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1 Introduction

The Holographic Correspondence (or equivalently Hologra-
phy, AdS-CFT or Gauge-Gravity duality) is nowadays a re-
spected and widely used tool for applications, ranging from
QCD and condensed matter to hydrodynamics and quantum
information [1-8]. For this scope, it is often used in its
bottom-up version, indeed agnostic of its historical stringy
origins [9] and detached from any issues related with quan-
tum gravity [10]. On the contrary, it is treated as an efficient
and powerful playground to learn about physical situations
in which other more Kosher methods are of no help. In par-
ticular, it appears to be extremely advantageous (if not even
the only available tool) for systems at strong coupling (where
perturbative methods fail), situations dominated by a many-
body collective dynamics and no well-defined elementary ex-
citations (where the single-particle approximation fails) and
dissipative systems (where a suitable finite temperature field-
theory formulation is far from obvious).

With this applied (and if one wants less fundamental) task
in mind, it is clear that the most important challenge is to
make this playground as close as possible to the reality, or
in other words to the realistic physical situation to which we
want to apply it. A representative epitomic case is the com-
parison between QCD, a S U(3) non-abelian gauge theory,
and N = 4 supersymmetric Yang-Mills theory in the large
N limit. The scope is to move as close as possible to reality
without losing the solvability and the analytic control on the
(possibly toy) model.

In condensed matter, the reality is obviously not Poincaré
invariant. Inevitably, both translations and rotations are bro-
ken (at least spontaneously, SSB). This is the key behind the
“rigidity” of matter, the theory of elasticity, the propagation
of sound in materials and the thermodynamics of solids. Not

only that, but in most of the situations, such as electronic
transport, translations are broken explicitly (EXB), giving
rise to the finite conductivity measured in all common met-
als. Finally, there are also several situations in which trans-
lations are broken both explicitly and spontaneously, in what
is called the “pseudo-spontaneous” limit. This is indeed the
case for pinned charge density waves [11], where impurities
pin the phason Goldstone mode producing a peculiar finite
frequency peak in the optical conductivity.

As a consequence, in order to have a realistic descrip-
tion, it is imperative to introduce and understand in detail the
breaking of spatial translations in the dual boundary theory.
The early days of Applied Holography focused in particular
on the questions around Quark Gluon Plasma (QGP) and its
strongly coupled hydrodynamic description [12]. An exem-
plary result is the famous Kovtun-Son-Starinets (KSS) bound
on the viscosity to entropy ratio [13]. In that context, the role
of translations is minimal, if not even negligible. Neverthe-
less, in the last decade, due to the increasing interest around
strongly coupled phases of matter with no quasiparticles and
no standard solid state theory description (e.g., non-Fermi
liquids, strange metals, high-Tc superconductors), the need
for holographic setups with no translational invariance has
become unavoidable [2].

Historically, this program has started with the “brute
force” attempt of embedding into the standard holographic
models bulk fields with spatially dependent boundary condi-
tions, mimicking an explicit lattice source. After introduc-
ing a gravitational background lattice by adding a periodic
source for a neutral scalar, the model of ref. [14] was able
to dissipate the momentum of the dual field theory. At the
same time, concomitant works [15, 16] describing a possible
mechanism for the spontaneous breaking of translations in
presence of finite charge density have appeared. Despite the
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validity and novelty of those works, no much progress has
been done using those models until the recent days, mainly
because of the technical difficulties associated with them.

On the contrary, a totally new fresh wave on the topic has
been initiated by the so-called homogeneous models, holo-
graphic setups in which translations are broken but the back-
ground geometry remains homogeneous [17-20]. Among
them, a particular subset emerges, because of the possibility
of having a closed-form analytical background. This subset
is represented by the holographic axion model [18,21], which
is equivalent to (or better which incorporates) the original
massive gravity proposals [22].

This model has dominated the scene of Applied Holog-
raphy without translational invariance and it is the topic of
this review. It is nowadays a well-known and widely used
model which represents mandatory knowledge for any re-
searchers in the field. Because of this reason, and the im-
mense progress made in the last decade around this model,
we have found it timely to collect all this material in a single
and self-contained review where all the fundamental points
will be described. This review attempts to be as exhaustive
as possible, covering all the directions in which this model
has been utilised and all the main features to understand it in
plain. It is intended not only for early researchers starting to
work with the model, but also for more advanced “hologra-
phers” who will find through the text several open questions
and unfinished tasks to think over.

1.1 Scope of this review

This review was born as a collective effort to organize and
collect in a single self-consistent manuscript all the informa-
tion about the holographic axion model, from its origins to
the most recent developments. This work is intended for a
very diverse audience, ranging from young students up to the
most experienced researchers in the field.

There is certainly a gap between a series of cutting-edge
research papers (in this case started around 2012) and the full
understanding of the questions behind them, which only time
can close. This review, in a sense, wants to close such a gap
(after approximately 10 years of studies). We would like also
to take advantage of this opportunity to clarify some points
which are very often confused in the literature and taught in
the wrong way to early researchers. In particular, we want to
emphasize that: (1) The holographic axion model is not just
an ad-hoc tool to break translations, but its structure can be
consistently mapped to and derived from the standard effec-
tive field theory formulations;

(2) Holographic massive gravity (intended as the original

dRGT construction [17]) and the holographic axion model
are not different beasts, as often conveyed in the literature,
but they are exactly the same theory written in a different
gauge1);

(3) The presence of bulk axion fields with profile ϕI = xI

does not necessarily imply the breaking of momentum con-
servation but it can lead to a much richer structure of theories.

Finally, we have devoted a final part of the review to stim-
ulate the more experienced researchers in the field with some
open questions which, to the best of our knowledge, are yet
not resolved.

The organization of this review is as follows. In sect. 1, we
introduce the topics of this review and we provide the motiva-
tions behind it. We describe the simplest holographic axion
model which captures the key features of the explicit break-
ing of translations and its physical consequences in sect.
2. Sect. 3 generalizes the original model to the case that
breaks translations spontaneously and discusses the associ-
ated physics. We compare the holographic results with the
hydrodynamic description in sect. 4. Some universal bounds
extracted from holographic axion models are discussed in
sect. 5. Sect. 6 makes a step forward and combines the ex-
plicit and spontaneous breaking of translations in the pseudo-
spontaneous regime. We proceed to give a list of phenomena
and topics for which the holographic axion models have been
applied in sects. 7 and 8. We conclude this review with a
number of open questions related to the holographic axion
models and a short conclusion in sect. 9. The symbols and
notations used in this review are summarized in appendix.

1.2 The Drude model

A first important scenario where the role of translations ap-
pears fundamental is in the determination of the transport
properties of metals, e.g., the electric conductivity. Let us
imagine a simple model for electric conduction and repre-
sent our conducting electrons as simple spherical balls non-
interacting within each-other and following a classical New-
tonian dynamics. Whenever an external and frequency inde-
pendent (DC) electric field E is switched on, the electrons
will be accelerated by a force F = qE, with q being the elec-
tron charge. Assuming the momentum of the electrons being
conserved, the electrons will flow unaffected forever and the
corresponding electric conductivity σ = J/E will result to be
infinite. We would be able to have a finite electric current at
late time even when the electric field is removed (exactly like
in a superconductor, but for a different reason). This is the
same situation that we would encounter if we kick a marble
on a table and we would neglect any friction effect between

1) To be more precise, dRGT is just a particular choice of the potential in the holographic axion model [22].
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the two; the marble will simply roll forever.
This is obviously not a truthful representation of the reality

since all metals have a finite DC conductivity—i.e., a finite
conductivity at zero frequency ω = 0, in response to a static
electric field. In order to recover this well-known experimen-
tal fact, the non-conservation or dissipation of the electron
momentum has to be considered. This can be done by follow-
ing the simple Drude model introduced in 1900 (only three
years after the discovery of the electron by the British physi-
cist J. J. Thomson) by Paul Drude [23-25]. Drude borrowed
the basic elements of his theory from the kinetic theory of
gases and he simply imagined a metal as a dilute gas of free
electrons. Nevertheless, he made a step forward and consid-
ered the presence in a metal of also heavy and immobile ions
around which the electrons are moving driven by the external
electric field (see Figure 1).

The electrons, during their motion, collide against the
heavier ions losing their momenta and deflecting their tra-
jectories. From an effective field theory (EFT) point of view,
the dynamics of the electrons, or more specifically of their
average momentum, is determined by the simple equation:

d
dt
⟨px(t)⟩ = q Ex −

1
τ
⟨px(t)⟩, (1)

where for simplicity we have considered an isotropic system
and aligned the external electric field along the spatial x di-
rection. The first term in the r.h.s. is the standard driving
force induced by the external electric field. The second, and
more important, is an effective term which induces a relax-
ation of the average momentum at a constant rate Γ ≡ 1/τ.
The timescale τ is an effective parameter which corresponds
to the average time between consecutive collisions and it de-
termines “how fast” momentum gets lost. From a more the-
oretical perspective, this second term encodes the effects due
to the explicit breaking of translations.

Using classical identities, we can write down the average
momentum of the electrons and the relative electric current

Figure 1 (Color online) A schematic illustration for the Drude model.
In orange the electrons, while in green the immobile ions. The red arrows
identify the direction of a constant applied electric field. The average time
between collisions is given by τ.

generated in terms of their average velocity:

⟨px(t)⟩ = m ⟨vx(t)⟩, ⟨Jx(t)⟩ = n q ⟨vx(t)⟩, (2)

where m and n are respectively the electron mass and number
density. Using these relations in the dynamical eq. (1), and a
standard Fourier decomposition, we immediately get

− iω ⟨vx⟩ =
q
m

Ex −
1
τ
⟨vx⟩. (3)

Finally, utilizing the definition for the electric conductivity,
we obtain the expression for the low-frequency conductivity
in the Drude model, which reads

σxx =
Jx

Ex
=

σDC

1 − iωτ
, σDC =

n q2 τ

m
. (4)

This is Drude’s main result. Several observations are in order.
(1) The DC conductivity, σDC ≡ σxx(ω = 0), is finite because
of momentum dissipation (= finite τ). In the limit in which
momentum is conserved (τ→ ∞), we recover the previously
mentioned infinite result. (2) The faster momentum is dissi-
pated, the lower the DC conductivity; the material conducts
less and less. (3) The Drude model implies the presence of
a relaxation mode, usually labelled Drude pole, ω = −i/τ,
which incorporates the effect of momentum dissipation. This
results in the so-called Drude peak, a peak of the real part of
the conductivity located at ω = 0, whose width is determined
by the relaxation rate Γ ≡ τ−1 (see Figure 2 [26]). In the
limit of τ = ∞, the Drude peak reduces to a delta function at
ω = 0.

The physics of the Drude model and especially the role of
momentum conservation can be approached from a more for-
mal point of view. The starting point is the realization that,
within linear response theory [27], the electric conductivity
can be written in terms of the retarded current-current two-
points function as:

σi j(ω) =
1
iω
⟨JiJ j⟩ (ω, k = 0). (5)

This relation can be derived by considering an external
source for the current operator Jµ:

S → S +
∫

dd x Aµ Jµ, (6)

from which the two-point function of the current is derived
as:

⟨JµJν⟩ ≡
δ2 S

δAµδAν
=
⟨Jµ⟩
Aν

, (7)

where in the last step we have assumed the linear response
approximation. Taking into account that Ei ≡ iω Ai and
⟨Ji⟩ = σi j E j, then eq. (5) follows. Despite its simplicity,
the Drude model is in perfect agreement with experiments in
ultra-clean metals (see Figure 2 [26]).
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Figure 2 (Color online) (a) The optical conductivity in the Drude model.
For simplicity we have fixed σDC = 1. (b) The excellent agreement between
the Drude model and the experimental data in UPD2Al3 at T = 2.75 K taken
from ref. [26]. Here σ1 = Re [σ] and σ2 = Im [σ].

After writing the conductivity as a Green’s function, we
can then apply the memory matrix methods [28, 29] (in par-
ticular see ref. [30]). The main statement is that whenever the
momentum operator overlaps with the current operator (at fi-
nite charge density), and the momentum is a conserved oper-
ator, then the conductivity contains a pole at zero frequency
and its DC component is therefore infinite. Mathematically,
this implies that

⟨JJ ⟩ ⊃
χ2

Jp

χpp

1
Γ
, (8)

where χJp is the off-diagonal susceptibility establishing the
mixing between the two operators (and in this case simply
coinciding with the charge density). Moreover, χpp is the
momentum susceptibility determining the relation between
momentum p and velocity v. The latter coincides with E + p
(energy + pressure) in relativistic systems [31] and it is sim-
ply the mass density ϱ in non-relativistic ones [32]. Finally,
Γ is the momentum relaxation rate, defined as:

Γ = lim
ω→0

Mpp

χpp
, (9)

with MAB being the memory matrix (see ref. [30] for more
details). This rate being non-zero stems directly from the fact
that[

H, p
]
, 0, (10)

namely there is an operator in the theory which explicitly
breaks translational invariance. Notice that the r.h.s. of eq.
(8) reproduces exactly what is known as Drude Weight which
is highly discussed in the context of many-body physics (see,
for example, the Mazur-Susuki bound [33] and its holo-
graphic counterpart [34]).

1.3 Effective field theories for solids and fluids

Another situation in which translational invariance plays a
fundamental role is in the definition of solids and in the study
of elasticity [32, 35, 36]. A solid is a system with long-range
order. From a more fundamental perspective, it is a config-
uration in which spatial translations are spontaneously bro-
ken (SSB). This is tantamount to say that a solid selects a
preferred length-scale. The corresponding Goldstone bosons
are the (acoustic) phonons [37]. Despite the standard con-
densed matter description of solids is not introduced with
this language, but rather via more phenomenological models
of springs and atoms, an effective field theory description of
solids and elasticity is definitely helpful and welcome [38].

The standard formulation of spontaneous symmetry break-
ing (think, for example, about superconductivity) is done
in terms of Ginzburg-Landau theory and the well-known
double-well potential [39]. Despite attempts of this kind have
been pursued for spacetime symmetries and phonons [40-
43], the most successful framework in this case [44] appears
slightly different. The main idea is rather simple. Despite
Lorentz invariance and the associated Poincaré group are
fundamental pillars for the description of our world at high
energy (e.g., special relativity), all phases of matter at low
energy are obviously not respecting these rules. Matter al-
ways selects a preferred reference frame, being the velocity
of a fluid or the lattice structure of a crystal, and it therefore
breaks spontaneously part of the Poincaré group. Classify-
ing the possible symmetry breaking patterns of the Poincaré
group is therefore equivalent to classify the possible differ-
ent phases of matter at low energy. Once this principle is
accepted, all the methods relative to SSB (e.g., the Coset
construction [45]) are applicable and useful to perform a full
“zoology” of matter. Because of spacetime limitations, we
will describe in detail only the EFT formulation of solids and
fluids, putting aside superfluids, supersolids, framids, etc.

Before moving to the modern EFT framework, let us
briefly review the basics of the theory of elasticity [32,35,36].
The theory of elasticity describes the dynamics of objects
under mechanical deformations and it is based on the so-
called (infinitesimal) displacements, the geometrical devia-
tions from equilibrium (see Figure 3):

u ≡ x − xeq. (11)
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Figure 3 (Color online) A pure shear deformation and its effects on a
square 2D lattice.

The fundamental object describing mechanical deformations
is the strain tensor, which is defined as the symmetrized
derivative of the displacement:

εi j = ∂i u j + ∂ j ui, (12)

from which the final position xi can be written as xi =

xieq+εi j dx j 2). Once the strain tensor is defined, one needs to
use the constitutive relation which at linear level relates the
strain tensor to the stress tensor σi j:

σi j = Ci jkl ε
kl + . . . , (13)

with Ci jkl being the elastic tensor. For an isotropic system in
d-spatial dimensions, we have

σi j = K δi j εkk + 2 G
(
εi j −

1
d
δi j εkk

)
, (14)

where K,G are respectively the bulk and shear elastic mod-
uli and εkk the bulk strain, defined as the trace of the strain
tensor. Finally, we can write down the equation of elasto-
dynamics (which is simply the Newton’s equation F = ma):

ϱ üi = fi = ∇ j σi j, (15)

which constitutes the missing piece to find the full dynam-
ics of the system. Here ϱ stands for the mass density and fi
for the force density. By plugging eq. (14) into eq. (15), and
after decomposing the modes into transverse and longitudi-
nal with respect to the momentum k, one obtains two sets of
propagating sound modes:

ω = ± vT,L k, (16)

which are indeed our transverse (or shear) and longitudinal
phonons. One can also derive that the phonons propagation
speeds are directly related to the elastic moduli. In particular,
in two spatial dimension, one finds

v2
T =

G
ϱ
, v2

L =
G + K
ϱ

. (17)

This is a beautiful result which is obtained only by using
symmetries. Nevertheless, to make the role of symmetries,
in particular translations, more evident, we need to pass to a
more field theory inspired formalism.

The main idea consists in introducing a set of real scalar
fields

ΦI , I = 1, . . . , dspatial, (18)

one for each of the spatial directions. These scalar fields act
as a set of co-moving coordinates and they select a preferred
reference frame

⟨ΦI⟩ ≡ ΦI
eq = xI , (19)

so that, at equilibrium, they are identified with the spatial co-
ordinates themselves (see Figure 4). The mechanical defor-
mations are then associated to the fluctuations of these scalar
fields around equilibrium:

ΦI = ΦI
eq + πI , (20)

where, as we will see, the fluctuations πI are exactly the
Goldstone modes associated with translational invariance—
the phonons.

In order to build an effective field theory for the scalarsΦI ,
we need to establish the fundamental symmetries of our sys-
tem. For simplicity, we will consider only isotropic solids,
imposing therefore invariance under

R : ΦI → RI
J Φ

J , (21)

and assuming the equilibrium configuration to beΦI = δI
j x j.

More importantly, we will assume that at large scales, scales
λ much larger than the microscopic characteristic distance a,
the physics is homogeneous (see ref. [47]). This assumption
appears to be very natural and it is related to the fact that ev-
ery solid (imagine, for example, the table you are sit at) looks
like homogeneous as far as you do not probe it at distances
comparable to its crystal structure (see Figure 5).

x

y

Φ
I

Figure 4 (Color online) The EFT parametrization in terms of a set of scalar
fields ΦI . The equilibrium configuration is clearly ΦI

eq = xI .

2) In this review, we will not consider the possibility of having non-affine displacements and incompatible deformations. See ref. [46] for more details.
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a

λ

Figure 5 (Color online) A pictorial representation of the homogeneity as-
sumption. Any system, at length-scales λ ≫ a (a being the characteristic
microscopic scale), looks homogeneous.

This is obviously connected to the continuous description
and to the fact that our EFT breaks down when we reach
the microscopic scale a (at which, for example, phonons are
not well defined anymore). The microscopic scale a, in this
case the lattice spacing, represents the UV cutoff of our effec-
tive theory. In fluids, the microscopic scale is given in terms
of the inter-molecular distance which plays exactly the same
cutoff role (see, e.g., ref. [48]).

In order to retain homogeneity at large scales, we need to
also impose invariance under the internal global shifts

S : ΦI → ΦI + aI . (22)

It follows that the equilibrium configuration ΦI
eq = xI not

only spontaneously breaks the spatial translations

T : xI → xI + bI , (23)

but it breaks them into the diagonal subgroup combination

S × T → (S × T)diag

[
aI = −bI

]
. (24)

This is the symmetry breaking pattern for an isotropic solid.
To obey the requirement of invariance under internal

shifts (22), the effective action can include only derivative
terms. At leading order in derivatives, the only object which
one can build is the following matrix:

IIJ ≡ ∂µΦ
I ∂µΦJ , (25)

where I, J indicate spatial coordinates, while µ spacetime
ones. In two spatial dimensions, the only independent scalar
objects built in terms of eq. (25) are

X = TrIIJ , Z = detIIJ , (26)

or equivalently the trace of IIJ and the trace squared. In
higher dimensions, more terms are allowed; in fact all the
higher traces of IIJ . All in all, the most generic action, re-
specting the required symmetries in two spatial dimensions,
takes the form of

S =
∫

d3x
√−g V(X, Z), (27)

with gµν a fictitious metric which will always be set to the
Minkowski one and g its determinant. Eq. (27) is the most
generic T = 0 effective action for two-dimensional isotropic
solids (and fluids).

To convince ourselves that this is indeed the case, we need
to proceed as before and obtain the effective action for the
fluctuations πI . Such action will govern the full dynamics of
the Goldstone modes and it will tell us everything about the
elasticity property of the solids and the propagation of sound
in them. We will follow closely the notations of ref. [49]
(and ref. [50]).

By varying the action eq. (27) with respect to the curved
spacetime metric gµν and evaluating it on the Minkowski
background, gµν = ηµν, we obtain the corresponding stress-
energy tensor:

Tµν = −
2
√−g

δS
δgµν

∣∣∣∣
g=η
= − ηµν V + 2 ∂µΦI∂νΦI VX

+ 2
(
∂µΦ

I∂νΦI X − ∂µΦ
I∂νΦ

J IIJ

)
VZ , (28)

where VX ≡ ∂V/∂X and VZ ≡ ∂V/∂Z. For any time inde-
pendent scalar field configurations, the stress-energy tensor
components are

T t
T ≡ E = V, (29)

T x
x ≡ − p = V − X VX − 2 Z VZ , (30)

T x
y = 2 ∂xΦ

I∂yΦ
I VX , (31)

where E is the energy density and p the mechanical pressure.
Notice that in the equilibrium configurationΦI

eq = xI we have
T x

y = 0, as expected from isotropy.
In terms of the scalar fields, the strain tensor is simply:

εi j = ∂iΦ j + ∂ jΦi. (32)

Using the constitutive relation for an isotropic solid (14),
where now σi j has to be identified with the high-energy
physics notation Ti j, we can immediately extract the elastic
moduli in terms of the unknown potential V(X, Z):

G = 2 VX , (33)

K = 2ZVZ + 4Z2VZZ + 4XZVXZ + X2VXX , (34)

where VZZ ≡ ∂2V/∂Z2, etc. To conclude, we can expand the
original action (27) in terms of the fluctuations πI , and after
separating them into longitudinal and transverse components
(see ref. [49] for details), we obtain again two propagating
sound modes

ω = ± vT,L k, (35)

with

vT =

√
G
E + p , vL =

√
K +G
E + p , (36)
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as expected for a relativistic solid system.
The field theory allows for a much simpler description of

the non-linear extension of elasticity theory [49, 51], which
will be described in the next sections. Moreover, it provides a
fundamental step forward in distinguishing solids and fluids
from the point of view of symmetries.

As already anticipated, a naive (see ref. [52] to learn why
it is naive) distinction between solids and fluids relies on the
presence of propagating shear waves (transverse phonons).
From the field theory we just constructed, it is clear that for
VX = 0 the transverse phonons speed is zero, and therefore
the action is representing a fluid rather than a solid. Interest-
ingly, the condition VX = 0 is protected by a specific symme-
try which is known as volume-preserving diffeomorphisms
(VPD) (Figure 6):

Φa → ξb(Φ) , det
∂ξb

∂Φa = 1. (37)

The action of such a symmetry is a coordinates transforma-
tion for the mapping ΦI which does not change the volume
of the system. In other words, invariance under eq. (37) is
the mathematical formulation of the fact that fluids do take
the shape of the container while solids do not.

In conclusion, the effective action

S =
∫

d3x V(Z) (38)

is the correct description for fluids. Not surprisingly, it bears
important relationships with the holographic description of
fluids [53].

The story becomes highly more complicated when the the-
ory is promoted to the full non-linear dynamics and fluctua-
tions are taken into account [54].

1.4 Gauge-gravity duality briefing

The AdS-CFT correspondence, known also as Holography or
Gauge-Gravity duality, was originally discovered in 1998 by
Maldacena [9] (see also ref. [55]) and it stands by now as one
of the most powerful tools in theoretical physics, providing
a deep and fundamental connection between quantum field
theory (QFT) and gravity. We refer to refs. [2-5, 10, 56-63]
for a more detailed introduction of the correspondence.

In one sentence, the slogan of the Gauge-Gravity duality
could be phrased as:

quantum field theory (d-dim) = gravity (d + 1-dim), (39)

where the = sign has to be translated as “dual to”.
In particular, the abstract relation (39) indicates the exis-

tence of a duality between a gravitational description in d+1
dimensions and a QFT one in d dimensions. This idea is

artistically represented in Figure 7 and it can be formally in-
terpreted as:⟨

e
∫
ϕ0(x,t)O

⟩
QFT
= Zgravity

[
ϕ0(x, t) ≡ ϕ(x, t, u)∂Σ

]
, (40)

which is known as the GPKW (Gubser, Polyakov, Klebanov,
Witten) master rule [55, 64] and its the pillar of the “dictio-
nary” defining the = sign in eq. (39). Here ∂Σ indicates the
boundary of the gravitational spacetime Σ at which the QFT
source ϕ0 is identified using the holographic dictionary.

The core of framework is a (d + 1)-dimensional bulk
where all the bulk fields, including the metric gµν, live and

Figure 6 The action of a volume preserving diffeomorphism (37). The
total volume remains unchanged.

