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Abstract: Rooftop photovoltaic (PV) systems are usually behind the meter and invisible to utilities
and retailers and, thus, their power generation is not monitored. If a number of rooftop PV systems
are installed, it transforms the net load pattern in power systems. Moreover, not only generation but
also PV capacity information is invisible due to unauthorized PV installations, causing inaccuracies in
regional PV generation forecasting. This study proposes a regional rooftop PV generation forecasting
methodology by adding unauthorized PV capacity estimation. PV capacity estimation consists of two
steps: detection of unauthorized PV generation and estimation capacity of detected PV. Finally, regional
rooftop PV generation is predicted by considering unauthorized PV capacity through the support
vector regression (SVR) and upscaling method. The results from a case study show that compared with
estimation without unauthorized PV capacity, the proposed methodology reduces the normalized root
mean square error (nRMSE) by 5.41% and the normalized mean absolute error (nMAE) by 2.95%, It can
be concluded that regional rooftop PV generation forecasting accuracy is improved.

Keywords: regional PV output forecasting; upscaling method; rooftop PV; unauthorized PV installation

1. Introduction
1.1. Background and Motivation

In the past, fossil fuels were a key driving force for growth in the fields of technology,
society and economy, and were used as the main energy source through the industrial
revolution [1]. However, fossil fuels generate 65% of the annual carbon dioxide, which is
known to cause global warming and causes air pollution [2,3]. In order to solve the problem
caused by the use of fossil fuels, electricity is produced by renewable energy sources.
According to the IRENA survey, the capacity of renewable energy utilities increased from
1329 GW to 2799 GW over the past 10 years, of which the supply of photovoltaic (PV)
utilities increased from 73 GW to 713 GW [4].

Another reason for the increased supply of solar power facilities is the decline in the
levelized cost of electricity (LCOE) [5], and renewable energy policies such as the feed-in-
tariff (FiT) and renewable portfolio standard (RPS) [6]. In particular, rooftop PV increased
rapidly due to factors such as a decrease in rooftop PV generation costs [7], incentive for
roof PV installations, and reduction of house electricity bills [8,9]. However, the solar
power output has the characteristic that the output is determined according to the amount
of irradiance and the PV module temperature, which have intermittent characteristics.
In the case of self-consumption, the power demand changes, and when the solar power
facility is connected to the power grid system, the uncertainty in power supply increases.

When the uncertainty in the output of renewable energy increases, a supply-demand
imbalance occurs, and when the difference between supply and demand becomes extremely
large, frequency fluctuation occurs. Second, reverse currents flow within the distribution
system. Lastly, system operation costs increase due to frequent two shifting for ancillary
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services [10]. In order to solve the problem of uncertainty of PV output, it is necessary to
predict the amount of solar power generation. For about 10 years, research on predicting
PV output has been conducted [11].

One of the important features of PV is that PV is distributed and installed in several
areas because it can generate power wherever solar irradiance is provided. From the power
system operator perspective, although the total sum of distributed PV power generation
is an important value to balance supply and demand, there are practical difficulties in
collecting accurate meteorological and PV output data for all regions.

Therefore, a lot of regional PV generation forecasting research has been studied to
predict the integrated PV generation amounts of distributed resources by using limited
data by the upscaling method [12–26].

In the upscaling method, the entire region is divided into sub-regions, a sample within
the sub-region is determined from there to predict the amount of power generation, and
then upscaling is performed for each sub-region. Here, the upscaling is to multiply by
the upscaling factor after adding the predicted value of the sample power generation
in the sub-region. Through the upscaling process, the amount of power generation in
the sub-region is predicted. The solar power generation amount of the entire region is
predicted by adding the forecast value of the generation amount of the sub-region.

Since 2014, unauthorized PV installations have occurred [27–29]. The first reason why
unauthorized PV installation is occurring is because residents avoid the roof-type solar
power installation fee, the second is not wanting to carry out obligations for solar power
installation, and the last reason is the lack of awareness of the impact of unauthorized solar
installations on the power system [27]. As unauthorized PV installations occur, deviations
occur between the actual photovoltaic facility capacity and the photovoltaic facility capacity
information known to the system operator. As unauthorized PV installation occurs, the
actual PV capacity and the capacity known to the system operator are different.

This difference in PV capacity information leads to a prediction error of the solar
power generation amount by region (reduces the prediction accuracy), and it becomes
difficult to calculate the appropriate hosting capacity in the power system. In addition,
overvoltage occurs in the power system, which not only threatens the safety of employees
of the electric power utility, but also damages the facilities in the power system [30].

