -norm errors nor-
malized with their size and , respectively,
scaled by the coefficients and that can control rel-
ative importance between the two terms (both are set as
one for our case). The third term is the regularization er-
ror for smoothness of the profile (the mean squared error
between adjacent array elements) with the coefficient

. The model output of the kind variable
 is calculated using the following post-processing

transformation , which gives
and .

Tpost(x̄ f) =
1
2

(
tanh

[
20

((
x̄ f − x f

)
− ϵ

)]
− tanh

[
20

((
x̄ f − x f

)
+ ϵ

)])
+1

=
1
2

(
tanh

[
20

(
x̄ f − ϵ

)]
− tanh

[
20

(
x̄ f + ϵ

)])
+1

(∵ x f = 0) (16)

Tpost

c2 = 0.003
nbatch = 200 nbatch,κ=0 = 100 ϵ = 0.5

epochs = 500
m = 1

The reason to use an analytic function form for
rather than a step function is to enable the optimizer to
differentiate the error function in the parameter space and
find the direction to update parameters to minimize the
error; if it is a step function, an optimizer would not be
able to find the direction to update the parameters. For
learning setup, following values are used: ,

, and , 1). The termina-
tion condition is . As an optimizer, the Adam
method is used2). For numerical work, we choose ,

F2(x)

vi

ti xi ∈ (xmin
i , x

max
i) t f

x f v f

(xi,vi)

κ=0 κ=1

Fig. 8. (color online) Problem setup of case 2. A ball goes
through a black-box with an unknown force field
without any friction. The ball is dropped with speed at time

 and position . At , if the ball is in the vicin-
ity of , a speedometer reads its velocity and the initial
kinetic variable set is taken as a positive data point
(kind); else, the data point is negative ().

0th (x(0),v(0)) Nth

κ̄ = Tpost
(
x(N)

)
v(N)

κ = 0

Fig. 9. Diagram of the deep NN for case 2. An input data
point at the layer propagates to the layer.
Every data point gives the first output while the
second output is given only from one of the positive data
points ().

AdS/Deep-Learning made easy: simple examples Chin. Phys. C 45, 073111 (2021)

c2 c11) The coefficient is determined similarly to of case 1.
1×10−22) With the learning rate of .

073111-7

ti = 0 t f = 4 (xmin
i , x

max
i) = (10,20) x f = 0

vi ∈ (−5,0)
, , , , and

, which is a sufficient range of velocity to col-
lect positive data points in our setting.

F2,True{(
xi,vi, κ,v f

)}Examples As an example force field, the following
hypothetical (complicated) form of is assumed and
the training data set is collected:

F2,True(x) =
1

8000
(x−1)(x−11)2(x−23)2−0.7 , (17)

(xi,vi)

{κ=0,v f } {κ=1}

F2,True(x)

ndata = 2000

(xi,vi) κ=0 κ=1

v f

xi

which is shown as the gray line in Fig. 11(a). The experi-
mental input data points are generated uniform-
randomly in their preset range, and the output data points
(for positive data points and for negative
data points) are collected using an ODE solver with

. The number of collected data points for train-
ing is 2,000 in total (1,000 for positive, and 1,000 for
negative;)1). Figure 10 shows the training
data points. Figure 10(a) shows the initial kinematic vari-
ables where positive () and negative ()
data points are marked with blue and orange, respect-
ively. Figure 10(b) shows the distribution of the final ve-
locity of positive data points with respect to the initial
position .

(xi,vi) κ=0
κ̄≃0

κ̄

The learning process and result are put together in
Fig. 11. In Figs. 11(a) and 11(b), the before-learning
training data points are put together with the model data
points. Figure 11(a) shows the initial kinematic variables

 of the positive data points () in blue and the
model-positive () in orange, where their intersection
is marked as green; the green portion shows the extent to
which the model is correct in matching with κ. Note
that the intersection of negative and model-negative

κ=1 κ̄≃1

v f

v̄ f

v̄ f v f

κ̄ v̄ f v f

points (&) are omitted for clarity. Figure 11(b)
shows the distribution of the final velocity values from
positive data points () in blue and those from model
propagation () in green, respectively; their discrepancy
means the model is not matching with correctly. It
is clear that the NN model before learning is incorrect in
matching either with κ or with .

F2(x)
F2

F2,True κ̄

v̄ f v f

F2,True

Figures 11(c) and 11(d) show the “after-learning ”
plots corresponding to Figs. 11(a) and 11(b), respectively.
From the increased portion of green dots in Fig. 11(c) and
the accurate matching between blue and green dots in
Fig. 11(d), it is clear that the NN model after learning
matches the outputs correctly. Meanwhile, Fig. 11(e)
shows how is trained over different epochs. It
shows how the profile of proceeds from the initial ran-
dom distribution to the true profile by matching
with κ and with while guided by the regularization
error. From these plots, we can see that the NN model
matched both sets of output variables correctly as well as
accurately discovering .