Bulk
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Figure 7 (Color online) An artistic representation of the Gauge-gravity du-
ality. The bulk contains a black hole object dual to a finite temperature ther-
mal state. The bulk spacetime terminates at the so-called boundary where the
dual field theory “lives”. The bulk description contains an extra-dimension,
usually denoted as radial coordinate, which describes the energy scale of the
dual field theory. The dynamics of the bulk fields, including the metric gµν
happens in a (d + 1)-dimensional curved spacetime which is asymptotical
AdS. In this picture, the boundary field theory lives on the surface of the
colored sphere and the bulk region is represented by the 3D region enclosed
by such a surface.
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fluctuate. Their dynamics is controlled by a bulk action
Sbulk[ϕ(x, u), gµν(x, u) . . . ] defined on a specific bulk geom-
etry. In the limit of large N and infinite coupling for the dual
field theory, the gravitational dynamics can be assumed to
be classical and stringy corrections can be consistently ne-
glected. This is the limit in which the size of the spacetime
geometry l is much larger than the Planck scale lp and than
the string length ls. For all our purposes, we will not devi-
ate from such regime. In our examples, the structure of the
background geometry can be written as follows:

ds2
bulk(d+1)

=
L2

u2

 du2

g(u)
+ − f (u) dt2 + g̃i j dxidx j︸                     ︷︷                     ︸

d-dimensional

 , (41)

where L denotes the AdS radius3), u takes the name of radial-
coordinate or holographic coordinate and it plays a very fun-
damental role in the holographic construction. In particular,
this extra-dimension describes the energy scale of the dual
system, providing a nice geometric realization of the renor-
malization flow (RG) of the dual field theory (see Figure 8)4).

The radial coordinate of eq. (41) spans from [0, uh]
where

u = 0 : conformal boundary, (42)

and

g(uh) = f (uh) = 0 , uh : black hole horizon. (43)

More precisely, u = 0 is the (conformal) boundary of
the asymptotically Anti-de-Sitter (AdS) bulk geometry (41)
which is equipped with (a normally flat) metric (−1, g̃i j). The
other extreme, u = uh, is the location of the black hole hori-
zon which provides the temperature for the dual field the-
ory, technically given by the surface gravity at its horizon.
Another very popular convention in the literature is to use
r ≡ L2/u in which the horizon is set at r = rh and the con-
formal boundary at r = ∞. The two choices are related by a
simple coordinates transformation.

The gravitational bulk action appearing in eq. (40) is
uniquely defined by choosing boundary conditions (b.c.s) for
the various bulk fields. At the horizon u = uh, the appropriate
b.c.s. are simply given by the regularity of the solution. At
the boundary u = 0 the b.c.s. uniquely determine the dual
field theory and, in particular, the sources with which we de-
form it. In particular, given a concrete bulk field ϕ(t, x, u), its
asymptotic expansion in the standard quantization scheme is
generally given by

ϕ(t, x, u) = ϕ0 u∆L (1 + . . . ) + ⟨O⟩ u∆S (1 + . . . ), (44)

where by definition ∆L < ∆S such that the first term is the
“leading term” (the one falling-off more slowly towards the
boundary) and the second the subleading one. The coefficient
of the leading term determines the source ϕ0 for the dual op-
erator O living in the dual field theory. The subleading term
determines its vacuum expectation value (vev) ⟨O⟩. The pow-
ers ∆L,S are uniquely determined in terms of the spacetime di-
mension d and the conformal dimension ∆ of the field theory
operator O. Once the sources and the vevs are identified, the
gravitational picture can be mapped into a dual field theory:

S = SCFT +
∑

i

∫
dd x ϕi

0 ⟨Oi⟩, (45)

and the correlation functions for the various operators can be
obtained using the standard variational prescription.

This is a very brief explanation of how the duality works.
For space limitations, we have skipped several important
features which the interested Reader can find in the litera-
ture mentioned above. Since the field of applied hologra-
phy is a vast subject spanning decades of research, we limit

IR UV
u

u
UV

IR

AdSd+1

Rd-1,1

minkowsi

(a)

(b)

Figure 8 (Color online) Holography provides a geometric representation
of RG flow. (a) A series of block spin transformations (coarse-graining pro-
cess) labeled by the length scale u; (b) a cartoon of AdS space, where the
radial coordinate u plays the role of energy scale of the dual system. Excita-
tions with different energy scale get put in different place in the bulk. Figures
updated from ref. [57].

3) In most case, we set L ≡ 1 for simplicity.
4) To be precise, the u coordinate appearing in eq. (41) coincides with the inverse of the energy scale of the dual field theory.
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this review to recent developments and understandings on
strongly coupled quantum matter using holographic axion
models. Other active areas of applied holography include
condensed matter [2, 3, 65-67], nuclear physics [68], quan-
tum information [69], and non-equilibrium physics [70, 71].
It is likely to have even wider applicability in the future.

1.5 Holographic axion model

When we discuss the holographic axion model, we refer (un-
less clearly stated otherwise) to an action of the form5)

S =
∫

d4x
√−g

[
R
2
− Λ − Y(X, Z)

4 e2 F2 − m2V(X, Z)
]
, (47)

where R is the Ricci scalar, Λ the cosmological constant, e
the electric charge. Furthermore, we have defined IIJ =

gµν∂µϕI∂νϕ
J , with X = 1

2 TrIIJ , Z = detIIJ and F2 =

FµνFµν, where as usual F = dA. In the rest of the manuscript,
we fix the charge unit to one, e = 1 and the cosmological
constant to Λ = −3.

The background geometry is defined as:

ds2 =
1
u2

[
− f (u)dt2 +

1
f (u)

du2 + dx2 + dy2
]
, (48)

where u is the radial bulk coordinates spanning from u = 0
(the asymptotic AdS boundary) to u = uh (the black brane
horizon radius). The blackening function f (u) displays the
following asymptotic behaviours:

f (0) = 1, f (u) = −4πT (u − uh) + . . . . (49)

For simplicity, in most of the review we will focus on two
spatial dimensions x, y but the generalizations to three is to-
tally straightforward.

The fields ϕI are responsible for the breaking of transla-
tional symmetry in the {x, y} directions of the CFT and their
bulk profile is chosen to be

ϕI = α δI
i xi, I = {x, y}. (50)

This is the choice which respects the SO(2) rotational sym-
metry of the dual field theory. This assumption of isotropy
could be relaxed and one could consider more complicated
anisotropic models of the type:

ϕx = αx x, ϕy = αy y. (51)

For simplicity, we do not consider these situations. See
e.g., refs. [72-74] for discussion about this case.

Moreover, for monomial potentials, the parameters α and
m are redundant but it is anyway good practice to keep both
since their origin is rather different. Nevertheless, in few sec-
tions where we consider the linear model V(X) = X we will
use m and α interchangeably. Finally, the background solu-
tion is completed by

f (u) = −u3
∫ uh

u

 ρ2

2Y
(
X̄, Z̄

) + m2 V
(
X̄, Z̄

)
Ξ4 +

Λ

Ξ4

 dΞ, (52)

AT(u) = ρ

∫ uh

u

1
Y(X̄, Z̄)

dΞ, (53)

where X̄(Ξ) = α2Ξ2 and Z̄(Ξ) = α4Ξ4.
Furthermore, the temperature of the background geometry

reads

T = −
ρ2 u3

h

8πY
(
X̄h, Z̄h

) − m2 V
(
X̄h, Z̄h

)
4π uh

− Λ

4π uh
, (54)

with X̄h = X̄(Ξ = uh) and Z̄h = Z̄(Ξ = uh). The entropy
density is given by

s =
2π
u2

h

. (55)

In case additional ingredients or couplings are used, they will
be explicitly indicated and described.

1.6 From inhomogeneous lattices to massive gravity and
homogeneous models

Following the historical path, the holographic axion model
has been originally constructed to remedy to the infinite DC
conductivity of the Reissner-Nordstrom (RN) solution. In-
deed, in its original formulation it was dubbed “a simple
holographic model for momentum relaxation” [18]. Despite
the model, as we will see, is much more than that, we find it
is interesting and instructive to revisit its initial steps as they
actually happened.

An obvious way to relax momentum consists in consider-
ing inhomogeneous models where a certain operator (repre-
sented by its dual bulk field) displays a spatially dependent
expectation value (see Figure 9 [75] for a specific example),
e.g.,

⟨O(x)⟩ = A cos(kx), (56)

5) Another popular convention is to take the Einstein-Maxwell part of the action to be

S =
∫

d4 x
√−g

[
R − 2Λ − Y(X,Z)

4 e2 F2 + . . .

]
. (46)

This amounts to a constant re-scaling of the boundary chemical potential µ and charge density ρ. In this review, we will try to keep the notations as uniform as
possible. In any case, this constant re-scaling does not affect any of the physical qualitative features of the model and it is in a sense harmless.
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or a spatially dependent source is introduced

ϕ0(x) = B sin(kx). (57)

In both cases, the resulting geometry will not remain homo-
geneous and Einstein’s equation will result in complicated
partial differential equations (PDEs) whose solution might
involve very complicated numerical routines [76-78].

Despite the validity of these inhomogeneous models,
which were, for example, the first to give rise to a finite holo-
graphic conductivity (see Figure 10), handling them is very
complicated and for this reason very few results are available.

A possible way to overcome the difficulties of the inhomo-
geneous models is to consider simpler models which retain
some of their major features (such as the symmetry breaking
patterns) but allow for much more reliable and fast computa-
tions (which sometimes are even analytical). This is exactly
the way the homogeneous models with broken translations
became famous and spread around the holographic commu-
nity. As we will investigate in detail, these models, despite
their simplicity, will recover most of the features of the more
complicated counterparts and they will reveal extremely use-
ful and rich phenomena.

There is more than that! The homogeneous models, and in
particular massive gravity in its general formulation, emerge
as the universal low-energy description for any holographic
models with broken translations. All holographic models
with broken translations provide in a way or in another a mass
to the graviton (or at least some of its components) and this
is nothing else that a universal statement regarding the Ward-
identity for translations. By identifying the translations at the
boundary with the diffeomorphisms in the bulk, it appears ob-
vious that any model with broken translations must involve a
gravitational picture where diffeomorphisms are broken and
therefore the graviton being massive.

This statement has been shown explicitly for a concrete
lattice construction in ref. [79] making a beautiful connec-
tion between the more realistic lattice models and the more
useful homogeneous relatives. Let us briefly revisit the fun-
damental steps. Let us take a simple gravitational bulk action
in four dimensions:

S =
∫

d4x
√−g

[
R +

6
L2 −

1
4

F2 − 1
2
∂µϕ∂

µϕ − m2

2
ϕ2

]
,

(58)

where the mass of the scalar is chosen m2 < 0 in order to have
the dual operator O marginally relevant6). In general, the as-
sociated holographic conductivity would be infinite because
of translational invariance. Nevertheless, when spatially de-

pendent boundary conditions are introduced, this is not any-
more the case. The authors of ref. [79] did that perturbatively
by introducing a source for the scalar operator:

ϕ0(x) = ϵ cos(kL x), (59)

where ϵ ≪ 1 is taken to be infinitesimal. This source mim-
ics the effect of a periodic lattice with wave-vector kL. The
boundary source (59) corresponds to a bulk profile of the type
ϕ(u, x) = ϕu(u) ϕ0(x) with u the holographic radial coordi-
nate. The main idea is then to solve perturbatively the bulk
equations of motion up to orderO(ϵ2) by using an appropriate
expansion for the various bulk fields gµν, Aµ.

The most important result is that the effective action at or-
der O(ϵ2) contains a term

S (ϵ2)
eff =

1
2

∫
d4x
√

g M2(u) gxx, (60)

where

M2(u) =
1
2
ϵ2 k2

L ϕ
2
u(u). (61)

By performing standard perturbation techniques, this new
effective term gives a mass to the graviton components
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Figure 9 (Color online) A holographic example of highly inhomogeneous
2D solutions. Figure taken from ref. [75].
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Figure 10 (Color online) The first holographic computation showing a
finite DC electric conductivity in a inhomogeneous periodic lattice. Figure
taken from ref. [14].

6) Notice this is not a problem in curved spacetime as far as the Breitenlohner-Freedman (BF) bound [80] is respected.
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δgtx, δgrx, as already anticipated. The fact that the vector
components of the graviton become massive leads to the ex-
pected finite DC conductivity. Most importantly, this sim-
ple computation shows directly the universal appearance of
an effective graviton mass as a result of a inhomogeneous
holographic lattice. In other words, it constitutes strong evi-
dence that massive gravity is the universal low energy effec-
tive holographic description for systems with broken transla-
tions.

1.7 Other holographic homogeneous models

In a broad sense, we define a holographic model “homo-
geneous” if the background geometry does not depend on
the boundary spacetime coordinates (t, xi). In the context of
translational symmetry breaking, the holographic axion mod-
els are not the only homogeneous setups available in the mar-
ket. In fact, one could define at least three distinct classes of
homogenous setups: (1) the axion models discussed in this
review, (2) the Q-lattice models [19] and (3) the Bianchi VII
helical models [20].

These three different classes differ only in terms of the
bulk global symmetry used to retain homogeneity. In the ax-
ion models, the bulk symmetry is a global shift symmetry
which acts on the axion fields as:

ϕI → ϕI + cI , (62)

with c a constant vector. In order to respect this global sym-
metry, the axions action contains only derivative terms in the
fields. The Q-lattice models are slightly more complicated
and they are written in terms of a set of complex fields ψI

with background profile:

ψI(u, xI) = Ψ(u) eikxI
, (63)

with k a constant. The corresponding global symmetry is a
global U(1) transformation which acts on the complex fields
as a phase shift:

ψI → ψI eiφ, (64)

where φ is a constant phase. Again, in order to respect this
symmetry, the Q-lattice action is a function only of the ab-
solute value of the scalar fields |ψI |. Finally, the helical
models are more complicated systems whose global symme-
try is given by the Bianchi VII group [81]. This symmetry
group is a combination of rotations and translations which
geometrically can be represented by a helix.

Despite the different details, mostly regarding the imple-
mentation of the bulk global symmetry, all these models dis-
play very similar features and their low-energy dynamics is
in a sense universal. Nevertheless, it is important to notice

that only the axion models allow for a fully analytical back-
ground solution. Because of this fact, they are the simplest
and most powerful homogeneous models. In this review we
will only consider the axion models. All the features present
in the most complicated Q-lattice and helical models can be
also found in this simpler setup.

2 A simple model for momentum relaxation

2.1 The origins

The simplest version of the holographic axion model, known
as the linear axion model, was introduced in 2013 by An-
drade and Withers [18]. The original intuition came by look-
ing at the following Ward’s identity for translations:

∇µ ⟨T µ j ⟩ = ∇ j ϕ(0) ⟨O⟩ + F(0) jµ ⟨Jµ⟩, (65)

where O, J are some unspecified scalar and vector oper-
ators and ϕ(0), F(0) their external sources. By looking at
eq. (65), the authors of ref. [18] noticed that considering
shift-symmetric scalars and turning on sources for them lin-
ear in the boundary spatial coordinates

ϕ(0),I ∼ xI , (66)

would result in an explicit breaking of the stress tensor con-
servation. Moreover, given that the bulk stress tensor as-
sociated to the scalar fields contains only two derivatives
terms, the corresponding geometry would remain homoge-
neous, i.e., independent of the spatial coordinates xi.

These gravitational theories have already been studied, in
a totally different context, in ref. [82]. For simplicity, ref.
[18] considered the simplest bulk action which preserves the
scalars shift-symmetry:

V(X, Z) = X, Y(X, Z) =
1
2
, m2 =

1
2
, (67)

from which the name “linear” axion model. With this choice,
the background solution becomes particularly simple and it
reads

f (u) =
µ2u4

4u2
h

− u3

u3
h

+
α2u3

2uh
− µ

2u3

4uh
− α

2u2

2
+ 1, (68)

AT(u) = µ

(
1 − u

uh

)
, ρ =

µ

uh
. (69)

Notice that here we have re-scaled the chemical potential
µ → µ/2 with respect to eq. (53) to match the notations
of ref. [18].

Before moving to the phenomenology related to this
model, let us spend some words about a few developments
appeared after ref. [18]. In particular, in ref. [18] it was no-
ticed that the equations for the fluctuations are very similar
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to those found few months before in massive gravity theo-
ries [17], but not exactly. This point was analyzed further in
ref. [83] which considered a square-root deformation of the
original model:

Lϕ = − a1/2

∑
I

√
X, X ≡ 1

2
∂µϕ

I∂µϕI , (70)

and in ref. [21] which built an even more generic action:

Lϕ = −m2 V(X). (71)

Nevertheless, the equivalence with the dRGT massive
gravity theory was shown only later in ref. [22]. It is im-
portant to take in mind that the holographic axion model,
written in its more general formulation, is much richer and
more general than the dRGT original model of ref. [17].

2.2 A holographic Drude model

The most important physical result of ref. [18] is that the DC
conductivity of the dual field theory becomes finite. In par-
ticular, it takes the simple form:

σDC ≡ σ(ω = 0) = u3−d
h

(
1 + (d − 2)2 µ

2

α2

)
, (72)

where µ is the chemical potential of the dual field theory. We
will describe in detail how to obtain this result (at least for
d = 3) in sect. 2.4. Expression (72) displays a very specific
structure which is in common of all the holographic models.
In particular, the full DC conductivity can be split into two
contributions:

σDC = σ(0)
DC + σDrude

DC . (73)

The first contribution, which in this simple case is just σ(0)
DC =

u3−d
h , coincides in the limit of strong momentum relaxation

with the incoherent conductivity [84]:

σincoherent
DC =

(
s T

s T + µρ

)2 ( s
4π

) d−2
d

(74)

which can be derived by considering the incoherent current

Jincoherent = J − χPJ

χPP
P, (75)

where both the momentum P and the currents J are intended
as operators7).

The incoherent conductivity relates to the part of the elec-
tric current J which does not overlap with the momentum
operator and it is therefore insensitive to any momentum re-
laxing mechanism (in this case independent of α). This con-
tribution is finite even in absence of momentum dissipation

and it corresponds to the probe limit result (with no backreac-
tion of the bulk fields on the background metric) in the limits
of strong momentum dissipation or zero charge density.

The second contribution corresponds to the part of the
electric current which transports also momentum (see Fig-
ure 11) and it is infinite in the absence of momentum dissi-
pation α→ 0. It is the equivalent of the Drude result (4) and
it vanishes in the limit µ = 0, at which electric current and
momentum decouple.

One can do more and compute also the AC—frequency
dependent—electric conductivity. In order to do that, one has
to switch on fluctuations for the gauge field, the metric and
the scalar fields. A consistent truncation at zero momentum
(k = 0) is given by

δAx = e−i ωt ax(u), δgtx = e−iωt htx(u),

δϕ = e−iωt φ(u), (76)

and the corresponding equations of motion can be found in
the original work [18]. Following the standard procedure to
compute the holographic conductivity (see refs. [6, 85]), one
can finally obtain numerically σ(ω). The AC conductivity
was originally presented in ref. [86] and it is here reproduced
in Figure 12.

The first important result is that the DC conductivity is fi-
nite and it appears in perfect agreement with the analytic eq.
(72). Moreover, at slow momentum relaxation, α/T ≪ 1, the
conductivity shows a nice Drude peak. Indeed, one can fits
the numerical data with the Drude formula very well (see
Figure 13). See ref. [87] for a study in large D (spatial
dimensions). This is not anymore true at large momentum
dissipation, where the relaxation-time approximation of the
Drude model fails because the corresponding relaxation rate
becomes too large. In this limit, the holographic model goes
beyond the Drude model and momentum is not anymore an

P=0

Electric current J

Incoherent Coherent

P≠0

Figure 11 (Color online) The incoherent and coherent contributions to the
electric current. The incoherent processes transport charge but they do not
transport momentum (e.g., particle-antiparticle pair).

7) We thank Blaise Gouteraux for clarifying this point to us.
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Figure 12 (Color online) The optical conductivity of the linear axion model
for various values of the momentum dissipation rate α/T . Figure taken from
ref. [86].
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Figure 13 (Color online) The optical conductivity of the linear axion model
compared with the Drude model formulas. (a) α/µ = 0.25; (b) α/µ = 1. Fig-
ure taken from ref. [86].

almost conserved operator. This brings us directly to the next
section.

2.3 Coherent-incoherent transition

In the holographic linear axion model, and in general in any
model containing a relaxational mode, one can distinguish
two regimes (see Figure 14). The first regime is known as
the coherent regime and it appears for slow momentum dis-
sipation, Γ/T ≪ 1. In this case, the Drude pole ω = −i Γ is
well-separated from the rest of the excitations, in the sense
that is parametrically more long-living than any other mode
in the system. This regime is obtained at finite values of α,
i.e., α/T ≪ 1, at which the optical conductivity displays a
nice Drude peak. This is also the regime in which the Drude
model well describes the frequency dependent conductivity,
since the momentum relaxation time is large.

A second regime, known as the incoherent regime, ap-
pears at very large values of the momentum dissipation rate,
Γ/T ≫ 1, where the Drude pole becomes very short living
and its lifetime becomes comparable with the rest of the ex-
citations (see Figure 14). In this regime, the Drude model is
not anymore a good description and the optical conductivity
becomes featureless and flat.

The coherent-incoherent transition in the linear axion
model has been studied in detail in refs. [86,88,89]. For sim-
plicity, we will consider the model at zero charge density in
two spatial dimensions. Let us start by the coherent regime,
in which Γ/T ≪ 1. In this case, the Green’s functions for the
momentum density pi ≡ T t i parallel and transverse two the
wave-number k have the following structure [88]:

GR
p∥p∥ =

(E + p)
[
k2 ∂p

∂E − iω
(
Γ + k2 η

E+p

)]
iω

(
−iω + Γ + k2 η

E+p

)
− k2 ∂p

∂E

, (77)

GR
p⊥p⊥ =

− (E + p)
(
Γ + k2 η

E+p

)
−iω + Γ + k2 η

E+p
, (78)

where E, p and η are energy density, pressure and shear vis-
cosity, respectively. The (longitudinal) thermal conductivity
κ(ω) reads8)

κ(ω, k) =
iω s

iω
(
−iω + Γ + k2 η

E+p

)
− k2 ∂p

∂E

, (79)

such that its DC component is simply:

κDC =
s
Γ
, (80)

and it is controlled by the momentum relaxation rate Γ, as
expected.

Now, by looking at the poles of the parallel Green’s func-
tion, we can find the dispersion relation of the lowest modes

8) This conductivity can be read directly from the longitudinal Green’s function using the Kubo formula, κ(ω, k) ≡ i
ω T

[
GR

p∥ p∥ (ω, k) − GR
p∥ p∥ (0, k)

]
.
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Figure 14 (Color online) (a) The coherent regime, where the lowest mode
(in orange) is well separated from the rest of the excitations. The correspond-
ing response function displays a nice Lorentzian peak at the position of the
lowest mode. (b) The incoherent regime where the separation of scales is
lost. The response function is featureless and cannot be well approximated
by using only the first (orange) mode.

in the longitudinal spectrum:

ω = ± k

√
∂p

∂E −
1
4

(
Γk−1 +

η

E + p k
)2

− i
2

(
Γ +

η

E + p k2
)
, (81)

which already indicates that the original longitudinal sound
mode is destroyed by the presence of momentum dissipation.
Moreover, there is an interesting crossover between diffusive-
like behaviour at small momentum and propagating like at
high one. More precisely, for k/Γ ≫ 1, eq. (81) gives two
propagating sound modes:

ω = ± k

√
∂p

∂E −
i
2

(
Γ +

η

E + pk2
)
, (82)

while at large distances, k/Γ ≪ 1, there are two separated
modes, one diffusive and one damped Drude-like:

ω = − i
∂p

∂E Γ
−1 k2 + . . . , (83)

ω = − i Γ + i k2
(
∂p

∂E Γ
−1 − η

E + p

)
+ . . . , (84)

This means that heat is transported ballistically at short dis-
tances but diffusively at long ones. The crossover happens
exactly at

Γ k−1 +
η

E + p k = 2

√
∂p

∂E , (85)

and it is shown in Figure 15.
From the coherent regime where Γ/T ≪ 1 with

Γ =
α2

4π T
, (86)

we can increase further the axions strength α. At a certain
point, Γ/T ∼ O(1), the Drude pole collides on the imagi-
nary axes with a secondary pole coming up and it produces
to off-axes poles with finite real part which at this point are
not anymore well detached from the rest of the excitations.
This collision is shown explicitly in Figure 16.

Once the incoherent regime is reached, the only con-
served, and therefore long-living, quantity is the energy den-
sity E. Its Green’s function takes the form [88]:

GR
EE = T 2 ∂s

∂T
DE k2

i ω − DEk2 , (87)

where DE is the energy diffusion constant. Finally, the DC
thermal conductivity is

κDC = T
∂s
∂T

DE = cv DE, (88)

and it obeys the well-known Einstein’s relation. As already
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Figure 15 (Color online) The imaginary part of the lowest mode in the
longitudinal sector of the linear axion model with α/T = 1/2 in the coher-
ent regime showing the diffusive-to-propagating crossover. Figure adapted
from ref. [88].
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Figure 16 (Color online) The modes collision associated to the coherent-
incoherent transition in the linear axion model. Here the wave-number k is
taken to be zero and the parameter α/T is increased from 0 to 12 in the di-
rection of the arrows. There is a Drude-like pole near the origin at weak
momentum dissipation rate. As α increases, it moves down the imaginary
axis and collides with another purely imaginary pole at α/T ≈ 9.5, produc-
ing two off-axis poles. Figure adapted from ref. [88].
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mentioned before, the frequency dependent thermal conduc-
tivity passes from displaying a well-defined coherent peak
to a flat incoherent response. These features are shown in
Figure 17.