Unauthorized PV installation can cause various problems in terms of safety. It causes
overvoltage and back-feeding which, if sustained, can damage transformers, voltage
regulators, and customers’ appliances [30,31]. In addition to Cape Town, unregistered solar
installations occur in California and Hawaii [32]. Arizona is charging new solar customers
to prevent unregistered solar installations [33].

In order to compensate for the problems caused by the unauthorized PV installation,
the process of detecting unauthorized PV installation and estimating the PV capacity
should precede predicting the amount of solar power generation.

1.2. Literature Review

In this section, literature reviews are classified into three groups as shown in Table 1.
Many single PV forecasting studies have been conducted in the past. However, single
PV generation forecasting is less robust than regional PV generation forecasting. Single
PV output has large variability due to meteorological factors. If the location where PV is
installed is different, solar irradiance is also different; therefore, the PV generation pattern
varies significantly depending on the PV location. However, regional PV generation is
combined with several PV power generation sources; thus, the volatility is smaller than
in single PV power generation and easier to forecast. In addition, missing and abnormal
data occur because of malfunctions. This reduces the accuracy of single PV generation
forecasting. Like PV capacity in a power system, regional PV generation has similar
characteristics and trends; hence, PV generation forecasting in the region is valuable.
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Table 1. Literature reviews classification table.

Literature Group Research Subject Reference

1 Regional utility scale
photovoltaic (PV) forecasting [12–26]

2 Regional behind the meter
(BTM) PV forecasting [28,34–37]

3 Unauthorized PV detection
and PV capacity estimation [27,38–40]

Regional PV output forecasting research targets at utility scale PV (above 100 kW) [12–26].
In [10], representative solar sites are forecast and scaled up them. Ref. [13] is similar [12] and
considers this with snow. Refs. [14–16,18] reduce the data dimension by using principle com-
ponent analysis (PCA) and forecast regional PV generation. Ref. [17] predicts representative
solar site generation by using six machine learning method. In regional PV output forecasting
of [17], superposition and upscaling methods are applied. Ref. [19] predicts single PV gen-
eration by numerical weather prediction and corrects prediction error by linear regression.
Regional PV output forecasting in [19] is carried out by upscaling. Ref. [20] analyzes the effect
on the regional PV generation forecasting accuracy by the number of representative solar sites.
Refs. [21,22] employ a representative solar sites forecasting neural network (NN) model using
weather and satellite data to predict regional PV generation by scaling them up. Ref. [23] is
characterized by using the minimum redundancy maximum relevance (mRMR) criterion.

Among the regional PV output forecasting models, there are few regional behind
the meter (BTM) PV forecasting models [28,34–37]. Ref. [28] selects representative solar
sites using K-means clustering and PCA and uses various machine learning models to
forecast single and regional rooftop PV generation. Likewise, [34] targets rooftop PV and
uses a similar method, which selects representative solar sites. Unlike [28,34] uses fuzzy
arithmetic. This helps to mitigate uncertainties of rooftop PV power. Ref. [35] estimates
rooftop PV capacity using weather forecast data. By this method, rooftop PV generation
is predicted in [35]. Ref. [38] considers not only the invisible PV but also the missing
data problem by communication failure. Although [38] does not focus on regional PV,
the proposed methodology is valuable when PV generation has missing data. Ref. [37]
uses limited representative solar sites and weather forecast data to predict aggregated PV
generation. Additionally, [37] uses the fuzzy arithmetic wavelet neural network (FAWNN)
to correct PV generation data uncertainty.

Refs. [27,38–40] belong to group 3 in Table 1. Ref. [27] proposes three processes,
including PV detection, PV identification, and PV capacity estimation. It has a limit that
there must be data before and after the rooftop PV is installed. Ref. [38] uses random matrix
theory to detect and estimate unauthorized PV. Ref. [39] proposes machine learning based
unauthorized PV detection and estimation model trained net load data. It is available to
detect and estimate accurately by utilizing difference between sunny days and rainy days.
However, [40] estimates PV capacity without a detection process. Ref. [40] proposes an
ensemble model PV capacity estimation with optimal net load pair.

1.3. Contributions

To handle the uncertainty of unauthorized PV installation, a PV detection and capacity
estimation model is applied to the regional rooftop PV forecasting model in this study. The
main contributions of this paper are summarized as follows.

Detection performance was improved by adding two detection features. The correla-
tion between the featured and the presence or absence of unregistered solar installation
was confirmed through the MIC, and it was confirmed that the new feature had a higher
correlation than the existing feature. Refs. [35,36] did not investigate the effect of unreg-
istered solar installation on the prediction accuracy of solar power generation, and this
paper verified it through a case study.
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1.4. Structure of This Study

The rest of the study is organized as follows: Section 2 describes the problem for-
mulation and the overall framework of the proposed approach. In Section 3, details of
unauthorized PV detection, unauthorized PV capacity estimation, and upscaling method
for regional PV forecasting are presented. In Section 4, a case study is presented to verify
the effectiveness of the proposed approach. Section 5 deals with model features analysis
of considering the proposed approach. Section 6 contains the conclusion and highlights
future work.