F2,True
epoch = 500

To further test the capability of the NN in discover-
ing force fields, different-shaped force field profiles are
tested with the same scheme. As Fig. 12 shows, the NN
discovered the right profiles accurately for both
cases at 2). From this result, we can certify
that the NN built with this methodology is capable of
learning different shapes of complicated force fields.

V. CONCLUSIONS

In this paper we analyzed classical mechanics prob-
lems using DL. The main idea of our problem is ex-
plained in Fig. 1: how to find the unknown force, via a
DL technique, only from the initial and final data sets.

Fig. 10. (color online) Input data for case 2.

Mugeon Song, Maverick S. H. Oh, Yongjun Ahn et al. Chin. Phys. C 45, 073111 (2021)

ndata = 51
ndata = 2000

(vi, v f)

1) The number of data points are set to be a big enough number to learn the true force field. Note that case 1 requires less data points () compared to case 2
(). This comes mainly from the uncertainty of the experimental data. Case 1's data points are exact in the sense that the input and output data points,

, do not have uncertainty whereas case 2's data points have intrinsic observational uncertainty defined by ϵ.

(
cos

(
πx
10

)
−1

) 3
16 + (x

40 −
1
2) − 1

5 (tanh(x−5)+ tanh(x−15)+3)

2) For the purpose of the test of our method, these force profiles are generated by fitting artificially chosen complicated data. Their functional forms are

 and respectively.

073111-8

When the EOM of a system is given with a set of initial
conditions, calculating the propagation of variables nu-
merically is usually not difficult. In contrast, retrieving
the EOM (or the unknown force in the equations) from a
given data set can be a very challenging task, especially
with limited types/amounts of information (e.g., only ini-

tial and final data).
By constructing the NN reflecting the EOM (Fig. 2),

together with enough input and output data, we success-
fully obtained the unknown complicated forces. The
learning progress in estimating the unknown forces is
shown in Figs. 5(b), Fig. 6, 11(e), and Fig. 12. They show

F2(x) (xi,vi)

κ κ̄

(xi,v f) (xi, v̄ f) v f v̄ f

(xi,vi) κ κ̄

(xi,v f) (xi, v̄ f) v f v̄ f

F2(x) F2,True(x)

Fig. 11. (color online) Model output before (a, b) and after (c, d) learning. The learning progress of is shown in (e). (a)
plot of positive and model-positive data points before learning. Most points' values are incorrectly guessed as by the model NN. (b)

 and plots for positive data points before learning. Most values are incorrectly guessed as by the model NN. (c)
 plot of positive and model-positive data points after learning. Most points' values are correctly learned as by the model NN.

(d) and plots for positive data points before learning. Most values are correctly learned as by the model NN. (e) As
the epoch increases, the profile approaches .

AdS/Deep-Learning made easy: simple examples Chin. Phys. C 45, 073111 (2021)

073111-9

(xmin
i , x

max
f)

that our DL method successfully discovers the right force
profiles without becoming stuck at local minima, or the
multiplicity of mathematically possible solutions. There
are some factors that can be studied in more depth in fu-
ture studies. For example, we have observed that limiting
the number or range of data points (e.g., narrowing the

 range of case 2) results in slower learning and
greater deviation from the true force field. In this sense,
studies on how much the number and range of data points
are correlated with the quality of the learned force field
can be valuable.

There are two major advantages of our method. First,
the approach with DL can easily find a complicated an-
swer, which does not allow much intuition to “correctly
guess” the right form of the answer. Second, contrary to
usual NN techniques, our approach trains physical quant-
ities such as the unknown force assigned in the NN,
which is important for understanding the physics.

Our framework can be generalized in a few direc-
tions. First, we can consider many particle cases and/or
higher dimensional problems. In this case, the number of
kinematic variables increases, which means the width of
the NN increases in Fig. 2. Second, we can improve our

discretization method (2) by adding higher order correc-
tions or using the neural ODE technique developed in
[10]. For better data generation we may also use more ac-
curate ODE solvers such as the Runge-Kutta method of
order 4(5) [11]. Third, we may apply our method to more
complicated problems. For example, we may consider
scattering experiments by unknown forces, which are not
simple power-law forces or even central forces. Last but
not least, this work will be pedagogical and useful for
those who want to apply AdS/DL to the emergence of
spacetime as an NN and other areas of physics governed
by differential equations.