The same phenomenology has been later found also in
holographic axion model with fluid symmetry [90] confirm-
ing its universal character.

2.4 DC conductivities from horizon data

Historically, the first motivation behind the holographic ax-
ion model was to render the DC conductivities finite. As
such, after the introduction of the model and the first studies
big part of the community focused on studying the transport
properties of holographic models with broken translations.
A fundamental step in this direction is represented by the
seminal work by Donos and Gauntlett [91] which provided
a fast and very general way of deriving the DC transport co-
efficients from horizon data, by generalizing the idea of the
membrane paradigm [92]. In this section, we show how the
methods of ref. [91] apply to the holographic linear axion
model (see also ref. [6] for explanations about this proce-
dure).
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Figure 17 (Color online) (a) The numerical confirmation of the energy
diffusion mode in the incoherent regime with α/T = 100. (b) The coherent-
incoherent transition in the frequency dependent thermal conductivity for
k/T = 1/2. Values of α/T (= 2, 7/2, 20) from top to bottom. Figures adapted
from ref. [88].

To illustrate the main idea, let us consider the homoge-
neous and isotropic background with the metric taking the
form of eq. (48). Importantly, a full knowledge of the black-
ening factor f (u) is not needed and therefore this method can
be applied also to background solutions which are not analyt-
ical or expressible in close form. For linear axion models, we
perturb the black hole background with the following fluctu-
ations:

δgtx(u, t) =
1
u2 (−t ζ f (u) + htx(u) ) ,

δgxu(u) =
1
u2 hxu(u), δϕ1(u, t) = χ(u),

δAx(t, u) = t (−Ex + ζ AT(u)) + ax(u),

(89)

where Ex ≡ Fxt is an external electric field in the x direction
and ζ a thermal gradient. Given this set of external sources,
we can now compute the full matrix of thermoelectric con-
ductivities usingJQ

 =
 σ A T

¯A T κ̄ T


 E

−∇T
T

 , (90)

whereJ I is the electric current and Qi = T ti − µJ i the ther-
mal/energy current. The various coefficients appearing in the
expression above are the electric conductivity (σ), thermal
conductivity (κ̄) and thermoelectric conductivities (A , ¯A ).
These four objects codify the response of the system under
an external electric field E and a thermal gradient ∇T/T .

Using the perturbations defined in eq. (89), we can obtain
that the bulk Maxwell equation takes the form of a conserva-
tion equation

∂uJbulk(u) = 0, (91)

with

Jbulk(u) = f δA′x(u) − u2 µ

uh
htx(u), (92)

which, at the boundary u = 0, gives nothing but the electric
currentJ of the dual field theory. Given thatJbulk(u) is radi-
ally conserved, one can decide to compute it at any location
in the bulk and in particular at the black hole horizon u = uh.
In order to do that, we need to find out the constraints to have
the perturbations well-behaving—non-singular—at the hori-
zon, which are9)

δA′x(u) = − Ex

f (u)
, htx(u) =

f (u)
u2

h

hxu(u), (93)

as u→ uh.

9) The simplest way to find them is by using Eddington-Finkelstein coordinates.
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Moreover, one notices that the uu-component of Einstein’s
equations is a constraint equation, which at the horizon re-
duces to

hxu(u) =
2 µ u2 Ex uh − u2

h ζ f ′(u)

α2 u2
h f (u)

. (94)

All in all, we can evaluate the bulk current at the horizon and
obtain that

J = Jbulk(uh) =
(
1 +

µ2

α2

)
Ex −

µ f ′(uh)
α2 uh

ζ. (95)

From above equation, we can obtain

σ ≡ ∂J
∂Ex

= 1 +
µ2

α2 , (96)

¯A = A =
1
T
∂J
∂ζ
=

4π µ
α2 uh

, (97)

where the two off-diagonal terms are equivalent because of
the Onsager’s relation. It is interesting to notice that the
transport coefficients above obey the Kelvin’s formula:

A

σ

∣∣∣∣
T=0
= lim

T→0

∂s
∂ρ

∣∣∣∣
T

(98)

with ρ the charge density, as observed in ref. [93].
In order to compute thermal transport, we have to work a

bit harder. The key observation is that the bulk equations of
motion hiddenly imply the conservation of another combina-
tion of bulk fields:

Q(u) = f 2(u)
(
δgtx(u)

f (u)

)′
− AT(u)J(u) (99)

which reduces at the boundary u = 0 to the thermal/energy
current of the dual field theory. This fact can be derived
“brute-force” or in a more elegant way using the properties
of the solution as done in ref. [91]. By following the same
procedure, one finally obtain

κ̄ =
(4π)2 T
α2 u2

h

. (100)

After this initial finding, the thermoelectric transport has
been computed in many holographic models with and with-
out an external magnetic field. See refs. [73, 94-108] for a
subset of the related developments.

2.5 Thermoelectric transport

In analogy to the electric conductivity, one can compute also
the frequency dependence of the other thermoelectric trans-
port coefficients using the Kubo formulas for the stress tensor
and the electric current.

The results for the linear axion model (67) with d = 3 are
shown in Figure 18 and they display a behaviour very simi-
lar to the electric conductivity σ. First, at small α, there is a
nice Drude peak which transits to a flat incoherent response
for large momentum dissipation. The DC values are in per-
fect agreement with the analytic results shown in the previ-
ous section. Also, the value of the conductivities at large
frequency ω/T → ∞ can be obtained using the Ward’s iden-
tities [109] and in the present case we have

A → − µ
T
,

κ̄

T
→ µ2 + α2

T 2 . (101)

3 Breaking translations spontaneously

3.1 Axion model 2.0

As explained in the previous sections, the linear axion
model [18], despite its simplicity, captures the key features of
the EXB of translations and for that reason it has been widely
used in the holographic community. Nevertheless, the axion
model is much more powerful than that. In this section, we
will generalize the model of ref. [18] in order to consider the
spontaneous breaking of translations and study the associated
physics.

We start by writing the most general Einstein-Maxwell-
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Figure 18 (Color online) The frequency dependent thermoelectric coeffi-
cients for the linear axion model (67) with d = 3. Figures taken from ref.
[86].
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axions action10)

S =
∫

d4x
√−g

[R
2
− Λ −W(X,Z, F2)

]
, (102)

where W is a generic scalar function. Expanding the ac-
tion (102) to leading order in the field strength F and ig-
noring non-scalar couplings between the various sectors, the
generic expression (102) reduces to eq. (47) which is general
enough to discuss all the important physical feature of the
holographic axion model. Self-consistency of action (47) im-
poses precise constraints on the scalar functions Y(X, Z) and
V(X, Z). An analysis of the transverse fluctuations showed
that we should require that V ′(X̄, Z̄) > 0, Y(X̄, Z̄) > 0 and
Y ′(X̄, Z̄) < 0 to avoid ghosty instability [113]. Note that in
more complicated backgrounds, for instance, turning on an
external magnetic field, the constraints on V and Y will be-
come tighter but still equivalent to impose the positivity of
the electric conductivity [114].

Now, let us explain the physical interpretation of the V-
term and YF2-term in eq. (47) from the point of view of the
dual field theory side, respectively.

(1) Setting Y(X, Z) = 0, the system is neutral. The ax-
ions configuration (51) breaks the spatial translations explic-
itly (as the simple axion model) or spontaneously (which is
the focus of this section). In analogy to the EFT descrip-
tion (27), V(X) provides an effective description for solids
holographically, while V(Z) is related to fluids and we will
come to this later.

(2) The coupling YF2 can be viewed as the holographic
dual of some charged disorders or charge lattices, depending
on the form of Y(X, Z). In the SSB pattern, it might be viewed
as an analogy to charge density waves (CDWs). The simple
linear axion model behaves like a metal. But the presence of
such a coupling can significantly change the charge transport
of the system and finally a metal-insulator transition (MIT)
may come as the result.

We shall compare the differences of the low energy spec-
trum in solids and fluids in sect. 3.5, and we will systemati-
cally investigate the charge transport and MIT in sect. 7.1.

3.2 From explicit breaking to spontaneous breaking

We continue by considering a simpler solid action of the

type:

S =
∫

d4x
√−g

[R
2
− Λ − m2 V(X)

]
, (103)

which reduces to the linear axion model [18] for V(X) = X.
As always, we will fix the background solution for the ax-
ion fields to be ϕI = xI . It is now important to analyze what
this background solution means from the dual field theory
point of view. This argument has been originally discussed
in ref. [115]. Considering for simplicity a monomial poten-
tial11) V(X) = XN , the expansion of the scalar fields close to
the boundary u = 0 takes the general form:

ϕ(u, t, x) = ϕ0(t, x) (1 + . . . ) + ϕ1(t, x) u5−2N (1 + . . . ) .

(104)

Now, sticking to the standard quantization procedure12), the
leading term in such expansion has to be identified with an
external source for the operator O dual to the bulk field ϕ,
while the subleading term with its expectation value ⟨O⟩.
Therefore,

(1) for N < 5/2 (e.g., the linear axion model [18]) the lead-
ing term in the expansion (104) is given by a constant in u
term and consequently ϕI

0(t, x) = xI . This is equivalent to say
that we are introducing into our field theory an x-dependent
source and therefore breaking translations explicitly.

(2) for N > 5/2 (e.g., the models considered in ref.
[115]), the story is reversed and the constant term ϕI = xI

is this time an x-dependent expectation value of our dual
field theory, breaking therefore translational invariance spon-
taneously with

⟨O(t, x)⟩ = xI . (105)

In summary, the idea is that the bulk solution for the ax-
ions always breaks translations in the dual field theory, but
the nature of this breaking is uniquely (up to the quantization
scheme chosen) determined by the boundary asymptotic ex-
pansion, which can be modified by considering different bulk
actions (see Figure 19). In this review, we will focus on the
original ideas of ref. [115] described above. Nevertheless,
introducing more bulk fields (e.g., dilaton, gauge field, . . . ),
it is possible to achieve the SSB in different ways. See refs.
[118-120] for more details13).

10) Note that there can be other possible couplings between the axion sector and the gauge one. For example, one could introduce a term of the type
∂µϕ

I∂νϕI FνρFρµ, which cannot be written in a shorthand with our notation. Introducing such kind of couplings does not change the background solution.
Nevertheless, it does have a finite contribution to the linearized equations for the fluctuations. For more details, we refer to refs. [110, 111]. One could also
couple in a Horndeski fashion the axionic fields to the curvature tensors (see, for example, ref. [112]).

11) The argument could be actually generalized to any potential V(X) where N is the leading power in the expansion of V(X) close to the boundary X → 0.
12) See refs. [116, 117] for discussions about the alternative quantization possibility and implementation.
13) Spontaneously generated inhomogeneous lattices for density wave phases, such as charge density wave and pair density wave, can be found, e.g., in

refs. [121-124].
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3.3 Elastic black holes

A key difference between solids and fluids is that solids
are resistant against shear deformations while fluids are not.
Then, the excitations moving inside a solid are waves propa-
gating in an elastic medium.

To see why the background solution given by the model
(103) is dual to some elastic medium, we look at the spin-
2 perturbations hxy which encodes the information about the
Green’s function of the stress tensor Txy on the boundary. In-
terestingly, the shear equation is massive:

2 hx
y = M2(u) hx

y , (106)

where the effective mass of graviton becomes

u2 M2(u) = m2 VX(X̄), (107)

and VX ≡ dV/dX. Near the AdS boundary, we have the fol-
lowing expansion:

hx
y = h(0)(1 + . . . ) + h(3)u3(1 + . . . ), (108)

where h(0) and h(3) are u-independent coefficients. Imposing
the infalling condition at the horizon and fixing the leading
coefficient h(0), this differential equation can be solved nu-
merically, or even analytically for small ω and m2 in Fourier
space by using the perturbative methods [6, 125]. Accord-
ing to the holographic dictionary, the Green’s function of the
stress tensor reads

G(R)
TxyTxy

=
3
2

h(3)

h(0)
, (109)

up to a contact term. In the low frequency expansion, we
obtain that

G(R)
TxyTxy

(ω)
∣∣∣∣
k=0
= G − iωη + O(ω2), (110)

where G is the shear modulus and η the shear viscosity. In
the massive gravity case, the non-zero effective mass brings
a non-trivial contribution to the real part of the Green’s func-
tion. As a result, for small m, this gives

G = m2
∫ uh

0

VX(u2)
u2 du + O(m4). (111)

Choosing V(X) = XN , we get

G =
N

2N − 3
u2N−3

h m2 + O(m4). (112)

Then, it is clearly seen that the dynamical stability of the sys-
tem requires N > 3/2. And for all SSB cases, N > 5/2
ensures the existence of a solid state that is dynamically sta-
ble. For general values of m/T , we plot the numeric data in
Figure 20.

3.4 Holographic phonons

In the next, we turn to study the low energy excitations in
the SSB pattern of translations. In holography, the spectrum
of various excitations can be read by computing the quasi-
normal modes (QNMs) of the black hole [126].

Note that in the translationally invariant case (which is
simply the Schwarzschild black hole here) there are two
sound modes in the longitudinal channel that are related to
the fluctuations of energy density δ ε∥ as well as the momen-
tum δ π∥. On the contrary, in the transverse channel, there
is only one diffusive momentum mode δ π⊥ whose diffusion
constant relates to the minimal shear viscosity, η/s = 1/4π.

The case of explicit breaking of translations with N = 1
has already been analyzed in sect. 2.3. The momentum re-
laxation destroys the longitudinal sound which becomes dif-
fusive (in the hydrodynamic regime). Moreover the shear dif-
fusive mode is pushed downwards along the imaginary axis
to form the Drude pole.

When the translations are broken spontaneously, there ex-
ist massless Goldstones in the low energy description which
are the acoustic phonons. In the holographic axion model
with N > 5/2, the two modes δ ε∥ and δ π∥ still remains sound
like, albeit propagating at an enhanced speed comparing to
that in fluids. We call them longitudinal phonons. Further-
more, there is an extra longitudinal diffusive mode—crystal
diffusion. We will explore the physical nature of this mode

Explicit breaking Spontaneous breaking

N

Figure 19 The different symmetry breaking patterns depending on the
power of the potential V(X) = XN .
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Figure 20 (Color online) The shear modulus G normalized by its zero
temperature value G∞ ≡ G(m/T → ∞) as a function of the dimensionless
quantity m/T . The dashed line comes from the analytic eq. (112) for small
values of m.
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later, in sect. 4.5. Of the most interest to us here are the two
sound modes emerging in the transverse channel which is re-
lated to ϕ⊥ and π⊥. We call them transverse phonons. All
of these can be clearly seen in Figure 21. It is well-known
that transverse sounds can never survive inside a fluid (at low
momentum). The appearance of shear sounds again reflects
the fact that the dual boundary system under study is a solid.

For N = 3, we have plotted the dispersion relations for the
transverse and longitudinal phonons in Figures 22 and 23,
respectively. Our results show that at leading order in k,

ωL,T = ± vL,T k − i ΓL,T

2
k2 + . . . . (113)

Besides the linear dispersion, there is also an attenuation fac-
tor due to the background viscosities. This is a dissipative
term due to finite temperature effects and can be formulated
in the standard hydrodynamic approach, but dealing with it
in the framework of EFT is challenging. The exact forms of
ΓT,L will be discussed in sect. 4.

One can further check that the numerical data from the
holographic model are in perfect agreement with the predic-
tion of the elasticity theory, i.e.,

(a)

(b)

Transverse

Longitudinal

Figure 21 (Color online) The spectrum of hydrodynamic modes can be
read from the QNMs of the black hole. (a) Gapless modes propagating at
the sound speed vT in the transverse channel, which are related to the trans-
verse phonons and transverse momentum in the dual field theory. (b) Gapless
sound modes propagating at the speed vL in the longitudinal channel, related
to the longitudinal phonons and longitudinal momentum. In addition, there
is an unexpected diffusive mode (orange dots), which we will call crystal
diffusion mode hereafter.
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Figure 22 (Color online) The dispersion relation of the transverse phonons
in the holographic axion model with V(X) = X5. m/T increases from the red
line to the blue one. Figure taken from ref. [115].
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Figure 23 (Color online) The real part of the dispersion relation of the
longitudinal phonons in the holographic axion model. Figure taken from ref.
[127].

vT =

√
G
χππ

, vL =

√
K +G
χππ

. (114)

Here, the momentum susceptibility χππ ≡ δTti
δvi = E + p. One

can see a comparison of vT extracted from the QNMs and the
prediction of the elasticity theory in Figure 24.

Finally, in a conformal solid, vL and vT are not independent
of each other. One can verify this by explicitly computing the
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bulk modulus which is given by K = 3
4E [127] or using the

EFT method of conformal solids [128]. As a result, we have

v2
L =

1
2
+ v2

T, (115)

which represents a further validity check for the holographic
model.

3.5 Zoology of solids and fluids

Let us move to a (reduced) model with the following action:

S =
∫

d4x
√−g

[R
2
− Λ − m2 V(Z)

]
, V(Z) = Zn, (116)

and compare its hydro-spectrum with that of the V(X) model
in previous sect. 3.4. Note that since VX = 0 in this case, the
spin-2 graviton is massless in contrast to the solid model [22]
(see also eq. (111)). Then, the (static) shear modulus G van-
ishes and the system is not resisting anymore to static shear
deformations. This reflects the fact that the V(Z) model is re-
lated to a fluid system. One can further check that the action
(116), with generic potential V(Z), remains unchanged under
the VPD transformation (37). Analyzing the UV expansion
of the axion fields, it is found that, in this case, to have SSB,
we should require that n > 5/4.

The absence of G means that there are no propagating
phonons in the transverse channel. Then, the leading behav-
ior of the dispersion relation (113) becomes diffusive, i.e,, we
have

ωT = −i DT k2 + . . . , DT =
η

χππ
+ . . . , (117)

where η = s
4π . See Figure 25 for illustration.

The longitudinal spectrum of fluids share the similar fea-
tures as those of solids: there are two sounds and one crystal
diffusion mode. Since G = 0, the longitudinal sound speed is
now given by

vL =

√
K
χππ

. (118)

In the present model, K = 3
4E and χππ = 3

2E. It turns out to
be

vL =
1
√

2
≡ vc, (119)

where in the last step we introduce the conformal value of
sound speed which is defined by

vc ≡
1

√
d − 1

, (120)

for general (d − 1) spatial dimensions.

v
T

m/T

Figure 24 (Color online) vT extracted from QNMs (black dots) and com-
puted by the formula vT =

√
G/χππ from elasticity (solid lines) for n ∈ [3, 8]

(green-orange). Figure taken from ref. [115].
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Figure 25 (Color online) The hydrodynamic diffusive modes in the trans-
verse of the holographic fluid model (116).

For a much more detailed discussion of the holographic
fluid models see ref. [90].

In conclusion, the holographic homogeneous models with
axions provide us a simple effective description for a wide
class of solids as well as fluids with no translational invari-
ance, perfectly capturing the viscoelastic property of the sys-
tem and the expected spectrum of low energy excitations, etc.
So far, we have not examined how the system will be influ-
enced in presence of finite charge density or EXB of transla-
tions. These problems will be discussed in sects. 6 and 7.1.

3.6 The dual view

So far, we have focused on bona-fide axion models in which
the common ingredient was the presence of a set of shift in-
variant scalar fields with background profile ϕI ∼ xI . In terms
of this construction, it is almost straightforward to implement
the physics of momentum dissipation and explicit breaking of
translations but it is much harder and less intuitive to obtain
the theory of elasticity and the dynamics of the SSB.

In order to achieve this second task, it might be conve-
nient to use a dual picture in which the scalar fields ϕI are
substituted by a set of two-forms JI

µν. This is what has been
put forward in ref. [129] and later re-utilized in ref. [116].
The idea is very interesting and it originates from the study
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of generalized higher form symmetries [130] in analogy to
the electromagnetism case [131]. Let us go back to the field
theory description of elasticity. We can re-introduce our set
of scalar fields ΦI , labelling the co-moving coordinates and
providing a preferred frame for us. The dynamics of these
field is simply governed by the conservation of momentum:

∂µ Pµ
I = 0, Pµ

I = Cµν
IJ ∂νΦ

J , (121)

where Ci j
IJ is the elastic tensor and Ctt

IJ = ϱ δIJ with ϱ being
the mass density. Eq. (121) is equivalent to the conservation
of the stress tensor. Nevertheless, in a solid without defects,
there is another hidden symmetry encoded in the conserva-
tion of a set of two-form currents:

∂µ1 Jµ1 ... µd
I = 0, Jµ1 ... µd

I = ϵµ1...µd ν ∂νΦ
I . (122)

This conservation is somehow trivial if the ΦI fields are sin-
gle valued. It is a topological constraint and plays the role of
the Bianchi identity.

All of these mean that the theory of elasticity can be for-
mulated in a dual formalism where instead of considering the
stress tensor T µν and the Goldstone modes ΦI (together with
their Josephson relation), one considers the conserved stress
tensor and a conserved set of higher-forms Jµ1...µd

I . The con-
servation of both these objects results into a new description
of elasticity which recovers all the previously known results.

It is then immediate to translate this language into holog-
raphy, by assuming a theory with a set of conserved two-form
currents. The appropriate bulk action reads

S =
∫

d4x
√−g

R − 2Λ − 1
12

∑
I

HI,abcHabc
I

 , (123)

with H = dB being the field strength of the two-form Bµν dual
to the operator Jµν mentioned before. The local bulk gauge
symmetry imposes immediately the conservation (122). Im-
posing the appropriate boundary conditions, we can show
that such holographic model gives rise to the dual formula-
tion of elasticity theory. A similar possibility, which is ba-
sically equivalent to that, is to work with the original scalar
fields and impose alternative boundary conditions [116,117].
Unfortunately, this second option results in bad instabilities
and it has not been successfully employed.

This dual formulation has been studied only in ref. [129]
and it definitely deserves more attention in the near future.

4 On the hydrodynamic description

4.1 A puzzle

Hydrodynamics is a universal effective field theory which

describes the late-time and large-scale dynamics of any phys-
ical systems (see Figure 26). It is expected to be valid at low
frequency and momentum and it represents a continuum de-
scription which clearly breaks down when the microscopic
characteristic scale of the system is reached (e.g., the lat-
tice spacing in solids or the inter-molecular distance in liq-
uids [48]).

Despite the disorientating oxymoron, a hydrodynamic the-
ory of solids (not to be confused with fluid-dynamics in the
sense of Navier-Stokes equations) has been derived several
decades ago [36] (see also ref. [132]). The interest about
a hydrodynamic theory of solids has re-appeared more re-
cently in the context of systems with no quasiparticles, for
which the underlying Galilean invariance is obviously gone.
In particular, a precise study of hydrodynamics in presence
of explicit and spontaneous breaking of translations has been
done in ref. [133] following some previous discussions re-
garding the role of such theory for the phenomenology of bad
metals [134] (see also ref. [135] for a preliminary attempt to
connect it with experimental data).

The main new aspect in building a hydrodynamic the-
ory for solids is the introduction of additional degrees of
freedom—the Goldstone modes (the phonons). The formal-
ism appears to be very similar to that required to construct
superfluid hydrodynamics, with the only difference that the
Goldstone mode here is not associated to an internal U(1)
symmetry but rather to translational invariance.

Neglecting the presence of a finite charge density, the hy-
drodynamics is governed by the conservation of the stress
tensor ∂µT µν = 0 (unless any explicit breaking source is in-
troduced) and by the Josephson equation for the Goldstone
mode which simply corresponds to

Φ̇ = [H,Φ] . (124)

Following the standard Martin-Kadanoff procedure [136],
one can extract directly the Green’s functions of the sys-
tem via Kubo formulas and the corresponding hydrodynamic
excitations. Neglecting the details of these computations,

a

a

λ

Figure 26 (Color online) The hydrodynamic limit λ ≫ a, with a being the
characteristic microscopic scale and λ the length-scale at which we are prob-
ing out system. This regime is equivalent to the standard small momentum
regime k/T ≪ 1.
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which can be found in ref. [133], the final hydrodynamic
spectrum of a solid contains:

transverse sound: ω = ± vT k − iΓT

2
k2 + . . . , (125)

longitudinal sound: ω = ± vL k − i ΓL

2
k2 + . . . , (126)

crystal diffusion: ω = − i Dϕ k2 + . . . . (127)

The first two sets of modes are the standard phononic sound
modes which are now attenuated with the characteristic
diffusive-like damping due to the viscosity of the system. The
third mode is more interesting and maybe unusual. We will
discuss in much more detail the physical nature of this mode
in sect. 4.5.