2. Problem Formulation of Unauthorized Photovoltaic (PV) Installation and Regional
Rooftop PV Forecasting
2.1. Problem Statement

Assume that a home smart meter collects net load data hourly for several days. Here,
D, D = {d|d = 1, 2,..., D} is the defined set of day and T, T = {t|t = 1, 2,..., T} is defined set of
time slots. The net load on day d and time slot t is shown in Equation (1):

NL(d, t) = GL(d, t) − PPV (d, t) (1)

where NL(d, t), GL(d, t) and PPV(d, t) are the net load (NL) power, gross load (GL) power
and PV generation power on day d at time slot t. If a home has not installed rooftop PV,
the PV generation power value is 0, i.e., PPV (d, t) = 0 ∀ d ∈ D, ∀ t ∈ T. For rooftop PV, the
PV output power is BTM except at representative solar sites, implying that most rooftop
PV power is not measured and collected. The home classification according to rooftop PV
installation, rooftop PV authorization, and sub meter of PV power installation is shown in
Figure 1 and Table 2.

Figure 1. Home classification according to photovoltaic (PV) installation, authorization, and sub
meter.
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Table 2. Four home group for rooftop PV.

Question H1 H2 H3 H4

Is there a rooftop PV sub meter at home? Yes No No No
Is a rooftop PV at home authorized? Yes Yes No No

Is a rooftop PV installed at home? Yes Yes Yes No

In Figure 1, À, Á, Â, and Ã denote home group 1, home group 2, home group 3, and
home group 4. Also, H1, H2, H3, and H4 in Table 2 are same meanings. Representative
solar sites are installed at homes in H1, and utility has information for rooftop PV systems
installed at authorized homes (H1 and H2 in Table 2), including location, capacity, and
installation date of the rooftop PV systems. However, the utility does not know which
homes are without rooftop PV or have unauthorized rooftop PV. Finally, the PV output
forecasting discussed in this study is hourly day-ahead forecasting. Therefore, the time
interval measured is one hour.

The parameters required in the problem situation are defined as follows. Nhome
denotes the number of home in entire region. It is equals to the sum of the number of home
in H1, H2, H3 and H4 in Table 2. NPV denotes the number of home with installed PV. NPV
is the sum of the number of homes in H1, H2 and H3 in Table 2. rAu represents the ratio
of the number of authorized PV homes among the home PVs installed. rSam represents
the ratio of the number of homes where PV generation data is measured and among the
homes with installed authorized PV. In Figure 1, when the number of homes in H1, H2,
H3 and H4 groups are NH1, NH2, NH3, NH4, respectively, rAu, rSam can be expressed as the
following equations.

rAu =
NH1 + NH2

NH1 + NH2 + NH3
(2)

rSam =
NH1

NH1 + NH2
(3)

2.2. Framework of the Proposed Approach

The framework of the proposed approach is shown in Figure 2. The proposed ap-
proach consists of three steps: unauthorized PV detection, unauthorized PV capacity
estimation, and regional rooftop PV output forecasting.

Figure 2. Framework of the proposed regional rooftop PV forecasting approach.
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Unauthorized PV detection is a process judging whether an unauthorized home
belongs to group H3 or H4 in Figure 1. Unauthorized PV capacity estimation is a process to
determine rooftop PV capacity of group H3 using data from groups H1 and H2 in Figure 1.
Regional rooftop PV forecasting is a process to predict regional aggregated PV generation
by scaling up PV generation of representative solar sites.

3. Proposed Methodology of Regional Rooftop PV Generation Forecasting
3.1. Unauthorized PV Detection Model

In this section, the details of processes consisting of the unauthorized PV detection
model are handled. This model investigates whether PV is installed or not through net
load data for unauthorized PV homes.

3.1.1. Four Weather Groups Clustering

In this process, days are grouped by four weather groups (WG), denoted as A, B, C
and D [35], representing sunny, cloudy, shower, and rainy days. In [35], WG is grouped
by rooftop PV generation data. However, rooftop PV data cannot be obtained except
for representative solar sites according to the assumptions in Section 2.1. Instead, solar
irradiance data for a day is used to classify into WG. Using K-means clustering, WG is
grouped by A–D. The average solar irradiance of each WG is shown in Figure 3. In Figure 3,
A–D have same meaning in [35].

Figure 3. Average solar irradiance by weather groups (WG).