From a broader perspective, the examples in this pa-
per can enhance the mutual understanding of physics and
computational science in the context of both education
and research by providing an interesting bridge between
them.

ACKNOWLEDGMENTS

We would like to thank Koji Hashimoto, Akinori
Tanaka, Chang-Woo Ji, Hyun-Gyu Kim, and Hyun-Sik
Jeong for valuable discussions and comments.

References

 A. Tanaka, A. Tomiya, and K. Hashimoto, Deep Learning
and Physics, Springer (to appear in February 2021)

[1]

 K. Hashimoto, S. Sugishita, A. Tanaka et al., Phys. Rev. D
98, 046019 (2018), arXiv:1802.08313

[2]

 K. Hashimoto, S. Sugishita, A. Tanaka et al., Phys. Rev. D
98, 106014 (2018), arXiv:1809.10536

[3]

 J. Zaanen, Y.-W. Sun, Y. Liu et al., Holographic Duality in
Condensed Matter Physics, (Cambridge Univ. Press, 2015)

[4]

 M. Ammon and J. Erdmenger, Gauge/gravity duality:
Foundations and applications, Cambridge (University
Press, Cambridge, 4, 2015)

[5]

 Y. K. Yan, S. F. Wu, X. H. Ge et al., Phys. Rev. D 102(10),
101902 (2020), arXiv: 2004.12112 [hep-th]

[6]

 K. Hornik, M. Stinchcombe, and H. White, Neural[7]

Networks 2, 359 (1989)
 C.M. Bishop, Pattern Recognition and Machine Learning
(Information Science and Statistics), (Springer-Verlag,
Berlin, Heidelberg, 2006)

[8]

 D.P. Kingma and J. Ba, Adam: A method for stochastic
optimization, in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Conference Track Proceedings, Y. Bengio and Y.
LeCun, eds., 2015, http://arxiv.org/abs/1412.6980

[9]

 K. Hashimoto, H.-Y. Hu and Y.-Z. You, Neural ODE and
Holographic QCD, 2006.00712

[10]

 S.P.N.a. Ernst Hairer, Gerhard Wanner, Solving Ordinary
Differential Equations I: Nonstiff Problems, Springer Series
in Computational Mathematics 8, Springer-Verlag Berlin
Heidelberg, 2 ed. (1993)

[11]

F2,TrueFig. 12. (color online) Learning results from different profiles.

Mugeon Song, Maverick S. H. Oh, Yongjun Ahn et al. Chin. Phys. C 45, 073111 (2021)

073111-10

https://doi.org/10.1103/PhysRevD.98.046019
https://arxiv.org/abs/1802.08313
https://doi.org/10.1103/PhysRevD.98.106014
https://arxiv.org/abs/1809.10536
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
http://arxiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevD.98.046019
https://arxiv.org/abs/1802.08313
https://doi.org/10.1103/PhysRevD.98.106014
https://arxiv.org/abs/1809.10536
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
http://arxiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevD.98.046019
https://arxiv.org/abs/1802.08313
https://doi.org/10.1103/PhysRevD.98.106014
https://arxiv.org/abs/1809.10536
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1103/PhysRevD.98.046019
https://arxiv.org/abs/1802.08313
https://doi.org/10.1103/PhysRevD.98.106014
https://arxiv.org/abs/1809.10536
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/0893-6080(89)90020-8
http://arxiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevD.98.046019
https://arxiv.org/abs/1802.08313
https://doi.org/10.1103/PhysRevD.98.106014
https://arxiv.org/abs/1809.10536
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
http://arxiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevD.98.046019
https://arxiv.org/abs/1802.08313
https://doi.org/10.1103/PhysRevD.98.106014
https://arxiv.org/abs/1809.10536
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
http://arxiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevD.98.046019
https://arxiv.org/abs/1802.08313
https://doi.org/10.1103/PhysRevD.98.106014
https://arxiv.org/abs/1809.10536
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1103/PhysRevD.98.046019
https://arxiv.org/abs/1802.08313
https://doi.org/10.1103/PhysRevD.98.106014
https://arxiv.org/abs/1809.10536
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/0893-6080(89)90020-8
http://arxiv.org/abs/1412.6980

	I INTRODUCTION
	II GENERAL FRAMEWORK
	A Designing an NN from EOM
	B Training neural network

	III CASE 1: FINDING A FORCE $\bm{F_1(v)}$
	IV CASE 2: FINDING A FORCE $\bm{F_2(x)}$
	V CONCLUSIONS
	ACKNOWLEDGMENTS