The hydrodynamic theory indicates a concrete expression
for the diffusion constant Dϕ which at leading order reads

Dϕ = (G + K) ξ + . . . , (128)

where G,K are respectively the shear and bulk elastic moduli.
The new transport coefficient ξ is a dissipative term which
controls the Goldstone diffusion and which appears in the
Goldstone’s two-points function:

GΦIΦJ =

(
− 1
ω2 χππ

+ ξ
i
ω

)
δIJ + . . . . (129)

All the transport coefficients (G,K, ξ) can be computed inde-
pendently using the corresponding Kubo formulas at strictly
zero momentum k = 0. On the contrary, the dispersion rela-
tion of the hydrodynamics modes can be obtained via a more
complicated numerical computation of the QNMs of the sys-
tem at finite momentum (see ref. [137] for details).

The comparison between the two results was performed
for a large class of holographic axion models in ref. [127]
and presented a surprising outcome. The numerical data,
extracted from the dispersion relation of the crystal diffu-
sion mode, were not well described by the hydrodynamics
eq. (128). As evident from Figure 27, the hydrodynamics
prediction is completely off with respect to the numerical
holographic data. To be more concrete, the hydrodynamic
framework of ref. [133] does not correctly describe the low-
energy physics of the holographic axion models [115]. What
is happening and what causes this discrepancy?

4.2 Strain pressure and its resolution

In order to understand the discrepancy discussed in the pre-
vious subsection, we have to re-consider the hydrodynamic
description of ref. [133] in more detail. This was done in

Holographic model

Hydrodynamics
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Figure 27 (Color online) The discrepancy between the hydrodynamic the-
ory of ref. [133] and the holographic model of ref. [115] reported in ref.
[127]. The diffusion constant of the longitudinal crystal diffusion mode is
denoted as Dϕ.

ref. [116] (and later ref. [138] for the charged case) using
a slightly different formalism which we will follow in this
section.

The fundamental ingredients of the hydrodynamic the-
ory are the fluid velocity uµ, temperature T , and transla-
tion Goldstone bosons ΦI . To proceed, we define the one-
form eI

µ = ∂µΦ
I , the crystal metric tensor hIJ = eI

µeJµ,
eIµ = h−1

IJ eJ
µ, hµν = h−1

IJ eI
µeJ

ν , and the strain tensor uµν =
1
2 (h−1

IJ − δIJ/α
2)eI

µeJ
ν , where α is simply a constant. The con-

stitutive relations for an isotropic viscoelastic medium are

T µν =
(
E + p + TP′uλλ

)
uµuν +

(
p + Puλλ

)
ηµν + Phµν

− ησµν − ζ Pµν∂ρuρ − 2G uµν − (K −G) uλλhµν, (130)

together with the thermodynamic identities dp = s dT , E =
T s − p and Pµν = ηµν + uµuν. Here, K is the part of the to-
tal bulk modulus depending on the SSB strength—its “solid”
contribution—not to be confused with the total bulk modulus
K = −Vd⟨T xx⟩/dV . Additionally, σµν = 2Pρ(µPν)σ∂ρuσ −
Pµν∂ρuρ is the standard fluid shear tensor encoding the dissi-
pative/viscous part of the response, while η and ζ are shear
and bulk viscosities. The most important and new parameter
entering here is the strain pressure P with P′ = ∂TP.

The dynamics of the system is governed by the stress-
energy tensor conservation:

∂µT µν = 0, (131)

and by the Josephson’s relation:

uµeI
µ =

hIJ

Σ
∂µ

(
PeµJ − (K −G)uλλeµJ − 2GuµνeJν

)
, (132)

where Σ is a dissipative coefficient characteristic of sponta-
neously broken translations.

We expand the equations above around an equilibrium
state with uµ = δ

µ
T, T = T0, and ΦI = α xI , and we obtain

the following hydrodynamic modes:

ω = ±v∥,⊥k − i
2
Γ∥,⊥k2 + . . . , ω = −iDϕk2 + . . . , (133)
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including two sets of propagating sound modes and a longi-
tudinal diffusive mode. The various coefficients entering in
the dispersion relations are given by

v2
⊥ =

G
χππ

, v2
∥ =

(s + P′)2

s′χππ
+

K +G − P
χππ

,

Γ⊥ =
η

χππ
+

G
σ

s2T 2

χ2
ππ

, Dϕ =
s2

σs′
K +G − P
χππv2

∥
,

Γ∥ =
η + ζ

χππ
+

T 2s2v2
∥

σχππ

1 − s + P′
T s′v2

∥

2

.

(134)

The various transport coefficients can be obtained using lin-
ear response approach via the following Kubo’s formulas:

E = ⟨T tt⟩, p = −Ω, P = ⟨T xx⟩ + Ω,
χππv2

∥ = lim
ω→0

lim
k→0

ReGR
T xxT xx ,

G = χππ v2
⊥ = lim

ω→0
lim
k→0

ReGR
T xyT xy ,

η = − lim
ω→0

lim
k→0

1
ω

ImGR
T xyT xy ,

(E + p)2

Σ χ2
ππ

= lim
ω→0

lim
k→0

ω ImGR
ΦxΦx ,

(135)

where Ω is the free energy.
Additionally, in presence of conformal invariance (which

is typical of the holographic models considered in this re-
view), we have the following constraints:

E = 2(p + P), TP′ = 3P − 2 K, ζ = 0. (136)

The hydrodynamic relations (134) match perfectly the nu-
merical data for the holographic axion model (see Figure 28).
Therefore, we can confidently say that the hydrodynamic the-
ory of ref. [116] is the correct low energy effective descrip-
tion of the holographic axion model of ref. [115].

Where did the hydrodynamic theory of ref. [133] fail
and why? It failed for two reasons. First and most impor-
tantly, the holographic models have a finite strain pressure
P = ⟨T xx⟩−p, which was not taken into account in ref. [133].
This term was neglected because in all ground states which
are thermodynamically stable it must be zero [139]. Unfor-
tunately, the generic solution of the holographic axion model
is not a preferred solution from the thermodynamic point of
view—it is equipped with a background strain.

With some fine tuning, one could nevertheless set the
strain pressure P = 0 by choosing a specific potential for
the axion fields [117]. Even in that case, the predictions of
ref. [133] are incorrect (see Figure 29). The reason, this
time, is that the authors of ref. [133] have (consciously) ne-
glected some off-diagonal susceptibilities playing the role of
P′, which are fundamental to match the holographic data and
cannot be discarded.
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Figure 28 (Color online) The comparison of the crystal diffusion constant
predicted by hydrodynamics (134) with the holographic results. The previ-
ous discrepancy is now successfully resolved. Figure taken from ref. [117].

Correct hydrodynamics

Hydrodynamics without P'

Numerical data (QNMs)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
φ
T

m/T

Figure 29 (Color online) The proof that the description of ref. [133]
is still inaccurate even for holographic models with zero strain pressure—
thermodynamically favourable. Figure taken from ref. [117].

Fortunately, when all the correct terms are considered,
the predictions from hydrodynamics are in perfect agreement
with the holographic results for the axions model. This con-
stitutes a further proof of the solidity and validity of the holo-
graphic axion model as the gravity dual of a strongly coupled
viscoelastic medium.

4.3 The hydrodynamics of phonons

After having discussed at length the hydrodynamic descrip-
tion of the holographic axion model with spontaneously bro-
ken translations, it is timely to give a concrete example of
the success of such description. In particular, we can fo-
cus for simplicity on the dispersion relation of the transverse
phonons. As we have already repeated several times, at small
momentum the transverse phonons exhibit a linear dispersion
relation of the type:

ω± = ± vT k − i
ΓT

2
k2, v2

T =
G
E + p . (137)

This dynamics was successfully confirmed in the seminal
work of ref. [115]. Nevertheless, the hydrodynamic frame-
work is more powerful than that. In particular, following the
methods of ref. [133], one could extend the dispersion rela-
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tion of the phonons at higher momenta obtaining:

ω± = −
i
2

k2
(
ξ +

η

χππ

)
± k

√
v2

T −
k2

4

(
η

χππ
− ξ

)2

, (138)

in which the meaning of all the parameters has been already
explained in the previous section.

The comparison with the holographic results is shown in
Figure 30 and it is very successful [140]. In particular, the
agreement becomes better and better at low m/T . Inter-
estingly, at least for small m/T , there is a critical momen-
tum at which the real part of the phonons dispersion relation
goes to zero. This seems to indicate a soft mode instabil-
ity which is so far not totally understood. It is fair to say
that this feature is surely related to the viscoelastic nature of
the system and it resembles closely the idea of Ioffe-Regel
crossover [141-144].

4.4 Zero strain pressure and stability

As explained in detail in the previous subsection, the pres-
ence of a finite strain pressure P is equivalent to say that
the model is not in a thermodynamically favorable phase,
which would require ⟨T xx⟩ = p [139]. This is tanta-
mount to say that the model does not describe a ground
state, but rather an excited one. Despite the equivalence
between linear dynamic stability and thermodynamic stabil-
ity is far from obvious, one would then expect these mod-
els to be unstable. Nevertheless, such instability was never
found and all the linear hydrodynamics modes are well-
behaving [90,115,117,127,145]. This opens the path towards
several options: (1) these models are stable (and then one has
to understand why), (2) the instability is suppressed by the
large N limit and it would re-appear when 1/N corrections
are considered, (3) the instability appears only at non-linear
level (despite it was not seen in ref. [146]) and (4) the in-
stability is driven by non-homogeneous modes which are not
captured by the standard perturbative analysis. The story is
even funnier! One could “cook-up” very fine tuned models
where the strain pressure is vanishing [116-118]. In these
cases, the solution is a real thermodynamic ground state.
Now everything should be fine and stable. Unfortunately,
Nature is not so kind. All these cases suffer a terrible lin-
ear instability; the shear modulus is negative and as such the
shear sound mode is unstable (see Figure 31). It is hard to
believe that this result is a pure coincidence and not a phys-
ical feature of models sustained by axion-like scalar fields
ϕI = xI . The question is open!

4.5 Phasons dynamics

As emphasized in sect. 4.1, in addition to the expected
phonon modes, the holographic axion model contains an ex-

tra longitudinal diffusive mode—crystal diffusion (see Fig-
ure 32). The nature of this mode is very interesting and it has
been the subject of a long standing (and still running) debate.

Despite several hydrodynamic setups [36, 116, 133] pre-
dicted an extra diffusive mode in the longitudinal sector, after
the first holographic identification in ref. [127], the interest
around this excitation has rapidly increased. A turning point
in the story has been put forward almost at the same time
by Donos et al. [147] and Amoretti et al. [148]. The crystal
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Figure 30 (Color online) The comparison between the hydrodynamic for-
mula (138) (solid lines) and the holographic results (dots). Figure taken from
ref. [140].

Figure 31 (Color online) The linear instability for the axions model
V(X) = X + X2/2 with zero strain pressure P = 0. Plot taken from ref.
[117].
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Figure 32 (Color online) The hydrodynamics modes in the longitudinal
spectrum of one of the holographic axion models with SSB. The figure is
taken from ref. [90].

diffusion mode is (1) a Goldstone mode, (2) coming from
the spontaneous breaking of the internal global shift symme-
try ϕ → ϕ + a. This is surprising in several ways. First,
what is a diffusive Goldstone boson? Second, this mode is
totally unrelated to spacetime symmetries and their sponta-
neous breaking. What is this mode? Is it an artifact of the
simplified assumption of homogeneity or not?

Taking into account the results of refs. [147, 148], the
first step is to understand what is the physical role of the
internal space and shifts along that. A recent idea [149]
tried to connect the dynamics of this mode with the physics
of quasicrystals—systems with long range order but with-
out periodicity. Quasicrystals have a long and curious his-
tory [150] and several reviews are available [151-153]. Cu-
riously enough, just because they lack the periodicity of
standard crystalline structure, these systems display an ad-
ditional diffusive longitudinal mode which is known as pha-
son. This mode appears both in the hydrodynamic descrip-
tion [154-159] and it is also observed directly in experi-
ments [160-162].

Using the superspace formalism [163], one can show that
this mode arises indeed from an extra dynamics related to an
internal symmetry of the system. In particular, from the for-
mal mathematical point of view, any aperiodic structure in d
dimension can be seen as a periodic structure in (d + n) di-
mensions cut at an irrational angle (see refs. [149, 164] for
details). The phason mode is the Goldstone mode related to
the rigid internal shift of this cut within the extra-dimensional

picture and it is not related in any way to spacetime symme-
tries. This hypothesis seems to be confirmed by the fact that
the full dynamics found in the holographic models can be re-
obtained from an effective field theory of quasicrystals built
using Keldysh-Scwhinger techniques [164]. Finally, it was
recently proven [165] that the dynamics of the phason is not
peculiar of the homogeneous holographic models, but can be
found also in more realistic inhomogeneous constructions. It
is therefore a “real” physical feature and not an artifact of the
description.

4.6 The dynamics of shear waves with momentum dissi-
pation

As we have argued in the previous subsections, the hydro-
dynamic description of the holographic axion model in the
regime of spontaneous symmetry breaking is far from triv-
ial and it keeps giving headache to the community. On the
contrary, the low energy description of the models in the
regime of explicit breaking is far way simple and it has been
nicely described in ref. [166] (see also ref. [88]). The low-
frequency dynamics is governed by a so-called Drude pole,
ω = −i Γ, which stems from the introduction of momentum
dissipation. The parameter Γ is indeed the momentum dissi-
pation rate, the inverse of the relaxation time τ. This result
comes from the simple fact that the stress-energy tensor con-
servation is now modified at leading order into

∂T T tt = 0, (139)

∂i T it = − 1
τ

T ti, (140)

where the first line is just energy conservation while the sec-
ond one is the relativistic version of the Drude eq. (1). From
a holographic perspective, the momentum relaxation rate is
given by the graviton mass computed at the horizon:

Γ ∼ m2
g |horizon. (141)

Despite the dynamics at zero momentum is not surprising,
the story becomes richer and more interesting looking at the
dispersion relation of the low-energy transverse modes at fi-
nite momentum. The full dance of the modes is shown in Fig-
ure 33 and it has been analyzed in detail in refs. [167, 168].

One obvious and evident feature is that the “would be”
shear diffusion mode, which arises because of (transverse)
momentum conservation, acquires now a finite lifetime given
by the timescale τ. This implies a modified dispersion rela-
tion of the type:

ω = − i Γ − i Dπ k2 + . . . , (142)

where, in the holographic models, Γ grows with the graviton
mass as in eq. (141). Notice that this description is valid only
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Figure 33 (Color online) The transverse spectrum of excitations for the
linear model V(X) = X. m/T increases from the blue line to the red one.
Figures taken from ref. [167].

when Γ/T is small and therefore the leading order symmetry
breaking effect can be described as in eq. (140).

Let us first have a look at the real part of the dispersion re-
lation of the lowest modes. At small but finite Γ, the real
part is zero until a cutoff wave-number which we call k-
gap, kg. Above the k-gap, for k > kg, the real part grows
in a square root fashion and at very large k it asymptotes a
linearly dispersing mode. The emerging speed is given by
the speed of light as required by the UV relativistic fixed
point of the theory. Importantly, this feature arises because
of the collision of the Drude pole (142) with a second non-
hydrodynamic mode. This collision is actually a manifesta-
tion of the coherent-incoherent transition described in refs.
[86, 88].

When momentum dissipation becomes very strong, the
k-gap approaches the origin and the dispersion relation be-
comes of the massive particle type, Re[ω]2 = k2 + M2, with
an approximately constant lifetime given by Γ−1. This fea-
ture, of having an emerging transverse shear waves at low
frequency is very interesting since it resembles what is hap-

pening in realistic liquids. The presence of these emerg-
ing propagating phonons is tested indirectly in recent experi-
ments [169-171] (see also ref. [172]) and it can be explained
by the so-called k-gap or telegraph equation [52, 173]. In a
specific limit of the linear axions theory the corresponding
dispersion relation can be found analytically [88]. Interest-
ingly, this k-gap dynamics is shared by several holographic
models [129, 174-178] and it can be explained by using the
quasi-hydrodynamic theory of ref. [179]. Finally, we can
verify that the critical momentum kg is as expected inversely
proportional to the relaxation time τ (top panel of Figure 34)
and compare the latter with the famous Arrhenius law for flu-
ids [180] (bottom panel of Figure 34).

5 Bounds from hydrodynamics and holography

5.1 The violation of the KSS bound

Continuing with the hydrodynamic description of the axion
model, we cannot avoid mentioning one of the most surpris-
ing, and perhaps less understood outcome. The main charac-
ter of this story is the shear viscosity, defined via the Kubo
formula:

η ≡ − lim
ω→0

1
ω

Im⟨TxyTxy⟩. (143)

One of the most remarkable achievements of the holo-
graphic duality is the discovery of the so-called Kovtun-Son-
Starintes (KSS) bound [13]. The statement of the bound is
that the ratio of shear viscosity and entropy density should
be bounded below by a universal constant,

η

s
≥ 1

4π

(
~

kB

)
, (144)

where the Planck constant ~ and the Boltzmann constant
kB will be set to unit hereinafter. In the strong coupling
limit (which is usually assumed in the holographic compu-
tations), the equality holds and the inequality is saturated.
For translationally invariant systems, this bound brings us a
very limitation on the transport of momentum. The valid-
ity regime of the bound has been widely checked not only
in holographic theories but also experimentally in Quark-
Gluon Plasma, cold atoms, graphene, etc. [181-185]. It has
explicitly been shown that, in strongly coupled many-body
systems with translational invariance, the viscosity bound al-
ways holds14).

14) It is known that the finite 1/N coupling corrections can introduce a mild violation of the KSS bound and push the ratio η/s below 1/4π [186-194]. As
a result of that, there is an alternative bound η/s ≥ #, where # is still an O(1) number. In this paper, we will focus only on holographic models in the large N
limit and infinite coupling limit.
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Figure 34 (Color online) (a) The numerical confirmation that kg ∼ 1/τ.
(b) The behaviour of the relaxation time in function of the inverse of the
temperature which is in qualitative agreement with the Arrhenius law [180].
Figures taken from ref. [167].

On the contrary, this bound can be parametrically violated
in presence of broken translations15). Let us follow a histor-
ical timeline. The first results came from ref. [205]. There
the authors proved that:

(1) The KSS bound η/s = 1/4π is violated in the linear ax-
ion model of ref. [18]. This can be shown both numerically
and analytically in a perturbative scheme (see Figure 35).

(2) Any holographic model in which the shear equation is
massive:

2 hx
y = M2(r) hx

y , (145)

with M2 > 0, violates automatically the KSS bound.
(3) At low temperature , the viscosity to entropy ratio

scales like:

η

s
∼

( T
M

)∆
→ 0, (146)

where ∆ is directly given by the conformal dimension of the
Txy operator at the IR extremal fixed point. In the case of ref.
[18], ∆=2 (see Figure 35). See ref. [206] for generalizations.
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Figure 35 (Color online) The violation of the KSS bound in the linear
axion model. Figures taken from ref. [6].

(4) Despite translations are explicitly broken in this model,
the ratio η/s can be still identified as the coefficient deter-
mining the rate of entropy production when the equilibrium
state is subjected to a slowly varying homogeneous source, a
strain.

Just one day after, ref. [125] appeared, showing that:
(1) The violation reported in ref. [205] is very general

but the breaking of translations does not necessarily imply it.
Indeed, one can have holographic models which break trans-
lations explicitly but for which η/s = 1/4π—the so-called
fluid theories.

(2) The violation appears independently of whether trans-
lations are broken explicitly and spontaneously. This opens
a much more difficult question since the excuse that momen-
tum is dissipated (see ref. [207] for discussions on this point)
and therefore the viscosity is not well defined falls apart.

Regardless of the large activity after that, not much
progress in understanding this feature has been done so far.
Nevertheless, it is worth mentioning that similar violations
have appeared outside the realm of holography [208, 209].

The most interesting aspect is the one related to the holo-
graphic models claiming to be dual of conformal solids (in
which the breaking is spontaneous). In realistic situations,
moving from a liquid to a solid phase, the viscosity definitely
grows; this is evident if you leave your honey in the fridge. In

15) The KSS bound can also be violated in presence of broken rotations [74, 195-197] (notice how these models use also a single scalar field with linear
profile as introduced in refs. [198,199]). See also refs. [200-202] for further studies, or an external magnetic field [203] (this is true only in 3 spatial dimensions
but not in 2 in which the magnetic field is just a scalar field [204]), which however will not be touched in detail in this paper.
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these holographic models, on the contrary, by making them
solids (with larger shear modulus for example) the viscosity
decreases. Is that physical? And where does it come from?
The suspicion is that this is related to the fact that the viscos-
ity in the holographic models grows with temperature as in
gas and not as in liquids.

In the next section, we will take a different approach and
discuss whether or not η/s is at all the quantity to bound. The
answer will be “likely not”. For example, it has been shown
in ref. [210] that in non-relativistic setups one can provide a
simple counterexample of the KSS bound just by increasing
the number of species.

5.2 From viscosity to diffusion

As was pointed in the previous subsection, the KSS bound
is definitely violated in certain holographic models. Never-
theless, it still remains controversial whether the momentum
transport in strongly coupled systems is universal or not. In
the following, we will argue that a (more) universal and gen-
eral bound, valid also with broken spacetime symmetries, can
be obtained by considering the momentum diffusivity instead
of the η/s ratio.

The idea was firstly introduced in ref. [211] and recently
elaborated in ref. [212]. Consider a relativistic neutral sys-
tem and its diffusive hydrodynamic mode in the shear chan-
nel, known as shear diffusion, with the following dispersion
relation [31]:

ω = −i Dπ k2 + . . . , Dπ =
η

χππ
(c2 ≡ 1), (147)

where χππ = sT is the momentum susceptibility. The KSS
bound can then be reformulated as:

Dπ ≥
c2

4πT
∼ c2τpl, (148)

where τpl ∼ ~/kBT is called the Planckian time, supposed to
be the minimal relaxation timescale in the nature [213, 214].
In presence of EXB, the momentum of the system is not con-
served. As a result of that, the diffusive mode acquires a finite
relaxation rate Γ and the dispersion becomes

ω = −iΓ − i Dπ k2. (149)

Computing the momentum-momentum Green’s function
holographically, one can check that the momentum diffusiv-
ity in the simplest linear axion model (V(X) = X), in the limit
of slow momentum relaxation, reads [215]

Dπ =
1

4π T

[
1 +

1
24

(
9 +
√

3π − 9 log 3
) m2

8π2 T 2 + . . .

]
,

(150)

where the . . . indicate higher order corrections in the dimen-
sionless parameter m/T . For arbitrary large values of m/T ,
one can obtain the diffusion constant by solving the QNMs
of the black hole numerically. We show a summary of the
results in Figure 36. From the bottom panel, it is evident that
when we consider the momentum diffusivity, there is no vio-
lation of the bound at all even in presence of EXB of transla-
tions.

This is the first indication, that in less symmetric (and
more general) scenarios, the quantity to consider is DπT and
not η/s. It is a mere coincidence that for a relativistic neu-
tral fluid the two coincide. This argument is also confirmed
by an independent analysis [216] which shows that the kine-
matic viscosity νm ≡ η/ϱ of the QGP is of the same order of
all common liquids at their minimum, ∼ 10−7 m2/s, and it is
well approximated by the simple formula:

νm =
1

4π
~

√me mp
, (151)

with, me,mp the mass of the electron and the proton respec-
tively.
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Figure 36 (Color online) The shear mode in the simple “linear axion
model” corresponding to V(X) = X is pseudo-diffusive. (a) The dispersion
relation of the pseudo-diffusive mode ω = −iΓ − iDπk2 for m/T ∈ [1, 6.5]
(from black to light blue). (b) In orange the viscosity to entropy ratio η/s, in
blue the dimensionless shear diffusion constant DπT obtained numerically
and in green the analytic eq. (150). The horizontal dashed value is 1/4π.
Figure taken from ref. [212].
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The original discussion of ref. [211] is more general and
was initially focused on the diffusion of energy and charge.
In particular, given a generic diffusion constant Di, where i
indicates the corresponding operator associated to the diffu-
sive dynamics, Hartnoll conjectured that an equality of the
type:

Di ≥ v2 τ, (152)

has to be valid, where v is a characteristic velocity scale and
τ a minimal relaxation time. When the momentum is re-
laxed very rapidly (e.g., in the bad metal case of ref. [211]),
m/T ≫ 1 (we also call it low temperature limit or incoherent
limit), the dynamics associated with charge and heat trans-
port become purely diffusive and they decouple:

D =
 DC 0

0 DT

 . (153)

Then, the matrix of the diffusivities gets completely diago-
nal. In this case, the bound (152) should apply. Neverthe-
less the question is: which are the characteristic velocity and
time scales? The timescale is naturally associated with the
Planckian time τpl = ~/kBT . The discussion about the veloc-
ity is more subtle. This velocity cannot be the Fermi velocity,
as it is in general not sharply defined in the strongly coupled
systems without quasi-particles.

5.3 Butterfly velocity and chaos

In the attempt of making Hartnoll’s proposal predictive,
Blake [217, 218] proposed that the velocity scale appearing
in the diffusivity bounds could be identified with the butterfly
velocity vB. vB measures the speed of propagation of infor-
mation through a system and it can be generically extracted
from the out-of-time-order correlator (OTOC) [219]:⟨ [

Ŵ(t, x), V̂(0, t)
]2 ⟩

β
∼ eλL(t−t∗−|x|/vB),

for tlocal ≪ t ≪ t∗, (154)

where λL is called the Lyapunov exponent, t∗ is the scram-
bling time and tlocal is the timescale that the system reaches
local equilibrium. Here Ŵ, V̂ are two generic hermitian op-
erators. In analogy to the classical chaos (see Figure 37), this
exponential growth can be viewed as a quantum mechanical
definition of it, originating from the non-trivial commutator
of two operators set at different times.