3.1.2. Generation Real and Virtual Typical Net Load Pattern and Minimum Net Load
Pattern

To determine out PV or energy storage, the net load variation by meteorological factors
must be confirmed. The typical net load pattern (TNLP) is created by averaging the net
load of one home in the same WG. Formulation of TNLP is shown in [35]. Next, a virtual
TNLP must be generated. In [35], all actual home load data are estimated through rooftop
PV generation and NL data. They are used to train load data of homes without rooftop PV.
In reality, however, most rooftop PV systems cannot be accounted for by PV generation
data due to the BTM features. Additionally, the number of authorized homes is much lower
than the number of unauthorized homes. To solve these problems, the method creates a
virtual net load based on the bootstrap of actual load of representative solar sites where
PV generation data can be obtained and then applied in the unauthorized PV detection
process. The difference of A and D is used to detect unauthorized PV in this study. Thus,
a virtual TNLP of A and D is created through real TNLP of A and D. Typical PV power
(TPP) is defined as average PV power in a certain WG. Sam is the index of representative
solar sites whose real-time PV generation is measured. N and ωPV indicate the number
of virtual TNLP and PV included or not. The first step in Algorithm 1 is to extract the



Energies 2021, 14, 4256 7 of 22

typical load pattern (TLP) from TNLP and TPP of representative solar sites. Next, the
TLP is normalized to its maximum value. In the third step, a normalized TLP is chosen
randomly from 0 to 23 h.

Subsequently, the normalized selected TLP is scaled up to the original size by the
maximum TLP. If TNLP with rooftop PV is required, additional processes are needed.
Similar to creating a virtual TLP, TPP is initially normalized by representative solar site
capacity. Then, a random PV capacity from 1 kW to 10 kW, which covers the rooftop PV
capacity range is applied. The virtual TPP is created by multiplying random PV capacity
and normalized TPP. The virtual TNLP with rooftop PV is generated by subtracting
virtual TLP and virtual TPP. The generation process of virtual net load is summarized as
Algorithm 1. The minimum net load pattern (MNLP) means the smallest value for each
time period among clustered net load values.

Algorithm 1. Generation virtual TNLP.

Input: TNLPA
Sam(t), TNLPD

Sam(t), TPPA
Sam(t), TPPD

Sam(t), N, ωPV, Sam ∈ [1, NH1]
Output:
if ωPV == 1 then

TNLPA
n (t), TNLPD

n (t)
else

TLPA
n (t), TLPD

n (t)
End
for n = 1 : N do

TLPSam(t) = TNLPSam(t) + TPPSam(t);
TLPNorm,Sam(t) =

TLPSam(t)
max(TLPSam(t))

;
for t = 0:23 do

randomly select r ∈ [1, NH1]

TLPA
n,Norm(t) = TLPA

r,Norm(t);
TLPD

n,Norm(t) = TLPD
r,Norm(t);

End
TLPA

n (t) = TLPA
n,Norm(t)×max(TLPSam(t));

TLPD
n (t) = TLPD

n,Norm(t)×max(TLPSam(t));
if ωPV == 1 then

TPPA
Norm,Sam(t) =

TPPA
Norm,Sam(t)
CSam

;

TPPD
Norm,Sam(t) =

TPPD
Norm,Sam(t)
CSam

;
randomly select PV capacity Crand ∈ [1, 10]
TPPA

Vir(t) = TPPA
Norm,Sam(t)× Crand;

TPPD
Vir(t) = TPPD

Norm,Sam(t)× Crand;
TNLPA

n (t) = TLPA
n (t)− TPPA

Vir(t);
TNLPD

n (t) = TLPD
n (t)− TPPD

Vir(t);
Else

break;
End

End

3.1.3. Feature Extraction Based on TNLP and MNLP

In this section, features are extracted from TNLP and MNLP to train the unauthorized
PV detection model. In this study, six features are used to train the detection model. Six
detection features are expressed following Equations (5)–(10). cA =

∣∣∣TNLPA(ts)−TNLPA(tm)
ts−tm

∣∣∣+ ∣∣∣TNLPA(te)−TNLPA(tm)
te−tm

∣∣∣
cD =

∣∣∣TNLPD(te)−TNLPD(tm)
ts−tm

∣∣∣+ ∣∣∣TNLPD(te)−TNLPD(tm)
te−tm

∣∣∣ (4)
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FD
1 =

∑t=te
t=ts

∣∣∣TNLPA(t)
∣∣∣

∑t=te
t=ts

∣∣∣TNLPD(t)
∣∣∣ (5)