In holography, the butterfly velocity can be easily calcu-
lated by considering a shock wave solution near the black
hole horizon. In full generality, it only depends on the IR
metric and is insensitive to the matter field configurations in

the bulk. Given a metric of the form

ds2 = − f (r)dt2 +
dr2

f (r)
+ h(r)dx2

d−1, (155)

the butterfly velocity is given by [217]

v2
B =

f ′(rh)
d h′(rh)

. (156)

Exploiting the membrane paradigm [92, 220], the transport
coefficients can usually be expressed in terms of horizon data.
Then, it is not hard to find the direct relations between the
diffusivities and the butterfly velocity (see the illustration in
Figure 38):

DC,T = CC,T
v2

B

2πT
, (157)

where CC,T are constants.
Note that these relations are only valid in the low tem-

perature limit or strong momentum relaxation (incoherent)
limit [221], where the charge and thermal sectors decouple
(see ref. [222] for a discussion about the general situation
and possible more general bounds). Furthermore, eq. (157)
should be viewed as a low energy IR statement, since both
of CC,T are only determined by the scaling symmetry of the
IR fixed point, irrelevant to any UV parameters, even though

Time

tλλ

Figure 37 (Color online) The classical butterfly effect intended as the
exponential sensitivity to the initial boundary conditions. Its quantum gen-
eralization can be formulated as a exponential growth of the OTOC (154).

DC,T, vB

Figure 38 (Color online) The diffusivities and butterfly velocity can be
related via the membrane paradigm.
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they are model-dependent quantities. For the Einstein-
Maxwell-dilaton model, with a hyperscaling violating IR ge-
ometry [217, 223], one obtains

CC =
d − θ
∆χ

, CT =
z

2z − 2
. (158)

Here, ∆χ is the scaling dimension of the charge susceptibility,
z is the dynamical critical exponent and θ the hyperscaling vi-
olation exponent. For anisotropic Q-Lattice models, CT has
been computed in ref. [224] and it has been shown to obey
the lower bound (158), proving that the latter it is not affected
by anisotropy.

5.4 Pole-skipping and the complex plane

The chaotic properties of a dynamical system, such as the
Lyapunov exponent (λL) and the butterfly velocity (vB), are
encoded in a specific four point function, out-of-time-order-
correlator (OTOC) (154) at short time scale. Interestingly,
it has been observed that λL and vB can be also detected by
a two point function, the retarded Green’s function of the
energy density operator at long time scale. This property
has been dubbed pole-skipping phenomenon [225-227] and
λL and vB have been proven to be related with the so-called
“pole-skipping points”. Even though the pole-skipping phe-
nomenon has been introduced in the context of quantum
chaos, its mathematical concept is more general and physi-
cal applications may be wider. Thus, we start with a general
definition of the pole-skipping points.

Pole-skipping points are special points in the complex-
ified momentum (complex frequency, complex wave num-
ber) space. At these points, two point retarded Green’s func-
tions of given operators are not uniquely defined. The non-
uniqueness of the Green’s function at some value of fre-
quency/momentum is not very novel and there are prescrip-
tions to define the Green’s function at that point, making
contact with transport properties via Kubo’s formulas. For
example, see eq. (135), where the Green’s functions are not
well defined at ω = k = 0 and we specify the order of limit
to define them uniquely. It turns out that the pole-skipping
points occur at the integer/half integer values of iω/(2πT )
for bosonic/fermionic operators16).

Another way to introduce the pole-skipping points is using
its literal meaning: the points where the “pole” is “skipped”.
For this purpose, let us consider the expression for the re-
tarded Green’s function of the operators A and B:

GAB(ω, k) ∼ B(ω, k)
A(ω, k)

, (159)

where we suppress the operator dependence on the RHS not
to clutter. The pole is defined by A(ω, k) = 0, which gives
the constraint between ω and k. If this constraint lives in the
pure imaginary ω and pure imaginary k space, it defines a
curve in the space (Im[k], Im[ω]), which corresponds to the
red line in Figure 39 [229] for example17). However, there
might be a second relevant curve coming from the condition
B(ω, k) = 0, which is this time the blue line in Figure 39.

The intersection of these two curves, say (ω∗, k∗), is
dubbed the pole-skipping point because there the would-be
pole (A(ω∗, k∗) = 0) is skipped (B(ω∗, k∗) = 0), i.e.,

GAB(ω∗, k∗) ∼
B(ω∗, k∗)
A(ω∗, k∗)

∼ 0
0
, (160)

where the last expression 0/0 indicates that the Green’s func-
tions is not uniquely defined and we need a prescription to
define the Green’s function there. The path dependence pre-
scription was clarified and classified in ref. [228]. This is
nothing but the viewpoint of the first paragraph of this sub-
section.

Having this general introduction, let us come back to the
original argument regarding chaos [225-227]. The main
point is that chaotic nature of the OTOC (154) is related with
the pole-skipping points of the retarded Green’s function of
energy density GR

T ttT tt . Thus, the first step is to compute the
retarded Green’s function.

Let us consider an Einstein action with the matter

Im[k]

Im
[ ω
]

Figure 39 (Color online) The pole-skipping points for a scalar field in the
hyperbolic space. The red line indicates the curve on which GAB(ω, k) = ∞
and the blue one the curve on which GAB(ω, k) = 0. The white circle locates
the pole-skipping point (ω∗, k∗). Here, we set 2πT = 1. Figure taken from
ref. [229].

16) However, see ref. [228] for possibilities for non-integer iω/(2πT ).
17) This example is chosen for the pedagogical purpose. In general, there is no a priori reason that the condition A(ω, k) = 0 lives in the space

(Im[k], Im[ω]). For more complete and general discussion, we refer to ref. [230].
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Lagrangian LM

S =
∫

dd+1x
√−g

[R
2
− Λ +LM

]
, (161)

which includes (47). According to holography, the retarded
Green’s function can be computed by the coupled equations
for metric (δgµν(u)) and matter (collectively, δφ(u)) pertur-
bations that are regular at the horizon in ingoing Eddington-
Finkelstein (EF) coordinates: v = t + u∗ with the tortoise co-
ordinate u∗. Near the horizon the perturbations can be written
as:

δgµν(u) = δg(0)
µν + δg

(1)
µν (u − uh) + · · · ,

δφ(u) = δφ(0) + δφ(1)(u − uh) + · · · ,
(162)

where we consider metric perturbation near the background
(48) in d + 1 dimension. After plugging in the expansion
(162) into Einstein’s equations, one can organize the equa-
tion as an expansion about the horizon. The near horizon
equation including δg(0)

vv is(
−i

d − 1
uh

ω + k2
)
δg(0)

vv − i(2πT + iω)
[
ωδg(0)

xi xi + 2kδg(0)
vx

]
=

2
u2

h

[
u2

hTvu(uh)δg(0)
vv + δTvv(uh)

]
, (163)

where Tµν(uh) is the bulk stress-energy tensor of the back-
ground matter fields and δTµν(uh) comes from the matter per-
turbations. Thus, the information of the various possible
matter content is explicitly encoded in the last term of eq.
(163). However, interestingly, it turns out that this term van-
ishes identically for a large class of systems such as Einstein-
Maxwell-Dilaton-Axion gravity theories including our mod-
els [227].

What are the consequences of this simplification (vanish-
ing the last term of eq. (163))? In general, eq. (163) provides
a constraint relating the parameters δg(0)

vv , δg
(0)
vx , and δg(0)

xi xi .
However, if (ω, k) = (ω∗, k∗), with

ω∗ = 2πT i, k∗ = ±
√

i
d − 1

uh
ω∗ = ±i

√
2πT (d − 1)

uh
,

(164)

we lose such a constraint. It means we have one more degree
of freedom than usual implying the Green’s function can not
be uniquely determined. This non-uniqueness of the Green’s
function at a special point in complex momentum space is
precisely the defining property of the pole-skipping point, so
eq. (164) is a pole-skipping point.

This observation is remarkable. This is an alternative holo-
graphic way of understanding the pole-skipping points. In

general, computing explicitly the Green’s function is not easy
and usually requires numerics. Finding the points where the
usual constraint at the horizon disappears is on the contrary
much easier. It is not only a technical simplification but also
has a conceptual importance: pole-skipping points are deter-
mined by the black hole horizon property, signaling possible
universal properties independent of the UV details of the the-
ory.

Here comes an example. Note that all information about
the matter part of the action Lm is encoded in the location of
the horizon uh. Thus, ω∗ is universal regardless of the matter
action, while k∗ is not. Noting that the butterfly velocity from
the shock-wave geometry [218] is

vB =

√
2πTuh

d − 1
. (165)

we find that the pole-skipping point (164) may be related
with the chaotic properties as follows18):

ω∗ = i λL, k∗ = ± i
λL

vB
. (166)

From another perspective, if we knew eq. (166) somehow,
we could have computed eq. (165) just by the pole-skipping
points, without calculating nor the OTOC or the shock wave
geometry.

There is another interesting observation related with trans-
port. Let us consider a system with energy conservation but
no momentum conservation, which corresponds to the case
with a very big α in eq. (51). In this case, the retarded
Green’s function of the energy density will have a hydrody-
namic diffusion pole, ω = −iDTk2—energy diffusion. Ex-
trapolating this hydrodynamic relation to the pole-skipping
point eq. (166) in the non-hydrodynamic region, we have

DT =
iω∗
k2
∗
=

v2
B

λL
. (167)

Interestingly, it turns out that this extrapolation works and
indeed eq. (167) is the universal lower bound for the holo-
graphic models with AdS2 × Rd−1 IR geometry [232]. This
bound is saturated at the infinite momentum relaxation limit
(α→∞ in eq. (51)). It can be understood from an effective
field theory perspective [233]. In short, the pole-skipping
point has a potential to predict universal hydrodynamic prop-
erties.

So far we have focused on the specific pole skipping
point of the Green’s function of energy density, which cor-
responds to the gauge invariant scalar mode of the metric

18) The pole-skipping phenomenon occurs also in a non-maximally chaotic system where the pole-skipping points capture only the stress tensor contribu-
tions to chaos [231].
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perturbation. However, the pole skipping points are ubiq-
uitous in all kinds of Green’s functions. They were ob-
served in other gauge invariant modes of the metric pertur-
bation and other fields with different spins such as scalar,
vector, and spinor fields [228-230, 234-237]. However, it is
still not clear which physical observables are related with the
pole-skipping points in the cases apart from energy density.
This is an interesting and important open question. See refs.
[230, 238] for this direction.

In general, there are infinite towers of pole-skipping
points. The point eq. (166) from the near horizon eq. (163) is
just one case which is relevant to the nearest horizon geom-
etry. If we expand the equations to higher orders in (u − uh),
we can obtain an infinite set of pole-skipping points whose
imaginary frequencies coincide with the Matsubara values
ω = −i2πTn. For example, one can see part of towers in Fig-
ure 39, where the pole-skipping points start from Imω = −1
in units of 2πT = 1, which is the “highest” pole skipping fre-
quency (on the vertical Imω axis). The pole skipping points
continue to appear at every integer frequency smaller than the
highest one. Thus, by coming down on the vertical Imω axis,
we are exploring the geometry away from the horizon. The
highest pole skipping frequency is determined by the spin (ℓ)
of the operator [229, 239]:

ω
highest
∗ = i(ℓ − 1). (168)

Note that the metric field (ℓ = 2) is the only case with the
positive pole-skipping frequency, signaling an exponentially
growing instability related to the chaotic behaviour. The
other operators display only purely relaxational modes which
therefore cannot be related in any clear way to a shock-wave
solution and the onset of quantum chaos. Systematic meth-
ods to obtain these towers of pole skipping points have been
developed in refs. [228-230, 235, 236].

The pole-skipping frequency ω∗ is universal in the sense
it is independent of the matter action, but k∗ is not. The pole
skipping wave number k∗ depends on the momentum relax-
ation parameter α in eq. (51), chemical potential µ, and other
parameters in the matter action. In particular, k∗ can be real
number or complex number (see Figure 40).

The pole skipping phenomena have been studied in the
SYK models and the conformal field theory [239-241]. The
relations between OTOC and pole skipping points (as well
as the comparison between field theory and gravity analysis)
have been investigated in refs. [228, 229, 239, 242] where
the hyperbolic space was considered to have an analytic con-
trol. However, the final qualitative results are believed to
hold in flat space too. The pole skipping points were studied
also for rotating black holes and topologically massive grav-
ity [243, 244]. For more general and detailed pole skipping
analysis for our axion model, we refer to refs. [230, 234].

Let us conclude with a recent development. The idea of
determining a property coming from a 4-points function us-
ing only a 2-points one it is suspicious and it can hardly
be generic. Indeed, the relation discussed in this section
is valid only for maximally chaotic systems (saturating the
chaos-bound λL ≤ 2πT [245]), but it fails in general as re-
cently shown in ref. [231]. In general, the pole skipping
phenomenon determines only the stress tensor contribution
to many-body chaos which encodes the full chaotic dynam-
ics at maximal chaos but can be decreased in non-maximally
chaotic theories or completely cancelled in integrable sys-
tems [246].

5.5 Bounds on thermal and crystal diffusion

Violations of the bound (152) are reported in the case of the
charge diffusivity DC. More precisely, CC can be made arbi-
trarily small when certain gauge-axion couplings are consid-
ered [111]. This is because the charge transport is controlled
by the Maxwell equation while chaos, and more precisely the
butterfly velocity, is controlled by the Einstein equations. A
priori, it is therefore hard to envisage a universal connection
between the two quantities. The case of the energy diffusivity
is much stronger. Indeed, one can verify that

DT =
f ′hd/2−1

( f ′hd/2−1)′
h′

h

∣∣∣∣
rh

v2
B

2πT
, (169)

with all quantities evaluated at the black hole horizon r = rh.
Since CT can always be resolved in terms of the horizon
metric, there is no strong evidence so far to suggest that
CT ∼ O(1) can be violated. We then take the position that
there exists a universal lower bound for thermal diffusion:

DT ≥ CT
v2

B

2πT
. (170)

It is worth noting that this bound was checked recently in

Figure 40 (Color online) Pole-skipping wave number (k∗) can be real
(red), complex (blue), and pure imaginary (green) for scalar field pertur-
bation in AdS4. The momentum relaxation parameter ᾱ = 2, 2, 1 for
Im[ω̄] = −1,−2,−3 (from top to bottom) respectively. Here, the “bar” vari-
ables denote the quantities scaled by 2πT . Figure taken from ref. [230].
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experiments19) [248-252] and confirmed by several holo-
graphic and field theory computations. Only one subtle vio-
lation has been identified in a class of SYK chains [253], and
its meaning is still under debate. Finally, it is interesting to
notice that this bound can be formally derived using a math-
ematical property of the hydrodynamic expansion known as
univalence [238].

All the diffusion bounds discussed in the previous section
attain to the explicit breaking case. Now, let us move to
the SSB case. For simplicity, we will only focus on the 4-
dimensional axions model with V(X) = XN in the rest of this
subsection. All the results can be directly generalized to the
hyperscaling violating case by simply adding a dilaton scalar.
As was pointed in the previous sect. 4.1, in presence of SSB
the diffusive shear mode becomes sound-like (propagating)
and an additional crystal diffusion mode, associated with the
axions fluctuations in the longitudinal channel, appears. In
this scenario, the only diffusive mode to which the Hartnoll
bound (152) could apply is the latter.

Let us start with the zero charge density case. The crys-
tal diffusive mode is decoupled from the charge sector. Its
diffusion constant is given by [116, 117]

Dϕ = ξ
(K +G − P) χππ

s′ T 2 v2
L

. (171)

Note that this result perfectly matches the numeric data from
the QNMs [117]. Using this expression, one can easily check
that the dimensionless quantity DϕT decreases monotonously
upon increasing m/T . On the other hand, there are three dis-
tinct velocities in the system, vL, vT and vB. The sound’s
ones both grow monotonically with m/T approaching con-
stant values at m/T → ∞; on the contrary, the butterfly ve-
locity decreases with m/T , exactly as the diffusion constant
Dϕ. Using all this information, we can check that the di-
mensionless ratio DϕT/v2

B obeys a universal bound which is
approached at infinite m/T , independently of the value of N
(see Figure 41):

Dϕ T ≥ 1
2π

v2
B. (172)

Furthermore, we find that, at least for N = 3, the linearized
field equations become simple enough to be solved analyti-
cally. In the low temperature limit, the near horizon geometry
is AdS2 ×R2. The butterfly velocity reads v2

B = πT/uh, going
smoothly to be vanishing as m/T → ∞. All the other coeffi-
cients appearing in eq. (171) can be obtained analytically and
they are summarized in Table 1. For more details about the
derivation, one refers to ref. [212]. Through a highly non-
trivial cooperation of these coefficients, we finally achieve

that

DϕT

v2
B

→ 1
2π
≡ AdS2 bound, (173)

Longitudinal

Transverse

Butterfly

5 10 15 20

0.5

1.0

1.5

2.0

D
φ
T
/v
B
2

m/T

m/T

(v
/v
c
)2

(a)

(b)

0.10

0.15

0.20

0.25

0.30

0.35

10 15 205

N

Figure 41 (Color online) (a) Various velocities in the holographic systems
with SSB of translations. We consider V(X) = XN by fixing N = 3. In or-
ange the speed of longitudinal sound; in cyan the speed of transverse sound
and in green the butterfly velocity. All the velocities are normalized by the
conformal value v2

c = 1/2. (b) The dimensionless ratio DϕT/v2
B in function

of m/T for various N ∈ [3, 9] (from black to blue). The dashed line is the
AdS2 value 1/2π. Figure taken from ref. [212].

Table 1 Various coefficients in the low temperature limit, m/T → ∞,
for V(X) = X3 where the spatial translations are broken spontaneously. To
achieve the data, we have assumed uh = 1

Coefficient Value

ξ (3 − m2)2/324

K 9/2

G 3/2

P 3

χππ 3

T (3 − m2)/4π

s′ 8π2/9

vL 1

19) It is worth pointing out that the observation of a Planckian timescale in these experiments can be just the effect of electrons-phonons interactions as in
any common metal [247].
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as m/T → ∞, which is the same value as the thermal diffu-
sion in the EXB case. It would be interesting to understand
if this is just a coincidence or there is some deeper physics
behind.

At finite charge density, the crystal diffusion mode couples
to the charge diffusion mode [138] and the model exhibits
two diffusive modes in the longitudinal channel [145]:

ω1,2 = −i D1,2 k2 + . . . , (174)

where we denote with subscript “1” the mode related to crys-
tal diffusion and with subscript “2” the one related to charge
diffusion at zero density. Repeating the numeric calculations,
one can check that D1 is bounded below again but D2 is not,
a property reminiscent of the situation in presence of gauge-
axion couplings or inhomogeneities. Here, we find a novel
approach to violate the proposed bound on charge diffusion,
i.e., by introducing the phononic dynamics via the SSB of
translational symmetry.

To derive the lower bound above, it was assumed that the
IR geometry has an AdS2 sector. However, the conclusions
should also be valid for the Lifshitz or hyperscaling violating
case by using the IR scaling argument. Finally, we conclude
that the crystal diffusion is similarly bounded below as the
thermal one.

5.6 Diffusion bound from causality

Now let us turn to investigate how another fundamental
principle—causality—that may limit diffusive processes by
setting a universal upper bound on their diffusion constants.
In a relativistic system, as shown in Figure 42, any causal
processes must happen in a region enclosed by a lightcone
whose slope is set by the speed of light c. In non-relativistic
systems, this is not necessarily true. However, there may
also exist some “emergent lightcone” that limits the growth
of operators. In these cases, the speed of operator growth
defines an effective lightcone with speed vlightcone, which in
general does not equal to c. For instance, in Fermi liq-
uids or graphene, the lightcone velocity can be identified
as the Fermi velocity of the quasi-particle excitations, and
vlightcone ≡ vF ≪ c (for graphene ∼ c/300).

The transport of any local conserved quantities must hap-
pen inside this effective causal domain. Consider a diffusive
process that obeys the Einstein-Stokes law:

⟨x2⟩ = D t. (175)

Consider a generic local fluctuation, its position should al-
ways be limited by x ≤ vlightconet for any later time. Com-
bining this and eq. (175), we find that (see the illustration in
Figure 43):
√

D t ≤ vlightcone t. (176)

Past light cone

Hypersurface of the present

Space
Space

Observer

Future light cone

T
im

e

Figure 42 (Color online) In relativity, the causality allowed region is
bounded by the lightcone with a slope c. Credits: Wikipedia, https://en.
wikipedia.org/wiki/Light cone.

x

〈x2〉=Dt

x=vt
t

Figure 43 (Color online) A simple visual derivation of the upper bound on
diffusion from causality. v here is the lightcone speed. The region with grids
is diffusion disallowed.

Here, we should remind the reader of the fact that diffusion
sets in only after the local equilibration. It means that the
eq. (175) can be applied only after a timescale τeq at which
the system reaches local equilibrium. Suppose that the diffu-
sive process begins at t = τeq. It is easy to see that

D ≤ v2
lightcone τeq. (177)

This is an upper bound on any diffusion constant coming
from causality and, in this respect, it has a more formal and
well defined origin that the lower bound (152). Since the
two proposed bounds involve different characteristic veloci-
ties and timescales, some comments are in order.

(1) The lightcone velocity is a microscopic velocity that
in general depends on the UV parameters of the system. For
instance, in a lattice fermionic system, we may do the identi-
fication like vlightcone ∼ vF ∼ J a/~, where J is the interaction

https://en.wikipedia.org/wiki/Light_cone
https://en.wikipedia.org/wiki/Light_cone
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scale and a is the lattice spacing. However, in some relativis-
tic systems, the low energy excitations carrying conserved
charges may also have a microscopic velocity that is not so
UV-sensitive. For example, in relativistic hydrodynamic sys-
tems, the lightcone for collective modes is in general set by
the sound speed vs which can be computed in terms of some
macroscopic quantities, say, the pressure, energy density, etc.
On the contrary, the butterfly velocity, vB is a completely IR
quantity in any chaotic systems, characterizing the speed of
scrambling the local perturbations initially set. It is a finite
temperature effect, hence strongly depends on the tempera-
ture itself. For example, in a strongly coupled system with
the hyperscaling violating IR fixed point, vB ∼ T 1−1/z with
(1 − 1/z) > 0 at low temperatures [217, 254]. Therefore, it is
in general much slower than the microscopic velocity in the
IR region (see the top panel of Figure 41).

(2) The equilibrium timescale τeq characterizes how fast a
generic system gets local equilibration. The Planckian time
τpl ∼ ~

kBT sets a universal minimum for τeq as T → 0.
In weakly coupled systems with long-lived quasi-particles,
equilibration processes are slow. Then, in general, τeq ≫ τpl.
However, for some strongly coupled systems, the equilibrium
timescale may reach its minimum.

A manifest example where the upper bound eq. (177) is
obeyed is linearized relativistic hydrodynamics with a con-
served stress tensor:

T µν = E vµ vν + p∆µν − ησµν. (178)

Using the hydrodynamics method, one can show that in the
transverse channel there is a diffusive momentum mode with
the dispersion relation:

ω = −i
η

E + p k2 + . . . , (179)

which is the result of the momentum conservation. This,
however, suffers the problem of superluminality, because its
group velocity

vg ≡
∣∣∣∣dωdk

∣∣∣∣ ∼ k, (180)

can be arbitrarily large if there is no cut-off on the momentum
k. One well-known solution to this problem20) is to introduce
a fictitious relaxation time τπ which arises from the constitu-
tive relation of the stress tensor to higher order. As a result,
the diffusive equation gets modified as:

ω2 + iωτ−1
π = v2

T k2, v2
T =

η

(E + p) τπ
, (181)

which is known as the Israel-Stewart formalism [256]. Solv-
ing this simple equation, we get

ω =
1

2τπ

(
−i ±

√
4v2

T k2 τ2
π − 1

)
. (182)

This time, the diffusive dynamics sets only when k < kg ≡
1/(2vTτπ). Here, kg is just the k-gap mentioned previously.
Above the kg momentum, momentum propagates ballisti-
cally at the sound speed vT ≤ c. Identifying vT ∼ vlightcone

and τπ ∼ τeq and expanding (182), one can observe that
Dπ = v2

T τπ ∼ v2
lightcone τeq. Consequently, the causality re-

quirement

v2
T ≤ c2 (183)

is equivalent to an upper bound on the diffusion constant

Dπ ≤ c2τπ, (184)

which takes exactly the form of eq. (177), with c being the
relativistic lightcone velocity and τπ the equilibration time.

In holographic systems, the equilibration process is dom-
inated by the first non-hydrodynamic modes21). Then, we
may identify

τeq ∼
1

Im
[
ωQNM

] , (185)

where ωQNM is the complex frequency of the first non-
hydrodynamic QNM. Back to the holographic axion model,
the longitudinal sound speed plays the role of the lightcone
velocity, i.e., vL ∼ vlightcone. Then, one can directly check the
upper bound by computing the black hole QNMs (see how to
extract the local equilibrium timescale τeq in Figure 44). The
results for zero density and charged case have been shown in
Figure 45, respectively. It is obvious that the upper bound on
diffusion from causality (177) is respected for all the cases.

Then, above analysis suggests that the diffusion constants
may always be constrained in an intermediate range:

v2
B τpl ≤ D ≤ v2

lightcone τeq. (186)

In Figure 46, we show a “sandwich-like” illustration for this
feature. Note that for many cases of holographic systems or
quantum critical systems, the equilibrium time reaches the
minimum, τeq ∼ τpl and the butterfly velocity determines the
lightcone speed (assuming that there is no quasiparticle or
well-defined microscopic velocity), for which we may have
that D ∼ v2

Bτpl, i.e., the diffusion allowed region shrinks to
a single point. Recently, ref. [257] proposed to define the
velocity scales in the diffusive bound as the ratio between the

20) It is actually well-known that a superluminal group velocity does not imply any violation of causality [255]. This is a “problem” only for numerical
simulation using linearized relativistic hydrodynamics as initial conditions. There is absolutely no fundamental nor physical problem here.

21) The hydrodynamic modes are gapless, hence do not set any finite timescale for relaxations. Then, we should look at the gapped modes. Here, the lowest
lying gapped QNM is what we term the first non-hydrodynamic mode.
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frequency and the momentum setting the radius of conver-
gence of the linear hydrodynamic theory.

Im
[ ω
]

τ

First non-hydrodynamic mode

eq
-1
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Figure 44 (Color online) The local equilibrium timescale is extracted from
the imaginary part of the first non-hydrodynamic mode as in eq. (185). The
arrow indicates its motion as the increase of m/T .
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Figure 45 (Color online) The upper bound on diffusion. c is the speed of
light and vL is the speed of longitudinal sound. (a) The dimensionless ratio
at zero density, where D1 is the crystal diffusion and D2 the charge diffusion.
(b) The dimensionless ratio at finite density, where the blue points are for
µ/T = 3 and the red for µ/T = 5.
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Figure 46 (Color online) The diffusion allowed region is bounded by quan-
tum mechanics and causality.

5.7 A bound on stiffness

Now, let us move to check if there is also some constraint on
the propagating speed of the longitudinal sound modes. In
some previous studies [258, 259], it has been proposed from
the holographic duality that there exists an upper bound on
speed of sound modes, which is set by its conformal value,
vc ≡ 1/(d − 1) for d dimensional system. This proposal
has been later related to the physics of neutron stars, very
compact objects which display an extremely stiff equation of
state [260]. This bound however has been later checked in
various holographic models and its violation has been ob-
served both at finite charge density case or in presence of
multi-trace deformations [261, 262].

Note that all these previous discussions were confined to
fluid systems with no long-range order, where the longitudi-
nal sounds are simply pressure waves, i.e.,

v2
L =

∂p

∂E . (187)

Note that the r.h.s. of eq. (187) also defines the stiffness of
the system

κ ≡ ∂p

∂E . (188)

This then means that the bound on the sounds is simultane-
ously a bound on the stiffness:

κ ≤ κc, κc ≡
1

d − 1
. (189)

In the holographic axion model, the SSB of translations
results in a non-zero shear elasticity G and the dual systems
on boundary is a solid (see also eq. (111)). The presence
of a finite G speeds up the longitudinal sounds, which be-
comes [128]

v2
L = v2

c + v2
T ≥ v2

c . (190)
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The first equivalence is a direct consequence of conformal in-
variance, i.e., ⟨T µ

µ ⟩ = 0. Again, this is a new way to break the
proposed bound on the sound speed. Nevertheless, we will
verify that the result above does not imply a violation of the
stiffness bound. That is to say the bounds conjectured in refs.
[258, 259] has to be viewed as a limit to the stiffness instead
of a bound on the speed of sound.

As was revealed earlier, in presence of the finite strain
pressure P, the total pressure ⟨T xx⟩ is no longer equal to
the thermodynamic pressure p. For the conformal solid, the
traceless stress tensor implies that

⟨T xx⟩ = p + P = 1
d − 1

E, P > 0. (191)

Applying the definition of the stiffness, we obtain

κ ≡ ∂p

∂E =
1

d − 1
− ∂P
∂E . (192)

For the holographic model V(X) = XN with N > 3/2 and
d = 3, one can easily show that the second term in the last
step is always positive by using

P =
m2 N u2N

h

(2 N − 3) u3
h

, E = 1
u3

h

−
m2 u2N

h

(3 − 2N) u3
h

. (193)

To make it clearer, we plot the final result of eq. (192) in
Figure 47. It confirms our statement that

κ ≤ κc, (194)

independently of N. For N < 3/2, the phonons are destroyed
by the external source that breaks spatial translations, and
there is no low energy modes propagating at the speed set by
the stiffness. Note also that when N < 3/2, both of G, P
become negative, implying the existence of a dynamical in-
stability. Hence, we will not view this as a violation of the
stiffness bound.
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Figure 47 (Color online) The stiffness κ for N ∈ [3, 9] (from black to
yellow) in function of m/T . Figure taken from ref. [212].

6 Holographic pinned structures

6.1 Pseudo-Goldstone modes

So far, we have focused on two very distinct symmetry
patterns: (1) the explicit breaking of translations, giving
rise to the physics of momentum dissipation and the Drude
model; (2) the spontaneous symmetry breaking of transla-
tions, related to the physics of elasticity and the dynamics of
phonons. In the previous sections, we have explained how
to technically achieve these two limits using the holographic
axion model.

Now, we want to make a step forward and combine the
two in what is called the pseudo-spontaneous regime. As
we will see, the holographic axion model is rich enough
to encompass also this different situation. From the phys-
ical point of view, this regime is realized in QCD for the
Pions [263], where chiral symmetry is both broken sponta-
neously and explicitly, giving a small mass to the correspond-
ing pseudo-Goldstones and in the so-called pinned charge
density waves [11], where impurities produce a pinning fre-
quency for the corresponding phason modes.

Indicating with ⟨EXB⟩ the explicit breaking scale, and
with ⟨SSB⟩ the spontaneous one, we want to work in the limit
of

⟨EXB⟩/T ≪ 1 ,
⟨EXB⟩
⟨SSB⟩ ≪ 1, (195)

such that the corresponding charge (momentum in this case)
is “approximately” conserved (corresponding to a weak ex-
plicit breaking mechanism) and a pseudo-Goldstone mode
can be still defined. Let us first address the question of how to
realize this limit within holography and later describe in de-
tail which are the phenomenological consequences. First, let
us give an intuitive argument taken from ref. [264]. What is
the substantial difference between the explicit breaking and
the spontaneous one? The explicit breaking appears at the
level of the fundamental action of the theory and it relates
to the presence of an operator whose source breaks the spe-
cific symmetry. The spontaneous breaking does not relate to
the action of the system but rather to its ground state, the
preferred solution in which the system wants to sit. In a
sense, the EXB can be thought as an ultraviolet (UV) break-
ing, while the SSB as an infrared (IR) breaking. This idea is
beautifully encoded in the holographic picture by considering
that the UV dynamics is localized close to the AdS bound-
ary, meanwhile the IR dynamics nearby the black hole hori-
zon. One could think, for example, about the famous holo-
graphic model for superconductivity [265] where the mass of
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the gauge field (determining the breaking of the U(1) sym-
metry) is localized close to the horizon and it is zero at the
boundary (i.e., no explicit breaking).

The idea here is exactly analogous but this time, since we
are dealing with translations, is the mass of the graviton that
has to be considered22). In particular, one would naively con-
nect the explicit breaking of translations with the presence
of a finite UV mass, and the spontaneous breaking with the
presence of a growing mass peaked in the IR. Therefore, in
this picture, the pseudo-spontaneous regime should be ac-
complished by considering a bulk configuration where the
graviton mass in the UV is small and it rapidly grows in the
IR (see Figure 48).

In order to have such a situation, one could consider a po-
tential of the form:

V(X) = X + β XN , β ≫ 1, (196)

since the graviton mass is proportional to m2
g(u) ∼ VX(X)

and the argument X ∼ u2 vanishes at the boundary and grows
towards the black hole horizon.

This intuition turns out to be correct and it can be for-
malized better using the language of the previous sections.
Given a potential V(X) = XN , we know now that the break-
ing of translations is explicit if N < 5/2 and spontaneous
if N > 5/2. Therefore, to reach the pseudo-spontaneous
regime, we need to utilize a potential of the type:

V(X) = XN + β XM , N < 5/2, M > 5/2. (197)

mg (u)

Spontaneous

Explicit

UVIR

Figure 48 (Color online) The intuitive picture relating the spontaneous and
explicit breaking of translations with the profile of the graviton mass in the
holographic bulk. Picture taken from ref. [264].

This is exactly what has been done in ref. [264] which first23)

studied the dynamics of pinning phonons in holography. Cu-
riously24), this model was considered long time before, in ref.
[21], but the connection with the pseudo-spontaneous break-
ing of translations has not been given therein. A full under-
standing of this regime has appeared later in ref. [140]. A
slightly different way to realize this regime can also be found
in ref. [119].

Let us analyze in detail what one would expect in this
regime. Following the hydrodynamic description of ref.
[133], in presence of both explicit and spontaneous break-
ing of translations, the low-energy hydrodynamic spectrum
at zero momentum is described by the solutions of the equa-
tion:

(Ω − iω) (Γ − iω) + ω2
0 = 0, (198)

where Γ is the momentum relaxation rate (how fast momen-
tum is dissipated), Ω the phase relaxation rate (measuring
the lifetime of the Goldstones) and ω0 the so-called pinning
frequency—the mass of the (not anymore) Goldstone modes.
The two modes involved in the quadratic eq. (198) are the
transverse momentum π⊥ and the transverse component of
the Goldstone field. Solving eq. (198) we obtain a pair of
excitations whose frequencies are given by

ω± = −
i
2

(Γ + ω) ± 1
2

√
4ω2

0 − (Γ −Ω)2. (199)

For 4ω2
0 − (Γ − Ω)2 < 0, the two modes lie along the imag-

inary axes; they are purely decaying modes. Exactly at
4ω2

0 − (Γ − Ω)2 = 0, the two modes collide on the imagi-
nary axes and for 4ω2

0 − (Γ − Ω)2 > 0 they move onto the
complex plane acquiring a finite and growing real part. This
dynamics is perfectly obeyed by the holographic models, see,
for example, Figure 49.

Interestingly, this collision is not an exclusive feature of
the pseudo-spontaneous regime. Indeed, this collision is the
same giving rise to the incoherent-coherent transition in the
models with pure explicit breaking [88]. Rather, a peculiar
characteristic of the pseudo-spontaneous regime is the fact
that such collision happens at low frequency, within the so-
called hydrodynamic regime. Increasing the amount of spon-
taneous breaking, both Γ and Ω become smaller and the col-
lision happens close to the origin ω = 0. This tendency is
shown explicitly in Figure 50. Notice that in the purely spon-
taneous regime, both modes would collapse at the origin and
form the propagating shear sound.

22) See ref. [266] for a detailed analysis of the Ward’s identities in the pseudo-spontaneous regime.
23) The same day, a work [267] studying this regime in the context of holographic helical lattices was posted in arXiv.
24) It is also funny to notice that historically this regime was achieved before the fully spontaneous one [115], which for technical reasons has been the

most difficult to construct.
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Figure 49 (Color online) The dynamics of the low-energy hydrodynamic
modes in the pseudo-spontaneous regime. The dance of the modes is per-
fectly described by eq. (198). Figure adapted from ref. [140].
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Figure 50 (Color online) The collision between the two modes by moving
towards the pseudo-spontaneous regime. Figure adapted from ref. [140].
Notice how this dynamics was already present in ref. [21].

Finally, one can perform also the computation at finite
momentum and verify the dispersion relation of the various
modes. As shown in Figure 51, the pseudo-phonon mode
shows a characteristic dispersion:

Re [ω] =
√
ω2

0 + v2 k2, (200)

typical of massive modes (cf. Pions).
Before moving to the next subsection, it is interesting to

analyze how the parameters entering in eq. (198) depend on
the explicit and spontaneous breaking scales, ⟨EXB⟩, ⟨SSB⟩.
Combining hydrodynamic and holographic arguments, we

can derive a simple general formula:

Γ +
ω2

0

Ω
= m2 VX

2π T
+ O(m4). (201)

Assuming the benchmark potential for the pseudo-
spontaneous regime V(X) = X + βXN we can also obtain
that

Γ =
m2

2π T
∼ ⟨EXB⟩2 + . . . , (202)

ω2
0

Ω
=

m2 βN
2π T

∼ ⟨SSB⟩2 + . . . . (203)

Moreover, using the numerical data (see Figure 52), we can
prove robustly that

ω2
0 = ⟨EXB⟩ ⟨SSB⟩, (204)

as imposed by the Gell-Mann-Oakes-Renner (GMOR) rela-
tion [268] (cf. Pions).

Notice that combining eq. (203) together with the GMOR
relation (204) we find immediately that

Ω ∼ ⟨EXB⟩
⟨SSB⟩ ! (205)

This is surprising for various reasons and it will be the topic
of the next subsection.

6.2 Phase relaxation and universality

The fact that the phase relaxation rate is proportional to the
explicit breaking scale is per se very surprising. In general,
phase relaxation is induced by the presence of elastic defects
such as dislocations and disclinations and it has nothing to
do with the explicit breaking of momentum. It comes from
the fact that the displacement vectors are not anymore single-
valued and a non trivial Burgers vector appears.

Pseudo
phonon

R
e
[ ω

/T]

k/T

Figure 51 (Color online) The dispersion relation of the pseudo-phonon.
Figure adapted from ref. [264].
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Figure 52 (Color online) The numerical confirmation of the GMOR rela-
tion (204). Figure adapted from ref. [140].

First, let us notice how we have already encountered part
of the scalings in eq. (205) in the previous section, when we
were discussing the collision of the modes. As also shown
in Figure 49, the collision moves towards the origin increas-
ing the strength of the SSB and one of the reason is exactly
that the second pole, approximately located at ω = −iΩ,
moves upwards. This is in perfect agreement with the fact
that Ω is inversely proportional to such strength and it be-
comes smaller by increasing the amount of SSB. Second, it is
important to emphasize that the relation (205) has been con-
firmed numerically in a large class of holographic axion mod-
els [90,140] (and in similar models [147,148,165,269,270]).
This confirms the universal character of this scaling.

The story is even more fascinating, since the authors of
ref. [148] motivated and proposed an even more universal
relation:

Ω = M2 ξ =
ω2

0 χππ

G
ξ, (206)

where M is the mass of the pseudo-Goldstone mode and ξ

the dissipative parameter determining the diffusion constant
of the Goldstone mode in the un-relaxed theory. Using the
fact that at leading order the Goldstone diffusion is given by
Dϕ = G ξ and that v2

T = G/χππ, we can re-write eq. (206) as:

Ω =
ω2

0 Dϕ

v2
T

. (207)

Notice how eq. (206) is compatible with the scalings dis-
cussed and derived in the previous paragraphs:

⟨EXB⟩
⟨SSB⟩︸  ︷︷  ︸
Ω

∼ ⟨EXB⟩⟨SSB⟩︸          ︷︷          ︸
ω2

0

1
⟨SSB⟩2︸   ︷︷   ︸

ξ/G

. (208)

In the context of axions models, the universal rela-
tion (206) has been confirmed numerically for various
choices of the potential V in refs. [90, 140] (see Figure 53).

Importantly, the dissipative coefficient ξ can be derived an-
alytically in terms of horizon data and it generally reads:

ξ

G
=

4π s T 2

2 m2 χ2
ππ VX

. (209)

Combining this result, with the previous eqs. (201) and (203),
one can immediately prove that for the benchmark model
V(X) = X + βXN :

ΩG
ω2

0 ξ χππ
=

1 + N β

N β
→︸︷︷︸
β→∞

1, (210)

where the pseudo-spontaneous limit β → ∞ has been taken.
In summary, the universal relation (206) can be proven ex-
plicitly, in agreement with the numerical data (see Figure 53).

Finally, the universal relation (206) has been formally
derived in the context of dissipative EFT using Keldysh-
Scwhinger techniques in ref. [164] (see also ref. [149]).
It turns out that this universal relation arises directly from
the intertwined symmetry breaking pattern between space-
time translations and internal shifts. From the holographic

Ω
/T

M 2  /Tξ

Figure 53 (Color online) Numerical verification of the universal relation
(206). Figure taken from ref. [140].
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point of view, this intertwined dynamics has been also dis-
cussed in similar models in refs. [271, 272].

6.3 Optical conductivity and pinning

Very importantly, in presence of a finite charge density, the
physics just described couples to the dynamics of the elec-
tric current and induces important effects in the electric con-
ductivity. In particular, the low frequency behaviour of the
electric conductivity is given by

σ(ω) = σ0 +

ρ2

χππ
(Ω − iω) − ω2

0 γ [2 ρ + γχππ(Γ − iω)]

(Γ − iω) (Ω − iω) + ω2
0

,

(211)

where σ0 is the incoherent conductivity [84] (the one coming
from the incoherent current and not sensitive to the dynam-
ics of momentum), ρ the charge density and γ a dissipative
parameter coming from the coupling between the electrical
current and the Goldstone mode. Beyond the complicated
expression for the optical conductivity, the most important
feature arising from eq. (211) is the spectral weight transfer
from zero frequency to an intermediate IR frequency which
is governed by ω0, the mass of the Goldstone mode. More
specifically, the real part of the optical conductivity displays

a peak at a certain real frequency ω∗ =
√

4ω2
0 − (Γ −Ω)2.

In other words, the Drude peak moves towards higher fre-
quency and, because of the sum-rule, the DC component of
the conductivity decreases at the same time.

This dynamics is shown in the top panel of Figure 54. The
position of this peak plays an important role in the proposal
that bad metals can be understood as strongly coupled mate-
rial with fluctuating charge density waves relics. More pre-
cisely, in ref. [134], it has been proven that in order for this
theory to describe the optical properties of strange metals the
peak must move to larger frequencies increasing the temper-
ature. Not only that, but it has been proposed that the energy
scale controlling such peak is the same as the one controlling
the linear in T resistivity of those materials, the Planckian
time τ = ~/kBT . Accordingly to their analysis of the exper-
imental data, the position of the peak in the optical conduc-
tivity should increase linearly with the temperature.

Unfortunately, this feature is not recovered in the holo-
graphic axion model [140]. It was found that the optical
conductivity follows a more standard and natural transition
towards an insulating state. Increasing the temperature, the
system tends to become more metallic, the DC conductivity
wants to grow and the optical conductivity wants to return to
its original Drude shape (see the bottom panel of Figure 54).
This drawback can be cured by a fine-tuned generalization,
involving a dilatonic coupling, and displaying this behaviour
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Figure 54 (Color online) (a) The shift of the Drude peak to finite interme-
diate frequencies as a consequence of the pseudo-spontaneous dynamics. (b)
The temperature dependence of the conductivity peak. Figures taken from
ref. [140].

in a very small range of temperatures (see the inset of Fig-
ure 3 in ref. [148]).

7 Phenomenology

7.1 Metal-insulator transitions

The metal-insulator transition (MIT) is one of the oldest as
well as the fundamentally least understood problems in con-
densed matter. Although many theories have been proposed,
the mechanisms toward the metal-insulator transition remain
controversial and somewhat incomplete (see refs. [273, 274]
for reviews). It is obvious that a good metal and a good in-
sulator are very different physical systems, characterized by
quite different elementary excitations. In particular, in the in-
termediate regime of the transition, different types of excita-
tions coexist and simple theoretical tools prove of little help.
Since the discovery of high temperature superconductivity,
the study of metal-insulator transition came to the strong
correlation era, for which physical pictures based on weak-
coupling approaches prove insufficient or even misleading.
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Holography provides a new approach to tackle states of
quantum matter without quasiparticle excitations, for which
the transport properties deviate strongly from conventional
approach described, in particular, by Fermi liquid theory.
From an EFT point of view, the holographic axion model
concerns broken translation invariance and implements non-
perturbative renormalization group flows. To realise a holo-
graphic metal-insulator transition, one should first overcome
the obstruction found in ref. [275] where it was proven that in
some simple holographic theories with arbitrary spatial inho-
mogeneity (disorder) the electrical conductivity is bounded
from below by a universal minimal conductance. Therefore,
one can not obtain an insulating phase where the electric DC
conductivity at zero temperature is very small or eventually
zero. It was then found in ref. [113] that it is possible to intro-
duce additional couplings between the charge and translation
breaking sectors allowed by the symmetries (see also refs.
[110, 111] ). Then a clear disorder-driven metal-insulator
transition was observed [113].

The minimal holographic model of a metal-insulator tran-
sition is described by eq. (47) with Z = 0

S =
∫

d4x
√−g

[
R
2
− Λ − Y(X)

4e2 FµνFµν − m2V(X)
]
. (212)

The consistency of a theory imposes some constraints on
the couplings that appear in the Lagrangian. For the the-
ory (212), it was shown that V(X) and Y(X) should satisfy
the following constraints [113]:

V ′(X) > 0, Y(X) > 0, Y ′(X) < 0, (213)

in which Y ′(X) < 0 plays a key role in triggering a metal-
insulator transition25). More recently, a much stringent con-
straint was found for Y in ref. [114]. Without loss of gener-
ality, one can parametrize the couplings Y and V in the fol-
lowing expansion as X → 0 (weak momentum dissipation):

Y(X) = 1 − γ X + O(X2), V(X) =
1

2m2 X + O(X2), (214)

with γ a constant. By requiring a positive definite longitudi-
nal conductivity in the presence of charge density and mag-
netic field restricts the allowed parameter space of theory pa-
rameters.

0 6 γ 6 1/6⇒ −1/6 6 Y ′(0) 6 0. (215)

The working and phenomenological definition of a metal
versus an insulator behavior is given by

metal:
d Rxx

d T
> 0, insulator:

d Rxx

d T
< 0, (216)

where Rxx is the longitudinal DC resistivity. Some generic
features without being concerned with details of the holo-
graphic theory were uncovered in ref. [114]. In particular,
the temperature dependence of resistivity is found to be well
scaled with a single parameter T0, which approaches zero
at some critical charge density ρc, and increases as a power
law T0 ∼ |ρ − ρc|1/2 both in metallic (ρ > ρc) and insulat-
ing (ρ < ρc) regions in the vicinity of the transition. Similar
features also happen by changing the disorder strength α as
well as magnetic field (see Figure 55). It was also found that
the metallic and insulating curves are mirror symmetry in the
high temperature regime:

Rxx(ρ − ρc, T ) = 1/Rxx(ρc − ρ, T ). (217)

These results suggest that the mechanism responsible for the
temperature dependence of conductivity on both insulating
and metallic sides of the transition would be the same, or it
would originate with some fundamental feature that is com-
mon to both.

The holographic results are reminiscent of the scaling be-
haviors for resistivity near the transition point reported in
some two dimensional samples and materials, which shows
the collapse of data into two separated curves and displays
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Figure 55 (Color online) Temperature dependence of the resistivity versus
disorder strength at zero magnetic field for the model with Y = 1 − X

6 ,V =
X

2m2 . (a) The metal-insulator transition driven by the disorder strength α. (b)
Scaling of resistivity with scaled temperature T/T0. The collapse of data
into two separated curves both in the metallic and insulating sides is man-
ifest. Other parameters are chosen by e = ρ = 1. Figure taken from ref.
[114].

25) See e.g., refs. [20, 121, 267, 276-279] for other holographic realizations of metal-insulator transitions driven via other mechanisms.
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remarkable mirror symmetry over a broad interval of tem-
peratures [280-283]. This observation has been interpreted
as evidence that the transition region is dominated by strong
coupling effects characterizing the insulating phase [284].
Nevertheless, the dependence of T0 near ρc is a power law
with the power that is different from holographic result 1/2,
suggesting that holographic theory (212) falls into a different
universality class from those materials. A natural extension is
to consider a holographic setup that is asymptotically Lifshitz
with a dynamical exponent z which parametrizes the relative
scaling of space and time, making the model compatible with
experimental data.

The phase diagram gets richer and incorporates several
phases of matter depending on the parameters. As shown
in Figure 56, there are as many as four different phases in the
temperature-disorder phase diagram: good metal (a), bad or
incoherent metal (b), bad insulator (c) and good insulator (d).
Some representative examples of the AC electric conductiv-
ity for each phase are shown in Figure 57. A coherent metal-
lic phase with a sharp Drude peak is obtained for small α. As
α increases, the Drude peak is suppressed and one arrives at
an incoherent metallic phase where there is no clear and dom-
inant localized long lived excitation, see the green curve of
Figure 57. When the disorder is strong enough, the spectral
weight transfers to the mid-infrared, resulting in an insulat-
ing behavior. As a consequence, the DC conductivity keeps
decreasing, and then triggers the transition from bad insulator
to good insulator. Therefore, there is a clear disorder-driven

Figure 56 (Color online) Phases diagram for the model with Y = 1− X
6 ,V =

X
2m2 in the absence of magnetic field. Four regions are denoted by (a) good
metal, (b) incoherent metal, (c) bad insulator and (d) good insulator, respec-
tively. Other parameters are chosen by e = ρ = 1. The figure is updated from
ref. [114].

transition from a coherent metal with a sharp Drude peak to
a good insulator with a tiny or vanishing DC conductivity at
zero temperature.