FD
2 =

n
(
S−
)

n(S)
(6)

y(t) = TNLPA(ts ) + (t− ts )× TNLPA(te)−TNLPA(ts)
te−ts

S = {y (t)| t ∈ [ts, te]}

S− = {TNLP A(ts)| t ∈ [ts, te], TNLPA(t) < y(t)
}

FD
3 = cA/cD

(7)

FD
4 =

TNLPA(tf)− TNLPA(te)

TNLPD(tf)− TNLPA(te)
(8)

FD
5 = cA (9)

FD
6 = min

(
MNLPA (t)

)
t ∈ [0, 23] (10)

In Equation (4), ts and te is the start time and end time of the PV output. Additionally, tm
is the time when TNLP is at the minimum. The specific values of these times are provided
in Section 4.1. cA and cD indicate each concavity of TNLP of A and D. In Equation (5), FD

1
shows the ratio of the summation of TNLP of A and D. If unauthorized PV is installed at
home, FD

1 is greater than one. In the opposite case, the value of FD
1 is close to one. FD

2 describes
the concaveness of TNLP of A. Using the mathematical definition in (6), FD

2 is calculated as
the number of hours of solar power generation that satisfy the representative concave TNLP
of A. The range of FD

2 is from 0 to 1, and a value of FD
2 close to 1 means the concaveness of

TNLP of A. FD
3 in (7) means relative concavity of TNLP of A to D [35]. It is fundamental to

detect unauthorized PV by utilizing the fact that the TNLP of A is more concave than that of D.
However, it is limited in its ability to detect unauthorized PV. This is because FD

3 has a large
value when the concavity of the TNLP of A is large, but FD

3 has a large value even when the
value of TNLP of D is small. Thus, FD

5 means that concavity of TNLP of A is required as a
feature in Equation (9). FD

4 indicates the ratio of increase of TNLP of A and D between te and tf.
tf, final time, is the time when the PV generation becomes zero after the sun has completely set.
If unauthorized PV is installed, FD

4 becomes greater than 1 as the net load decreased due to
solar output increases. In the opposite case, FD

4 has a value close to 1.
Finally, FD

6 in Equation (10) is the minimum value of TNLP when WG is A. Without
a rooftop PV, FD

6 is positive; however, FD
6 is changed to zero or a negative value. This is

because the peak of PV generation is during the daytime, while the peak of residential
electricity load occurs later in the evening. Thus, FD

6 is available to be used as a feature of
unauthorized PV detection.

3.1.4. Training and Test of Unauthorized PV Detection Model

Processes of training and test for unauthorized PV detection are shown in Figure 4.
Figure 4a shows the process that extracts features from TNLP of home and train the detection
model with features. Both real and virtual TNLP are used to train the detection model. A
multi-layer perceptron (MLP) is used as the detection model. Figure 4b shows the process to
test the detection model with test features. Additionally, PV columns in the table in Figure 4
indicate PV installation status.

3.2. Unauthorized PV Capacity Estimation Model

In this section, the process to estimate the detected rooftop PV capacity of the model
described in Section 3.1 is shown. This model is designed to determine how much unau-
thorized PV capacity is using net load data of homes.
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Figure 4. Process of unauthorized PV detection (a) training (b) test.

3.2.1. Generation Virtual Net Load

The algorithm for generation of virtual NLP is similar to the method described in
Section 3.1.2. However, the difference in the method described in Section 3.1.2 is the
considered distribution of PV capacity, which is not uniform. In [41], the distribution of
PV capacity is shown in Figure 5. There are many PVs with capacities of 1 kW to 2 kW,
while very few PVs with a capacity of 3 kW or more are shown in Figure 5. This indicates
that the training case with large PV capacity is difficult. Therefore, generating virtual data
for the case with large PV capacity is needed. Generation details of the virtual MNLP
algorithm are expressed in Algorithm 2. In Algorithm 2, GL of homes with installed
representative solar sites is made by summing NL of homes with installed representative
solar sites and PV power of representative solar sites. Next, PV capacity sections are
divided by authorized PV capacity. Then, the distribution of the number of PVs in each PV
capacity section is investigated. Here, additional NL data are required for each PV capacity
section to make PV capacity distribution uniform by subtracting the number of PVs per
PV capacity section from the maximum value. The average amount of representative solar
site generation is determined by WG and then normalized to each representative solar site
capacity. Subsequently, the PV capacity and one GL among home installed representative
solar sites is randomly selected by the first PV capacity section. The virtual NL is generated
by subtracting the PV capacity multiplied by normalized PV power generation from the
GL of randomly selected homes. This process is repeated for each weather group.

Figure 5. PV capacity distribution histogram in [41].
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Algorithm 2. Generation virtual NL.