The investigation of transport in this minimal holographic
setup of a metal-insulator transition uncovered some inter-
esting features, shedding light on this interesting transition
and the physical mechanism that drives it. There are still
many interesting questions. There are as many as four differ-
ent phases in the temperature-disorder phase diagram of Fig-
ure 56, but all phases share the same symmetries of the under-
lying theory, and thus beyond a simple Ginzburg-Landau de-
scription. Some observables were examined in order to char-
acterise different phases, but failed [114]. It is still an open
question to find a good probe to the metal-insulator transi-
tions. The scaling exponent of T0 from the holographic setup
is different from the experiments which yielded scaling ex-
ponents between 1.25 and 1.6 [280-283]. It is interesting to
generalise the model to obtain an exponent that is compatible
with experimental observation. It is also worth studying the
thermal response and the mechanical response.

7.2 The scalings of strange metals

The anomalous metallic transport in the high-temperature
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Figure 57 (Color online) Representative examples of the AC electric con-
ductivity σxx with unitary charge density ρ = 1. There are four phases: (a)
good metal (red) with (α = 0.6, T = 0.5), (b) incoherent metal (green) with
(α = 1.5,T = 0.5), (c) bad insulator (blue) with (α = 4.5,T = 0.3) and (d)
good insulator (purple) with (α = 7.8,T = 0.05). Figures taken from ref.
[114].
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superconducting cuprates is one of the most remarkable puz-
zles in condensed matter physics. The so-called strange
metal phase is characterized by universal temperature scal-
ings which are robust across widely different systems, and
are believed to be controlled by an underlying strongly inter-
acting quantum critical sector. Its anomalous features include
a linear temperature dependence for the resistivity Rxx ∼ T
and the scaling of the Hall angle cot(ΘH) ∼ T 2 (see Figure 58
[285]). Realizing the anomalous temperature dependence of
both Rxx and cot(ΘH) at once within a holographic model has
proven to be a challenge. Although many efforts were made,
standard Einstein-Maxwell-dilaton (EMD) theories have thus
far been unable to give the expected anomalous scalings of
the strange metal (see e.g., refs. [100, 104, 286]). As we are
dealing with strongly correlated electron matter, it may be
crucial to take into account the nontrivial dynamics between
the charge degrees of freedom to reliably capture transport in
these phases [287-289].

The first consistent holographic realization of the strange
metal scalings of the resistivity and Hall angle was given in
ref. [290] by working with a string-theory-motivated gravi-
tational model encoded by the Dirac-Born-Infeld (DBI) ac-
tion26). The motivation is to describe a strongly coupled
quantum theory containing a sector of dilute charge carriers

θ
c
o
t(

  
H
) 

in
 1

0
 T

Figure 58 Experimental observation of the cuprates scalings for the in-
plane resistivity Rxx ∼ T and inverse Hall angle cot(ΘH) ∼ T 2. Figures
taken from ref. [285].

that interact amongst themselves as well as with a quantum
critical bath. The charge degrees of freedom is treated as a
probe when compared with the larger set of neutral quantum
critical degrees of freedom. The gravitational theory takes
the generic form

S =
∫

d4x
√−g[Lbath +Lcharge]. (218)

The bath sector Lbath is supported, for example, by a neu-
tral scalar and axionic scalars. The charge sector Lcharge de-
scribes the dynamics of a U(1) gauge field, taking into ac-
count non-linear interactions between the charged degrees of
freedom. In ref. [290], the bath geometry is nonrelativistic
and hyperscaling-violating supported by a neutral scalar field
and two axions ϕI . In the so-called probe limit for which the
backreaction of the DBI interactions on the geometry can be
safely neglected, the nonlinear dynamics of the gauge field
sector allows a clean scaling regime for the cuprate strange
metals:

Rxx ∼ T, cot(ΘH) =
Rxx

Ryx
∼ T 2, (219)

with Ryx the Hall resisitivity.
Because of its richness, the DBI theory can support a wide

spectrum of temperature scalings. Therefore, one can use
similar construction to realize other scaling behaviors ob-
served in strange metals. Recently, novel strange metal be-
havior was observed in the pnictides [291], for which the
magnetic field B plays the same role as the temperature
T (see also the observation of linear-in-field resistivity in
cuprates [292]). The measurements imply that the in-plane
resistivity behaves as [291]:

Rxx =

√
γ T 2 + η B2, (220)

with γ and η two constants. This striking behavior was real-
ized from holography in ref. [293]. The holographic theory
also predicts a Hall resistivity in the same temperature regime
that is linear in the magnetic field and approximately temper-
ature independent. This idea has been generalised to include
a generic nonlinear gauge field sector in ref. [294]. A particu-
larly simple nonlinear model whose structure is natural from
the point of view of the DBI action was found to be able to
realise the temperature scalings of the entropy ∼ T , resistiv-
ity ∼ T , Hall angle ∼ T 2 and weak-field magneto-resistance
∼ T−4 observed in cuprates.

The underlying mechanism for above holographic con-
struction relies on having a quantum critical IR fixed point
and on the nonlinear structure of the interactions between the

26) Note that the strangle metal scalings have also been realized in the Einstein-Maxwell-dilaton-axion model with a hyperscaling IR geometry only for a
special value of B [95].
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charges. It would be desirable to understand the underlying
dynamics and to match the holographic description with the
expected interactions of electrons in real materials, building
intuition for the mechanisms underlying the unconventional
behavior of strange metals. The first step towards connecting
to phases and critical points of Hubbard model [295] was ad-
dressed [296]. The realisation of strange metal scalings using
holography beyond the probe approximation is still an open
question. It is fair to say that a consensus about the strange
metals phenomenology is far from being reached both from
the holographic point of view [297] and the condensed matter
one [298].

7.3 Superconductivity

The holographic superconductors model [265, 299] is one of
the first and most popular frameworks in Applied Hologra-
phy (see ref. [66] for a recent review). Its simplicity comes
nevertheless with a price. In particular, because of the trans-
lational invariance of the background, both the normal state
and the broken SC phase exhibit an infinite conductivity:

σ(ω) = σ0 +
i
ω

(
ρs

µ
+

ρ2
n

µρn + sT

)
, (221)

with ρn and ρs respectively the normal and superfluid den-
sities. The first infinity comes from the superfluid flow
while the second from translational invariance. This draw-
back makes it impossible to distinguish the two phases at
the level of electric transport without a very careful analysis.
To avoid this problem, the power of the holographic axion
model was originally used to dissipate momentum and had
a normal state with finite DC conductivity. The holographic
superconductors model was endowed with the axion fields in
refs. [300-302] and further explored in refs. [303-306].

Once momentum dissipation is introduced, via the axion
scalars, the expression (221) gets modified as:

σ(ω) = σ0 +
i
ω

ρs

µ
+

ρ2
n

µρn + sT
i

ω + i Γ
, (222)

where Γ is the usual momentum relaxation rate. In the nor-
mal phase, ρs = 0, the DC conductivity is finite and it be-
comes infinite only for T < Tc. The corresponding AC fi-
nite frequency conductivity is shown in Figure 59. Above
the critical temperature, there is no 1/ω pole in the imag-
inary part of conductivity thanks to a finite α. Below the
critical temperature, a simple pole (corresponding to the
second-sound in superconductors) appears in the imaginary
part of the conductivity, yielding—through Kramers-Kroenig
relations—the appearance of a delta function at zero fre-
quency in the real part. In other words, the DC conductivity
goes to infinity, as we would expect for a superconductor.
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Figure 59 (Color online) α/µ = 1, T/Tc = 3.2, 1, 0.89, 0.66, 0.27 (dotted,
red, brown, green, blue). Figures adapted from ref. [301]

Interestingly, the presence of momentum dissipation has
two important effects (see Figure 60): (1) it shrinks the area
in the phase diagram where the superconducting instability
can appear; (2) it decreases the value of the superconducting
condensate.

There is an interesting open problem regarding holo-
graphic superconductors. In high-temperature superconduc-
tors and some conventional superconductors, there is a uni-
versal property called Homes’ law [307]. It relates three
quantities: the superfluid density at zero temperature (ρs),
the phase transition temperature (Tc), and the DC conduc-
tivity in the normal phase close to Tc (σDC) with a material
independent universal number (C). i.e.,

ρs(T = 0) = CσDC(Tc) Tc. (223)

Here, the DC conductivity is involved, so momentum relax-
ation is necessary to study the Homes’ law and the axion
model is obviously the simplest to consider. In the con-
text of the axion model, the universality of C in eq. (223)
means C is independent of α, the strength of momentum re-
laxation, which can be interpreted as a parameter effectively
specifying the microscopic material properties. However, it
turns out the Homes’ law does not work in the holographic
superconductor-axion model [304]. The Homes’ law has
been studied also in other models, e.g., helical lattices [308]
and Q-lattices [309]. In these cases, the Homes’ law holds
for a window of momentum relaxation parameters, but there
is still not a good understanding of this mechanism from the
holographic (geometric) viewpoint. To remedy this situation,
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it would be advantageous to have a holographic model with
robust linear-T -resistivity up to high temperature [310, 311]
because in this case the factor Tc in eq. (223) would can-
cel. It seems that the strong momentum relaxation is also a
necessary ingredient27).

Finally, let us emphasize that all the homogeneous models
do not display any commensurability effects [312]. In fact,
because of their homogeneous nature, and contrarily to stan-
dard periodic lattices, they do not select any preferred wave-
vector. In order to introduce such effects in the holographic
framework, one should consider more complicated and fully
inhomogeneous models [313] which go far beyond the scope
of this review.

7.4 Conductivities at finite magnetic field

As explained in sect. 7.2, conductivities at finite magnetic
field such as the Hall conductivity, the Nernst effect, and the
Hall angle, play important roles in understanding strongly
correlated electron systems such as cuprates. Indeed, trans-
port in strongly correlated material has been one of the lead-
ing themes of the early AdS/CMT era [314-316]. Here,
a constant magnetic field B is introduced by the following
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Figure 60 (Color online) The effects of momentum dissipation on the phase
diagram of the holographic superconductors model and on the SC conden-
sate. ∆ is the conformal dimension of the complex bulk scalar and q is its
charge. Figures adapted from ref. [301].

background gauge potential:

Aµdxµ =
B
2

(x dy − y dx). (224)

However, in these pioneering works, momentum relaxation
was lacking or not treated in a full manner. To remedy it, the
axion model was employed [29,104-106], where the electric,
thermoelectric, and thermal conductivity at finite magnetic
field have been computed. For a general class of Einstein-
Maxwell-Dilaton-Axion theories all DC conductivities were
expressed in terms of the black hole horizon data. In par-
ticular, for the dyonic black hole modified by axions, the
background solution was analytically obtained and the AC
electric, thermoelectric, and thermal conductivity were nu-
merically computed.

For the dyonic black hole, the Hall angle (219) is com-
puted as [100, 106]:

cot(ΘH) =
α2

uhµB
u2

hB2 + (µ2 + α2)

u2
hB2 + (µ2 + 2α2)

, (225)

where µ is chemical potential, uh is horizon location, and α
is the momentum relaxation parameter. Because uh is a com-
plicated function of T, B, µ, α it is not easy to figure out the
T dependence of the Hall angle. By numerical analysis it
was found that the T dependence of the Hall angle ranges
between T 0 and T 1. In the large T regime, uH ∼ 1/T so the
Hall angle always scales as T . Therefore, this standard but
simple model does not exhibit the characteristic Hall angle
behavior ∼ T 2. For an improved version displaying a T 2-
Hall angle, see eq. (218) and discussion therein.

There is another important phenomenon to consider,
where both the magnetic field and momentum relaxation are
essential. It is the Nernst effect. In the presence of a mag-
netic field, a transverse (say, x direction) electric field can be
generated by a longitudinal (say, y direction) or transverse
thermal gradient. The former is the Nernst effect and the lat-
ter is the Seebeck effect. The Nernst effect is characterized
by the the Nernst signal eN

eN = −(σ−1 ·A )y
x
, (226)

where σ is electric conductivity and A is the thermoelectric
conductivity (2 × 2) matrix. Note that it is zero if there is no
momentum relaxation (α = 0), because the electric conduc-
tivity becomes infinite. Thus, a finite α is essential for the
holographic model of the Nernst effect. For the dyonic black
hole, the Nernst signal yields [106]

eN =
4πα2B

u2
hµ

2B2 + (µ2 + α2)2
. (227)

27) H.-S. Jeong and K.-Y. Kim, work in progress.
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We want to see the B dependence of the Nernst signal eN

since it displays a different behaviour in cuprates with respect
to conventional metals. For example, in the normal state of a
cuprate it is bell-shaped as a function of B, while in conven-
tional metals it is linear in B [317]. Because uh in eq. (227)
is a complicated function of T, B, µ, α it is not easy to figure
out the B dependence of the Nernst signal. Thus, we make a
plot of eN as a function of B at a fixed α in Figure 61.

Interestingly, by looking at the Nerst signal, this model
shows the transition from a conventional metal (blue line) to
a cuprate-like state (green and red) as α decreases.

In general, the AC conductivities with non vanishing B
display a peak at the finite ω. This pick is related to a pole of
the conductivity, in complex ω plane, dubbed the cyclotron
resonance pole [315, 316].

ω∗ ≡ ωc − iγ, (228)

where the “cyclotron frequency” ωc is the relativistic hydro-
dynamic analog of the free particle case, ωf = eB/mc, even
though here it should be understood as coming from a collec-
tive fluid motion. A damping γ could be due to interactions
between the positively charged current and the negatively
charged current of the fluid, which are counter-circulating.
Momentum relaxation α shifts both ωc and γ. For small B
these shifts scale as ∼ α2B and ∼ α2 [106]. It is natural that α
increases the damping effect. We refer to ref. [106] for more
detailed analysis of AC conductivities and the effect of α on
them.

7.5 Magnetophonons

In presence of an external magnetic field B, together with
the SSB of translations, the dynamics of the low-energy
Goldstone modes become richer. In particular, the trans-
verse and longitudinal phonon modes mix together and give
rise to the so-called magnetophonons and magnetoplasmons
[318-320], with dispersion relations:
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Figure 61 (Color online) Nernst signal for the dyonic black hole. α/T =
0.5, 1, 4 (red, green, blue). For a large α it is linear to magnetic field
(conventional-metal-like) and for a small α it is bell-shaped (cuprate-like).
Figure taken from ref. [106].

Re [ω−] =
v⊥ v∥
ωc

k2 + . . . ,

Re [ω+] = ωc +
(v2
∥ + v2

⊥)

2ωc
k2 + . . . ,

(229)

with ωc being the cyclotron frequency. The fundamental rea-
son is that the Poincaré algebra is now modified into[
Pi, P j

]
= − i ϵi j BQ, (230)

where Q is the electric charge operator. This implies that
translations do not commute anymore with each other and
the effective low energy description for the Goldstone fluc-
tuations πi associated with translations can contain a new
term:

L = ϵ i j πi ∂Tπ j + . . . . (231)

In accordance with the Watanabe-Brauner formalism [321],
the system will display the presence of a type-B Goldstone
mode—the magnetophonon.

This mechanism was successfully verified within the holo-
graphic axion model in ref. [145]. See Figure 62 for the
dispersion relations of the modes just mentioned. Interest-
ingly, it was observed that the imaginary part of the magne-
tophonon is compatible with a quadratic diffusive behavior
which is not envisaged from EFT methods [322]. Actually,
field theory approaches suggest a ∼ k4 behavior of imagi-
nary part for quadratic type-B Goldstone modes manifesting
the quasiparticle nature of excitation. In contrast, a quasipar-
ticle excitation in the holographic axion model [145] is not
guaranteed. This is a good example to show that holography
is able to describe strongly coupled quantum matter with-
out quasiparticle excitations. It was verified explicitly that
the number of type-B phonons and the number of gapped
partners sum up to the number of broken generators. For
the holographic model the broken generators are the two mo-
menta. One has two linear phonon modes at zero magnetic
field. At finite magnetic field, there are one massless type-
B magnetophonon and its gapped partner—the magnetoplas-
mon.

The situation becomes even more interesting when a small
amount of disorder—EXB of translations—is introduced in
the system. In this case, the magnetophonon gets pinned pro-
ducing a characteristic peak feature in the optical transport.
Despite several theoretical framework [323-326], a concrete
understanding of this phenomenon and in particular of the
B dependence of the pinning frequency is still lacking. The
dependence of the magnetophonon peak ωpk as a function
of magnetic field is easy to measure accurately and can give
useful information on the feature of disorder in the material.
In more detail, the dependence is sensitive to whether the
material is in a classical or quantum regime. In the classical
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regime the classical treatment of the pinning mechanism pre-
dicts ωpk ∼ 1/B, while in the quantum regime, the results can
be quite different and the peak can increase with the magnetic
field.

In the holographic axion model, it was found [145] that
the pinning frequency increases with the magnetic field B (in
contrast to what discussed in ref. [326]) and at large mag-
netic field it scales like ∼ B1/2 (see Figure 63). Interestingly,
this scaling is consistent with the experimental measurement
in certain two-dimensional materials [318]. This does not
imply that the holographic model describes any specific ma-
terial, but rather that the scaling found from holography is
consistent with realistic observation, while at odds with the
discussion in ref. [326]. It would be interesting to understand
what these results tell us about the nature of the “disorder”
implemented by the holographic axion model.
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7.6 Non-linear elasticity and rheology

A basic aspect of matter is to understand and characterize the
response of materials under mechanical deformations. So far,
we have considered the elastic properties of the holographic
axion model only in the linear regime, where the external
strain is small, and the stress-strain relation can be linearized
as:

σi j = Ci jkl ϵkl. (232)

More in general, one could consider an arbitrarily large exter-
nal strain, such that the stress-strain relation becomes highly
non-linear28):

σ(ϵ). (233)

This scenario indicates the onset of non-linear elasticity, in
which the higher order corrections:

σ ∼ ϵ + ϵ2 + ϵ3 + ϵ4 + . . .︸               ︷︷               ︸
higher-order

, (234)

cannot be neglected anymore.
The non-linear elastic features of the various solids can

vary a lot and they can be very useful to characterize them.

28) Here, σ has not to be confused with the electric conductivity.
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For example, metals and rubbers are very different in this re-
spect (see Figure 64).

In particular, in one case (the metal) the stress-strain
curve exponent becomes sub-linear at large strain. This phe-
nomenon is called strain-softening and it indicates that the
material becomes softer by increasing the deformation strain.
In the second case (the rubber), the non-linear behaviour is
faster than linear; the material becomes more rigid at finite
deformations—strain hardening.

From the field theory point of view, the non-linear elas-
ticity theory has been recently implemented in ref. [49]. In
order to follow the same logic from the holographic perspec-
tive, a few ingredients must be changed. Since the deforma-
tion strain is now an O(1) external field, it must be endowed
in the background configuration and, in particular, the scalars
profile must be modified into

ϕI = OI
j x j, (235)

with

OI
j = α


√

1 + ε2/4 ε/2

ε/2
√

1 + ε2/4

 . (236)

For α = 1, we have Det OI
j = 1, which means the deformation

does not change the volume of the system, it is a pure-shear
deformation, parametrized by the parameter ε. On the con-
trary, the α parameter accounts for the changes of volume: it
is a bulk-strain deformation. Notice that the background con-
figuration (236) breaks explicitly the isotropy of the system.

In order to find a background solution with the scalar con-
figuration of eq. (236), the metric ansatz must be modified
into

ds2 =
1
u2

(
− f (u) e−χ(u) dt2 +

du2

f (u)
+ γi j(u) dxidx j

)
, (237)

where γi j is a two dimensional spatial metric with unitary
determinant. This time, the background has to be found
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Figure 64 (Color online) The different nonlinear elastic behaviour between
metals and rubbers.

numerically by solving a simple set of ordinary differential
equations in the radial coordinate u. The stress-tensor T i j

can be then obtained using standard methods [327] and it is a
non-linear function of the background strains α and ε. In par-
ticular, for a generic potential V = (X, Z), an analytic formula
can be derived:

σ(ε) =
1
2

m2α2ε
√

4 + ε2

∫ uh

0

VX

(
X̄, Z̄

)
ζ2 dζ, (238)

which is valid at small graviton mass, m/T ≪ 1. Here, we
have defined (X̄, Z̄) = (α2 1

2 (2+ ε2)ζ2, ζ4α4) and σ ≡ T x
y . The

convergence of the integral in eq. (238) is equivalent to the
positivity of the linear bulk modulus. In order to make some
more quantitative predictions, we will consider the bench-
mark potential:

V(X, Z) = Xa Z
b−a

2 , (239)

The non-linear stress-strain curves for different powers are
shown in Figure 65 together with the comparison with the
perturbative expression eq. (238). At intermediate strain, a
power law scaling σ ∼ ενS

1 appears, with

νS
1 = 2a. (240)
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Figure 65 (Color online) (a) Shear stress strain curve for various potentials
and relative (dashed) large strain scaling. (b) Shear stress strain curves for
different temperatures and comparison with the analytic eq. (238) (dashed
lines). As expected for T/m ≫ 1 the formula gives a very good approxima-
tion. Figures taken from ref. [51].
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Additionally, at much larger values of the strain, a secondary
scaling appears σ ∼ ενS

2 with a different exponent

νS
2 = 3

a

b
. (241)

The presence of two scaling regimes happens only at high
enough temperature. At low temperature, the stress-strain
curve directly interpolates from the linear regime to the νS

2
scaling. A similar power law behaviour appears in the bulk
stress-strain curve [51], where there is a universal scaling

σL ∝ κ3, (242)

with κ ≡ ∂ · ϕ and σL = Txx(κ) − T eq
xx .

Until now, we have discussed the realm of non-linear elas-
ticity only in the context of static deformations. Nevertheless,
the biggest interest in the field of rheology deals with time de-
pendent deformations and the corresponding reaction of the
system. In particular, a typical experiment—oscillatory shear
test—consists in an external shear strain taking a simple si-
nusoidal form

γ(t) = γ0 sin(2πωt), (243)

where γ0 is the strain amplitude and ω the characteristic fre-
quency.

Particularly challenging is the regime where the amplitude
of the external strain is large, γ0 = O(1), which takes the
name of large amplitude oscillatory shear regime (LAOS).
In the LAOS regime, linear viscoelasticity is not applicable
anymore and the response is fully nonlinear and very little
is known [328-330]. The LAOS regime has been recently
studied in the holographic axion model in ref. [146] and
the non-linear regime has been directly observed with sev-
eral methods (see Figure 66).

Moreover, it has been found that at least for the potentials
considered, the holographic model displays a well-defined
strain-hardening mechanism. More generally, depending on
the potential chosen in eq. (239) the holographic axion model
can exhibit either strain-softening or strain hardening. See
Figure 67 for a map of the two situations depending on the
powers in eq. (239).

7.7 Plasmons

An interesting phenomenological direction which has been
recently investigated is the dynamics of plasmon modes in
strongly coupled materials and therefore holographic models.
The seminal work can be found in ref. [331] and it was mo-
tivated by the recent surprising experimental results of refs.
[332,333] (see also refs. [334,335] for discussion around this
point). The main idea is to modify the boundary conditions

of the gauge fields fluctuation to impose the Maxwell equa-
tions in the boundary dual field theory. This can be achieved
by fixing:

ω2 δAx + λ δA′x = 0, (244)

which is a mixed boundary condition and makes the gauge
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field dynamical at the boundary. The parameter λ measures
the strength of the emergent Coulomb force in the boundary

theory. Doing so, a nice plasmon mode Re [ω] =
√
ω2

p + k2

is obtained at finite charge (see Figure 68).
The effects of the explicit and spontaneous breaking of

translations, using the holographic axion model, have been
studied in a series of follow-up work [176,178]. The first ob-
servation is that the lifetime of the plasmon mode obeys an
inverse Matthiessen rule (see Figure 69):

τ−1 = τ−1
EM + τ−1

M , (245)

where τEM is the contribution for the Coulomb interactions
and τM is the contribution coming from momentum dissipa-
tion and equal to the inverse of the momentum relaxation rate
Γ.

Additionally, in the transverse spectrum, momentum dis-
sipation induces a peculiar modes repulsion dynamics which
was discussed in ref. [176].

Finally, ref. [178] analyzed also the plasmons dynamics
in presence of elasticity—SSB of translations. An interesting
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transition appears at the point in which the shear viscosity
becomes comparable with the shear modulus (see Figure 70).
At that value, the fluid becomes to behave more like a solid
and the plasma frequency—the mass of the plasmon—starts
to rapidly decay as shown in Figure 70.

The physics of holographic plasmons is still highly unex-
plored and more work, specially in connection with a possi-
ble hydrodynamic description, is needed.

8 Additional topics

8.1 SYKology

The Sachdev-Ye-Kitaev (SYK) model is a many body quan-
tum system which has become very popular in the physics
community because it is strongly coupled, exactly solvable,
chaotic and nearly conformal invariant [336]. Moreover, it
bears several interesting relations with AdS2 gravity, black
holes physics and strange metals [337].

The relation between the SYK model and axions-like
holographic model was put forward in ref. [93] with spe-
cial emphasis on the thermodynamic, transport and quantum
chaos properties. More specifically several connections be-
tween the two frameworks were successfully established and
analyzed later in ref. [338].