Input: CAu = [C1, C2, C3, . . . , CNAu ], NLWG
Sam(d, t), PWG

PV,Sam(d, t), Au ∈ [1, NAu], Sam ∈ [1, NSam]

Output: NLWG(d, t)
Initialize Discap = 0; cap ∈ [1, 10× int(Max(CAu))]

GLWG
Sam(d, t) = NLWG

Sam(d, t) + PWG
PV,Sam(d, t);

for n = 1 : NAu do
for i = 1:int(Max(CAu)) do

for j = 1:10 do
if i + 0.1(j− 1) ≤ Cn < i + 0.1j then

Disint(Max(CAu))+i+j+ = 1
else

Continue;
end

end
end
Countcap = Max

(
Discap

)
− Discap;

for WG = A : D do

PWG
PV,mean(t) =

1
NWG

d

N_d̂WG
∑

d=1
PWG

PV,Sam(d, t);

PWG
PV,Norm(t) =

1
CPV,Sam

PWG
PV,mean(t);

end
for l = 1 : 10× int(Max(CAu)) do

for c = 1 : Countl do
Select randomly PV capacity Crand ∈ [1+(l−1)/10,1+l/10]
Select randomly r ∈ [1, NSam]
for WG = A:D do

NLWG
r (d, t) = GLWG(d,t)

r − PWG
PV,Norm(t)× Crand

end
end

end

3.2.2. Extracting Minimum Net Load Pattern (MNLP) for Four Weather Classes

After generating virtual NL, MNLP in WG A and D are extracted to create features of
capacity estimation. MNLPA (t) and MNLPD (t) each denote MNLP in A and D of WG. They
are shown in Equations (11) and (12). DA and DD in Equations (11) and (12) denote the set of
days when the WG is A and the set of days when the WG is D, where d is the day index.

MNLPA (t) = min(NL(d, t)), d ∈ DA, t ∈ [0, 23] (11)

MNLPD (t) = min(NL(d, t)), d ∈ DD, t ∈ [0, 23] (12)

3.2.3. Extracting Features from MNLP

In unauthorized PV capacity estimation models, three features, FE
1 , FE

2 , and FE
3 are

used [35]. These features are expressed in Equations (13)–(15).

FE
1 = min

(
MNLPA(t)

)
, t ∈ [0, 23] (13)

FE
2 = max

(
MNLPD(t)− MNLPA(t)

)
, t ∈ [0, 23] (14)

FE
3 =

∫ te

ts
MNLPD(t)− MNLPA(t) dt, t ∈ [ts, te] (15)

In [35], FE
1 denotes minimum of MNLPA (t). It varies by PV output and GL values. If

PV output is maximum or GL is minimum, it has negative values of significantly larger
magnitude. It is available to estimate PV capacity using FE

1 . The second feature FE
2 denotes

difference of MNLPA (t) and MNLPD (t) during a day. So, FE
3 is originally the sum of the
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difference of MNLPA (t) and MNLPD (t) for intermediate start time and end time of PV
generation. However, it is difficult to recognize PV capacity when the PV capacity is small.
Therefore, the sum of difference between MNLPA (t) and MNLPD (t) for intermediate start
time and end time of PV generation is chosen as the third feature. In the testing process,
the MNLP of a test home is used to extract three features and unauthorized PV capacity is
estimated through three features.

3.2.4. Training and Test PV Capacity Estimation Model

The overall process of capacity estimation is shown in Figure 6. MNLP is extracted
from real and virtual from NL. Support vector regression (SVR) is used as a machine
learning method of unauthorized PV capacity estimation model. Unauthorized PV capac-
ity estimation model is trained with three features and authorized PV capacity. Hyper
parameter optimization based on grid search is performed. Three features by MNLP are
used to train the capacity estimation model.

Figure 6. Process of PV capacity estimation (a) training (b) test.

3.3. Regional PV Forecasting Model

After unauthorized PV capacity is estimated, regional rooftop PV generation is pre-
dicted through upscaling method. In Section 3.3.1, representative solar sites (sample of
rooftop PV) are determined by cluster (sub region). Then, the PV generation forecasting
model of representative solar sites is trained and PV generation for the next day at repre-
sentative solar sites is predicted. In Section 3.3.3, the predicted PV power is scaled up by
the upscaling factor and aggregated for clustering. Finally, PV generation for the entire
region is predicted by aggregating PV generation for clusters.

3.3.1. Clustering and Sampling of Rooftop PV

In this section, home-installed rooftop PVs are grouped by their location. To use the
upscaling method, PV generation in regions must be similar. PV generation is affected by
meteorological factors. The closer the distance between the two points, the more likely
the weather conditions at the two points are similar. Thus, upscaling must be carried out
between geographically close PVs. In this study, K-means clustering [42] is used as the
clustering method for rooftop PV. Clustering of rooftop PV is expressed in Algorithm 3.
The first step is to initialize the k-cluster center randomly. Next, location information of the
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rooftop is assigned to a k-cluster by the distance between the center and data. Rooftop PV
is assigned to the cluster closest to the distance. Subsequently, the average data value is
assigned as the new cluster center. If the cluster center is not changed, rooftop PV clustering
is finished. Otherwise, calculation of the cluster center is iterated until it converges to a
certain value. Then, representative solar sites are chosen for each cluster. For utility scale
PV, there is no limit to the choice of representative solar sites because PV generation is
measured. While rooftop PV generation is not measured due to the BTM feature, rooftop
PV with sub meters installed to measured PV generation must be chosen. If there is no
rooftop PV with a sub meter installed, some PV system must be installed with a sub meter.
As rooftop PV systems with sub meters are selected as representative solar sites, the process
of Section 3.3.1 is completed.

Algorithm 3. Clustering of rooftop PV.

Input: a given data X = {(lat1, lon1), (lat2, lon2), . . . ., (latn, lonn)}
The number of cluster k
Maximum number of iteration I
Output: clustering result onk for all n PV k center of cluster C

Randomly initialize C =
{(

latC
1 , lonC

1

)
,
(

latC
2 , lonC

2

)
, . . . .,

(
latC

k , lonC
k

)}
for i = 1 : I do

// Assignment step
for n = 1:N do

onk =

{
1, if k = argmini

∣∣∣(latn − latC
k

)∣∣∣2 + ∣∣∣(lonn − lonC
k

)∣∣∣2
0, otherwise

end
// Update step
for k = 1 : K do

latC
k = 1

∑N
n=1 onk

N
∑

n=1
onklatn;

lonC
k = 1

∑N
n=1 onk

N
∑

n=1
onklonn;

end
end

3.3.2. Individual Rooftop PV Generation Forecasting

In this section, individual rooftop PV generation of representative solar sites is pre-
dicted. First, feature normalization must occur. Normalization of features is shown in
Equation (16).

FNorm =
FActual − FMin

FMax − FMin
(16)

In Equation (16), Factual, FMax, FMin and FNorm denote original feature, maximum of
feature, minimum of feature, and normalized feature. Next, the individual rooftop PV
generation model is constructed in Equation (17).

PPV,ind (t) = f
(

FNorm
1 , FNorm

2 , FNorm
3 , FNorm

4 , FNorm
5

)
(17)

PPVi nd (t) is the predicted PV generation at time t; time resolution is one hour as
described in Section 2.1. FNorm

1 , FNorm
2 , FNorm

3 , FNorm
4 , FNorm

5 denote normalized one day
ahead PV generation, normalized solar irradiance, normalized cloud cover, normalized
precipitation, and normalized temperature. Finally, the test of individual PV generation
forecasting is performed through the trained PV generation forecasting model.
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3.3.3. Upscaling Sample Rooftop PV Generation by Cluster

In this section, rooftop PV generation in sub regions is predicted by the upscaling
method. Sub region PV generation is calculated by scaling up predicted individual PV
generation according to Equations (18) and (19).

Pc(t) =
Nrep

∑
ind=1

ufc × Pc,ind(t) (18)

ufc =
Cc,tot

∑
Nrep
ind=1 Cc,ind

(19)

In Equation (18), Pc,ind(t) denotes predicted individual generation ind th for the repre-
sentative solar site at time t in cluster c. Nrep denotes the number of representative solar
sites. ufc denotes upscaling factor of cluster c that corresponds to the scaled up coefficient
of individual power generation. The PV generation of a cluster (or sub region) is made by
multiplying each individual PV generation by the upscaling factor and aggregating them.
Equation (19) shows how the upscaling factor is calculated. It is defined as the ratio of total
rooftop PV capacity in the cluster to the sum of representative solar sites capacity.

3.3.4. Aggregating PV Generation of a Cluster

The PV generation for entire region is finally predicted by aggregating the predicted
PV generation amount of a cluster (or sub region). It is shown in Equation (20).

Preg,t =
Nc

∑
c=1

Pc,t (20)

In Equation (20), c denotes index of cluster. And Nc denotes the number of clusters.
The others, Pc,t and Preg,t denote each predicted PV generation of cluster and entire region.

4. Case Study
4.1. Experimental Data Description

In order to verify performance of the proposed approach, generation data are collected
from 300 rooftop PV of Ausgrid that is a power utility in Sydney, Australia. Historical data
from 1 July 2010 to 30 June 2013 with the sampling interval of 1 h is chosen in this paper.
PV generation and GL data from 1 July 2010 for one year were used for unauthorized PV
detection and capacity estimation. PV generation data for two years since 1 July 2011 was
used to predict regional rooftop PV generation. The installed capacity of rooftop PV is
504 kW. The geographic distribution of the home with rooftop PV is shown Figure 7.