Recently, several work [231, 257] computed exactly the
energy-energy correlator in the SYK model and they com-
pared it with that extracted from the linear axion model of
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ref. [18]. Again, in the strong coupling limit, the results ob-
tained from the two frameworks were found to be very sim-
ilar. These findings contribute to the question about which
is the gravity dual of the disordered SYK model and if that
has to do with our holographic axion model with momentum
dissipation.

8.2 Quantum information

There are increasing evidences for the existence of a deep
connection between quantum information in the boundary
field theory and the spacetime geometry in bulk. This link
was initially triggered by the definition of entanglement en-
tropy and its holographic dual—the Ryu-Takayanagi for-
mula [339, 340]. See ref. [341] for a review. However, there
are many other quantum informational quantities, which cap-
ture several aspects of quantum information different from
the entanglement entropy. According to holography, these
informational concepts “must” have their own dual geomet-
ric objects. For example, quantum information probes for
mixed states have been proposed: the entanglement of pu-
rification, the logarithmic negativity, the odd entanglement
entropy and the reflected entropy. Their holographic dual is
related to the so-called entanglement wedge cross section29).
Quantum complexity is another important concept, because
it is conjectured to explore the inside of the black hole hori-
zon, while entanglement entropy can not [343]. This line of
research played a key role to achieve a possible resolution of
the black hole information paradox [344].

It is natural to consider the axion model to study vari-
ous quantum informational quantity, because momentum re-
laxation is ubiquitous and plays an important role in real
quantum systems. The momentum relaxation effect on the
holographic entanglement entropy [345] and the complex-
ity in the complexity-action conjecture [346] have already
been studied. Under thermal quench, holographic entangle-
ment entropy [347], subregion complexity in the complexity-
volume conjecture [348] have been investigated. Towards the
entanglement measure for mixed states, holographic entan-
glement entropy, mutual information, and entanglement of
purification have been considered in ref. [349].

8.3 Fermionic response

The fermionic spectral function is a very important observ-
able, specially in strongly correlated materials, which can be
directly probed experimentally with Angle Resolved Photoe-
mission Spectroscopy (ARPES) or Scanning Tunneling Mi-
croscopy (STM). The fermionic spectral function has been

considered in the realm of Holography in several pioneering
work [350-353] in relation to possible non-Fermi liquids sig-
natures.

The holographic spectral function can be computed by
solving the bulk Dirac equation. A class of fermion bulk ac-
tion with the mass and the dipole coupling is given by

Sspinor = i
∫

d4x
√−gψ̄

(
ΓMDM − m − ip

2
ΓMN FMN

)
ψ,

ΓMN =
1
2

[ΓM ,ΓN],
(246)

with ΓM and DM the Gamma matrices and the covariant
derivative in a curved spacetime, respectively. The dipole in-
teraction drives the dynamical formation of a Mott-like gap
in the absence of continuous symmetry breaking [354]. The
study of holographic fermions in terms of fermion mass (m),
dipole coupling (p) and the strength of momentum relaxation
(α) has been conducted in ref. [355].

The holographic spectral function with momentum relax-
ation in two linear axion models was systematically investi-
gated in ref. [355], where the momentum relaxation strength
α is introduced via the bulk profile ϕI = αδI

i xi. By classifying
the shape of spectral functions, the complete phase diagrams
in (m, p, α) space were constructed (see Figure 71). Although
the DC electric transport of two models are very different, the
effects of momentum relaxation on the spectral function are
similar. This may be due to the fact that holographic fermion
does not back-react to geometry.

Some common features were highlighted as follows [355].
First, it was found that for a given dipole coupling and mo-
mentum relaxation, the spectral functions tend to become
sharper by increasing the mass of the bulk fermion. Sec-
ond, a new peak at finite frequency can be generated as the

Null phae

Gapped phase

α

Figure 71 (Color online) Phase diagram in (m, p, α) space for the Einstein-
Maxwell-linear axion model of ref. [355]. Depending on the shape of spec-
tral functions, one can classify different phases, such as Fermi liquid like
(FL), bad metal prime (BM’), bad metal (BM), pseudogap (PG), and gapped
(G). We have fixed the chemical potential µ=1. See ref. [355] for more
details. Figure taken from ref. [355].

29) For more description of the concepts we refer to ref. [342] and references therein.
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dipole coupling increases. Third, in general the spectral func-
tion becomes more suppressed and broader as the strength
of momentum relaxation is increased. Interestingly, the sup-
pression of spectral weight and the gradual disappearance of
Fermi surface along the symmetry breaking direction were
also observed in the inhomogeneous holographic models by
increasing the lattice strength [356-360]. The homogeneous
holographic lattices can simulate the effects of translational
symmetry breaking while retaining the homogeneity of the
spacetime geometry. However, homogeneous lattices are un-
able to capture the physics of Umklapp, motivating the need
to work with periodic lattices [361].

8.4 Modeling graphene

Experimental measurements have uncovered evidence of the
strongly coupled nature of the graphene. As a matter of fact,
the Wiedemann-Franz law (the ratio of heat and electric con-
ductivities, L = κ/Tσ) is violated by up to a factor of 20 near
the charge neutral point in extremely clean graphene [362].
It has been argued that graphene near charge neutrality forms
a strongly coupled Dirac fluid without well-defined quasipar-
ticle excitations. A fundamental reason for the appearance of
the strong interaction in graphene is due to the smallness of
the Fermi sea: electron-hole pair creation near the Dirac cone
is insufficient to screen the Coulomb interaction, thus there
should be a regime where electrons are strongly correlated.
A hydrodynamics description with disorder and a single con-
served U(1) current was adopted to explain experimental ob-
servations [315, 363], but still left room for improvement.

In contrast to the one current model, there are a few moti-
vations including an extra current in the graphene [364]. The
first one is from the effect of imbalance between the electrons
and holes due to the kinematic constraints of the Dirac cone,
which also suggests the two conserved charges can be pro-
portional. Other candidates include spin charge separation,
valley currents, phonons and so on. The linear axion model
with two distinct conserved U(1) currents was proposed in
ref. [364] to describe the experimental data. The electric,
thermo-electric and thermal conductivities can be computed
analytically. Then, under the assumption that the two con-
served charges are proportional to each other, the holographic
results for the density dependence of the electric and heat
conductivities have a significantly improved match to the ex-
perimental data than the models with only one current (see
Figure 72). The holographic model also suggested an addi-
tive structure in the transport coefficients: the additivity of
dissipative part of the inverse heat conductivity.

D[1/κ] =
∑

i

D[1/κi], D̄[1/σ] =
∑

i

D̄[1/σi], (247)
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Figure 72 (Color online) Comparison with experimental data. Density plot
of electric conductivity σ and of thermal conductivity κ. Red circles are for
data used in ref. [362] and black curves are for the holographic model with
two currents. The regime marked in blue is for the FL that is far from the
holographic theory. Figure taken from ref. [364].

where κi and σi are the heat conductivity and electric conduc-
tivity for the i-th current. D[ f ] denotes the dissipative part of
f and D̄[ f ] = f − D[ f ].

Quantum criticality has been argued to be crucial for inter-
preting a wide variety of experiments. A large class of quan-
tum critical points can be characterized by two scaling expo-
nents, known as the dynamical critical exponent z and the hy-
perscaling violation exponent θ. The case for the holographic
model of ref. [364] corresponds to (z = 1, θ = 0). A differ-
ent set of dynamical exponents was considered in ref. [365]
where it was found that the graphene data can be fit much
more naturally by considering (z = 3/2, θ = 1). Furthermore,
the Seebeck coefficient can also be fit using (z = 3/2, θ = 1)
(see Figure 73 [365, 366]). In contrast, the previous model
with (z = 1, θ = 0) fails to describe features of the experi-
mental data at large density. The fact that this model does
not fit with the experimental data for large temperature was
argued to be due to the absence of phonon effect that is im-
portant for large temperature [365].

8.5 Topological effects

The bulk Chern-Simons terms play an important role in
holography since it contributes to various new effects and
new physics. For example, the Chern-Simons term A∧F∧F



M. Baggioli, et al. Sci. China-Phys. Mech. Astron. July (2021) Vol. 64 No. 7 270001-56

T=130 K

T=200 K

T=270 K

-200 -100 0 100 200
-1.0

-0.5

0.0

0.5

1.0

Q (1010 cm−2)

Q (1010 cm−2)

S
/T

(μ
V

/K
2
)

S
/T

(μ
V

/K
2
)

z=1,   =0 

T=130 K

T=200 K

T=270 K

-200 -100 0 100 200
-1.0

-0.5

0.0

0.5

1.0

θ

z=3/2,   =1 θ

Figure 73 (Color online) Seebeck coefficient as a function of charge density
Q. Circles are for experimental data used in ref. [366] and dashed line for
hydrodynamics result. Seebeck coefficient at low temperature fits well with
experiment for the holographic two currents model with (z = 3/2, θ = 1).
Figure updated from ref. [365].

can yield a charge density wave instability [15,367], a metal-
insulator transition [20], and the presence of a non-trivial chi-
ral magnetic conductivity [368, 369].

On the contrary, what if we want to study the boundary
Chern-Simons term, A∧ F? The boundary A∧ F term is im-
portant because it may be interpreted as the spin-orbit cou-
pling. The spin-orbit coupling in 2 + 1 dimension is relevant
to interesting phenomena in topological insulators and Weyl
semi-metals [370]30). The boundary A ∧ F term can be holo-
graphically lifted to F∧F in bulk [373]. To have a non-trivial
dynamical effect we may couple F ∧ F with some scalar op-
erators.

Related with the axion model, one possible coupling is

qχXF ∧ F, (248)

where X is the kinetic term of the axion fields and qχ is in-

troduced to quantify the strength of this interaction. For the
model (46) with Y = 1,V = X together with the interaction
(248), thermodynamic properties of the system and electric
and thermal conductivities have been computed [373-375].

From the structure of eq. (248), which is schematically
∼qχα2ρB, we see that there can be a magnetization (∼ qχα2ρ)
even without explicit magnetic field. In this sense, the axion
charge α may be interpreted as a magnetic impurity. This
magnetic impurity induces a Hall current without an external
magnetic field, so it may explain the presence of an anoma-
lous Hall effect, which is ten times larger than the one ob-
served in non-magnetic materials.

Regarding the AC electric conductivity, the interaction
(248) induces a new quasi-particle pole [375]. This excita-
tion is attributed to a new coupling between two gauge field
fluctuations ax and ay by eq. (248): qχα2∂uay∂Tax. This
quasi-particle pole may be considered as a kind of cyclotron
pole (228) induced this time by a magnetic impurity, not by
an external magnetic field. Note that, for a cyclotron pole, ax

and ay are connected indirectly by a metric fluctuation.
As another interaction, we may consider [376, 377]

φF ∧ F, (249)

where φ is a real scalar in the holographic superconduc-
tor model [299] with axion [304]. The basic idea is to use
spontaneous Z2 symmetry breaking to induce spontaneous
magnetization. Because φ is a real scalar (the symmetry is
not U(1) but Z2) the system is not superconducting and the
conductivity is finite below the symmetry breaking transi-
tion [299]. The essential structure of eq. (249) is ∼ ⟨O⟩ρB,
where ⟨O⟩ is the (spontaneous) condensate of the operator
dual to φ. Thus, even without B the magnetization can be
finite due to spontaneous Z2 symmetry breaking [376]. If
α increases, the magnetization increases so α can be inter-
preted as magnetic impurity. This model exhibits magnetic
hysteresis as well. Interestingly this model finds its appli-
cations in topological insulators, refs. [378, 379], where it is
observed that the magnetoconductance starts showing hys-
teresis behavior similar to magnetization as magnetic doping
increases. This is called hysteric magnetoconductance phase.
The holographic model with the new coupling (249) qualita-
tively reproduces this phase as α, which is identified with
magnetic impurity strength, increases.

8.6 Non-equilibrium physics and thermalization

This review so far has mainly focused on the nature of holo-
graphic quantum matter at equilibrium and on the conse-
quence of perturbing states very near equilibrium, for which

30) The spin-orbit interaction involves fermions but after integrating out fermions we may effectively deal with the Chern-Simons term A ∧ F [371, 372].
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the linear response theory applies. The non-equilibrium
physics of strongly coupled quantum matter is an important
but largely unexplored frontier. Non-equilibrium phenomena
are general problems in ultra-relativistic heavy-ion collisions,
cold atom systems, condensed matter physics and so on, for
which there are almost no techniques from standard field the-
ory to apply. By mapping the physics of quantum matter into
a dual gravitational theory, one is able to study difficult non-
equilibrium process by solving tractable non-stationary gen-
eral relativity problems [380].

A simple way to drive a system far from equilibrium is
through a quantum quench by turning on a time dependent
source s(t). Two typical examples are as follows. Typically,
s(t) can either interpolate between an initial and a final state
s(−∞) = 0 and s(∞) = 1 or alternatively oscillate between
them. The far from equilibrium dynamics will tend to drive
quantum matter to a finite temperature states. This thermal
effect is natural from bulk perspective as the energy will be
absorbed by the black hole.

Transport properties of strongly coupled systems from
holographic duality have been the subject of much recent
interest. The nonlinear response of a finite charge den-
sity system resulting from an electric field quench in a sim-
ple Einstein-Maxwell-axion model was investigated in refs.
[381, 382]. For the finite-time pulsed quench, the electric
field is smoothly turned on, held for some time and then
turned off again, see the red dashed curve in top panel of
Figure 74. As can be seen from Figure 74, the system returns
to equilibrium after turning the electric field off. It was found
in ref. [381] that the system returns to equilibrium with the
approach governed by the longest lived QNMs of the final
black brane whose spectrum depends on the strength of mo-
mentum relaxation k via ϕI = αδI

i xi. By dialing α, one can
see a qualitative change in the relaxation of currents, due to
the pole collision and the presence of off-axis mode. In the
small α coherent regime, the relevant QNMs are purely de-
caying, while in a large α incoherent regime, the heat current
acquires enhanced contributions from a branch of QNMs that
oscillate and decay.

The nonlinear thermoelectric response induced by holding
the electric field constant was also discussed in ref. [381].
For small electric field, there is a steady state described by
DC linear response, due to a balance between the driving
electric field and the momentum sink. When the electric field
is large, Joule heating will introduce significant time depen-
dence on the bulk geometry. Nevertheless, in a regime where
the rate of temperature increase is small, the nonlinear elec-
tric conductivity can be well approximated by a DC linear
response calculation, once an appropriate effective tempera-
ture TE is taken into account (see Figure 75). In contrast, the
linear response result for the thermoelectric DC conductivity

ᾱ does not give good agreement over the same timescales,
which means ᾱ should have an explicit dependence on the
electric field.

Another interesting case is driving a system with a very
short and intense coherent electromagnetic pulse, after which
the time evolution of the system is monitored by a linear re-
sponse probe. The study of this pump-probe experiment from
holography was presented in ref. [382]. A holographic state
at finite density with mildly broken translation invariance
through linear axions was excited by oscillating electric field

J
J
E

r

(a)

(b)

(c)

Figure 74 (Color online) Evolution for the case with top hat electric field.
(a) The solid curve denotes the electric field J. The red dashed curve shows
the quenched electric field E(t) and the blue dashed curve gives the approx-
imation to the electric conductivity. (b) The energy current. (c) The evo-
lution of event horizon and apparent horizon. The bulk distribution of the
axion field with the linear x-dependence subtracted is illustrated in color.
The charge density has been set to one. Figure updated from ref. [381].

J

TE

Figure 75 (Color online) Nonlinear electric current response as a func-
tion of effective temperature TE. Curves from left to right represent runs of
different initial temperatures Ti = 10−2, 10−1, 1/4, 1/2, 3/4, 1, respectively.
The black dashed line shows the DC linear response conductivity after the
equilibrium temperature is promoted to TE. The charge density has been set
to one. Figure updated from ref. [381].
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pulse. The thermalization process was numerically investi-
gated by varying the pulse frequency ωp. It was found that in
all circumstances the thermalization continues to be instan-
taneous for pump pulses devoid of a zero frequency compo-
nent. For pump electric field with a significant DC compo-
nent, the full time evolution is governed by a single thermal-
ization time which is precisely half of the equilibrium mo-
mentum relaxation time at the final temperature. This feature
can be understood from the fact that the metric component
corresponding to momentum appears squared in the compu-
tation of the time-dependent conductivity. It was conjectured
in ref. [382] that large class of systems with a holographic
dual will exhibit the phenomenon of instantaneous thermal-
ization. These holographic findings can be tested by exper-
iments which are in principle feasible in condensed matter
laboratories.

The holographic axion model has been also used to study
out-of-equilibrium dynamics in presence of anomaly [383,
384]. In this last context, it has been proven before [385]
that the chiral magnetic and chiral vortical conductivities are
completely independent of the momentum relaxation rate in-
troduced via the axions.

9 Outlook

9.1 Open questions

Before concluding, we find useful to collect the main open
questions related to the holographic axion model discussed
in this review. We will take a very direct attitude and list
them one by one.

(1) The viscosity of holographic solids. Why does the vis-
cosity decrease by increasing the amount of SSB of transla-
tions? Going from a fluid to a solid the viscosity rapidly in-
creases in Nature, but it is not the case here. Is this connected
to the fact that in most of the holographic systems (see ref.
[386] for a counterexample) the viscosity grows with tem-
perature? This is again not the case in liquids, but only in
gases.

(2) Holographic fluids. We always sell the idea that AdS
Schwarzchild is the dual of a relativistic fluids at strong
coupling. That cannot be since fluids clearly have a finite
electric conductivity. This suggests that a realistic holo-
graphic fluid must be encoded in the axions model with
V(Z) [22, 90], in agreement also with the effective theories
expectations [53, 387]. What is really the difference between
these two setups? Is this really dual to a fluid or a gas?

(3) The cost of homogeneity. How do these homoge-
neous models compare with more realistic inhomogeneous
setups? It seems that at low energy, i.e., low frequency and

low momentum, there is absolutely no difference. We did
not learn anything about DC transport coefficients from these
very complicated inhomogeneous models. We have recently
proved that even the low energy spectrum is the same [165].
Where can we find differences? It is clear that one has to
go to more microscopic features, related to higher momenta.
One case is the property of commensurability [312]. Any-
thing else? Does the numerical effort really pay back?

(4) Phase relaxation vs. pseudo-spontaneous breaking. We
now know that the pseudo-spontaneous breaking of transla-
tions produces an effective phase relaxation term which is
fundamentally different from the one usually considered and
coming from the presence of elastic defects such as disloca-
tions. Why nevertheless do we not see any Drude peak in the
frequency dependent viscosity? Can we understand why the
Ω pole is somehow hidden by the presence of explicit break-
ing?

(5) Holographic dislocations. How can we introduce in a
simple way elastic defects in the holographic picture? And is
their phenomenology what we do expect?

(6) Holographic Glasses. We have discussed in details flu-
ids and solids. What about glasses? Have the axions model
anything in common with glasses? Is there a Boson peak in
the spirit of ref. [388]? Similar ideas appeared already in
refs. [389, 390].

(7) Phonons Hydrodynamics. There has been recent ef-
fort in linking the idea of electron hydrodynamics [391]
with holography [392]. What about phonons hydrodynam-
ics [393]? How to implement such limit?

(8) Physical nature of holographic axions. Despite a lot
of work on the axions model, the physical nature of the dual
system is still not well understood. To what extent can this
simple homogeneous setup be trusted? And which phase of
matter are we actually describing? These questions remain
unanswered.

(9) Negative energy and possible instability. A common
feature of many simple linear axion models is that the energy
density E becomes negative at large α. It was argued that
there might be some instability signalled by the appearance
of negative energy density, but such instability was never
found and all the linearized excitations are well behaved.
How to understand this negative energy issue? Does it have
any important consequence or limitation for some of the sim-
plest holographic quantum matters?

(10) The residual entropy density. Another common fea-
ture of linear axion models is the residual entropy density at
zero temperature, corresponding to the AdS2 IR extreme ge-
ometry. What is the nature of this residual entropy? Is there
any possible relation to localization or glasses? Recent devel-
opments in the SYK model taught us that such feature does
not come from a degeneracy of the ground state but from the
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piling up of a very close excited states [338]. Can we under-
stand it from the gravitational picture? Is it again related to
the highly unstable character of the AdS2 geometry?

(11) Make it useful. It is a truth acknowledged by several
researchers in (and specially outside) the community, that
AdS-CMT has not produced yet a strong smoking-gun result
able to justify its usefulness for realistic condensed matter
systems. Can we push the framework further, connect it to
experiments, predict new phenomena and explain unresolved
ones? This seems the only way for the tool to survive without
becoming a niche product for a small group of enthusiasts.

9.2 Conclusions

In conclusion, we hope to have convinced the Reader that,
despite the apparent simplicity, the holographic axion model
displays an incredibly rich set of features and applications
which go far beyond the idea of dissipating momentum and
make the DC electric conductivity finite.

In any case, whether you want to use them just to avoid
annoying infinities or if you want to dig deeper in the physics
of solids and fluids at strong coupling, this review is made for
you. At the cost of resulting rather lengthy, we have made the
effort of being as comprehensive as possible and discuss all
the different faces of the model. We hope that any of you, in
one way or another, will benefit from this read and will learn
something new you were not aware of before. We also wish
to have inspired new thoughts on the topic and the incentive
for future developments in the field.
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21 M. Baggioli, and O. Pujolàs, Phys. Rev. Lett. 114, 251602 (2015).
22 L. Alberte, M. Baggioli, A. Khmelnitsky, and O. Pujolàs, J. High
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2016(7), 74 (2016).
126 E. Berti, V. Cardoso, and A. O. Starinets, Class. Quantum Grav. 26,

163001 (2009), arXiv: 0905.2975.
127 M. Ammon, M. Baggioli, S. Gray, and S. Grieninger, J. High Energ.

Phys. 2019(10), 64 (2019).
128 A. Esposito, S. Garcia-Saenz, A. Nicolis, and R. Penco, J. High En-

erg. Phys. 2017(12), 113 (2017).
129 S. Grozdanov, and N. Poovuttikul, Phys. Rev. D 97, 106005 (2018),

arXiv: 1801.03199.
130 D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, J. High Energ.

Phys. 2015(2), 172 (2015).
131 S. Grozdanov, D. M. Hofman, and N. Iqbal, Phys. Rev. D 95, 096003

(2017), arXiv: 1610.07392.
132 B. I. Halperin, and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978).
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1904.12862.
235 M. Blake, R. A. Davison, and D. Vegh, J. High Energ. Phys. 2020(1),

77 (2020).
236 M. Natsuume, and T. Okamura, J. High Energ. Phys. 2019(12), 139

(2019).
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352 M. Čubrović, J. Zaanen, and K. Schalm, Science 325, 439 (2009),

arXiv: 0904.1993.
353 T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, Phys. Rev. D 83,

125002 (2011).
354 M. Edalati, R. G. Leigh, and P. W. Phillips, Phys. Rev. Lett. 106,

091602 (2011), arXiv: 1010.3238.
355 H. S. Jeong, K. Y. Kim, Y. Seo, S. J. Sin, and S. Y. Wu, Phys. Rev. D

102, 026017 (2020), arXiv: 1910.11034.
356 S. Cremonini, L. Li, and J. Ren, J. High Energ. Phys. 2018(12), 80

(2018).
357 S. Cremonini, L. Li, and J. Ren, J. High Energ. Phys. 2019(9), 14

(2019).
358 F. Balm, A. Krikun, A. Romero-Bermúdez, K. Schalm, and J. Zaa-
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Appendix Notations and conventions

In order to avoid confusion, in this appendix we describe in
detail all the symbols and notations used in this review.

Greek letters µ, ν, ... run over spacetime indices, while
Latin letters i, j, ... denote spatial ones. The axion flavor in-
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Table a1 Notations and symbols

Symbol Meaning Symbol Meaning

η shear viscosity p pressure

G shear modulus P crystal pressure

ζ bulk viscosity mg graviton mass

K bulk modulus vB butterfly velocity

E electric field u or r radial coordinate

B magnetic field uh horizon radius

τ relaxation time L AdS radius

Γ momentum dissipation rate Λ cosmological constant

χAB susceptibility T temperature

χππ or χpp momentum susceptibility s entropy density

σi j or Ti j stress ρ charge density

εi j strain µ chemical potential

ϱ mass density kg k-gap

vT or v⊥ shear sound speed z Lifshitz exponent

vL or v∥ longitudinal sound speed θ hyperscaling parameter

ui displacements ⟨EXB⟩ explicit breaking scale

ω0 pinning frequency ⟨SSB⟩ spontaneous breaking scale

Ω phase relaxation rate Dπ momentum diffusion constant

E energy density ω frequency

ΓL or Γ∥ longitudinal sound attenuation k momentum in Fourier space or wave-number

ΓT or Γ⊥ transverse sound attenuation H Hamiltonian

Dϕ crystal diffusion constant GAB Green’s function

ξ Goldstone diffusion parameter ωp plasma frequency

dices I, J, ... run over the number of broken translations. In
this review, we also omit the summation symbol over the ax-
ion flavor indices, and use the Einstein convention for them
too.

We always utilize a mostly plus metric (−1, 1, 1, 1) and we
define the Fourier transform of a fieldΨ using the plain-wave
e−iωt+ikx. Finally, we indicate in Table a1 all the symbols
used.
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