In Figure 7, color indicates the range of capacity. In other words, green color indicates
capacity range of 1 kW to less than 2 kW. Likewise, blue color indicates capacity range
of 2 kW to less than 3 kW. Finally, red color indicates capacity range of 3 kW or more.
Additionally, the larger the radius of the circle within same color, the larger the rooftop
PV capacity. These data can be downloaded in website [41]. In addition to rooftop PV
generation data, the weather forecast data are required. In the unauthorized rooftop PV
detection and capacity estimation model, solar irradiance hourly data are needed. Solar
irradiance forecast hourly data provided by [43] are used. In order to predict PV generation,
weather forecast data such as temperature, cloud cover and precipitation are required.
Ref. [44] provides hourly various weather forecast data like temperature, humidity, wind
speed and cloud cover. Therefore, weather forecast data of [43,44] are used in this paper. In
addition to data, parameters mentioned in Sections 2.1, 3.1 and 3.2 are shown in Table 3.
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Figure 7. Geographical distribution of rooftop PV in Australia.

Table 3. Parameters for case study.

Parameters Value Parameters Value

Nhome 1500 rSam 0.08
NPV 300 ts 9
rAu 0.5 te, tf 16, 19

According to [45], the rooftop PV installation penetration rate was approximately 20%
in August 2019. Because NPV, the number of given home with rooftop PV was 300, all
home in the region were 1500. rAu is 0.5 (i.e., 50%), which means the ratio of home installed
unauthorized rooftop PV of all rooftop PV. In other words, 150 homes are authorized and
the other 150 homes are unauthorized in the case study. Finally, an important assumption
in our work is that the number of systems is constant over 2 years. Because it is difficult
to find this by complete enumeration, there are few papers on this. According to [29],
identified unauthorized rooftop PV installation rate is about 50% in Cape Town, South
Africa. Therefore, unauthorized rooftop PV installation rate is assumed 0.5 (i.e., 50%) based
on [29]. rSam, the ratio of the number of home PV generation data is measured and among
the home installed authorized PV, is assumed 0.08 (8%). ts and te are assumed to be 9 and
16. This is because the period that PV generation mainly occurs is from 9 to 16.

4.2. Performance Metric

To evaluate the proposed detection, capacity estimation, and regional PV generation
forecasting models, several performance metrics are used in this paper.

4.2.1. Unauthorized PV Detection Performance Metric

In this section, three accuracy metrics, PV accuracy (PA), non-PV accuracy (NPA),
and overall accuracy (OA) are defined to evaluate unauthorized PV detection model. PA
denotes the ratio of accurately classified homes of actual homes with rooftop PV. On the
other hand, NPA denotes the ratio of accurately classified homes of actual homes without
rooftop PV. OA denotes the ratio of accurately classified homes of all homes in the region.
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By using a confusion matrix, three metrics can be calculated. Confusion matrix, CM, is
defined as Equation (21).

CM =

 cm00 · · · cm0Nst−1
...

. . .
...

cmNst−10 · · · cmNst−1 Nst−1

 (21)

In Equation (16), Nst denotes the number of states can be classified. In unauthorized
PV detection, whether rooftop PV installed or not is two cases. In other words, Nst − 1 is
1 because Nst is 2. In terms of index in confusion matrix, zero indicates state rooftop PV
is not installed. In contrast, one indicates state rooftop PV installed. The element of cmij
denotes the number of objects that actually comprise the state i but can be classified to the
state j. The confusion matrix can be used to formulate the three accuracy metrics defined
above. These are expressed in Equations (22)–(24).

PA =
cm11

∑1
j=0 cm1j

× 100% (22)

NPA =
cm00

∑1
j=0 cm0j

× 100% (23)

OA =
∑1

j=0 cmjj

∑1
i=0 ∑1

j=0 cmij
× 100% (24)

4.2.2. Unauthorized PV Capacity Estimation Performance Metric

In this section, two accuracy metrics, mean absolute percentage error (MAPE) is
defined in Equation (25) in order to evaluate the performance of the unauthorized PV
capacity estimation.

MAPE =
1

Nun

Nun

∑
n=1

∣∣∣∣∣Cact
n −Cpred

n

Cact
n

∣∣∣∣∣× 100% (25)

In Equation (25), Cact and Cpred represent the nth actual and predicted capacity of
unauthorized rooftop PV.

4.2.3. Regional PV Generation Forecasting Performance Metric

In previous literature, normalized root mean squared error (nRMSE) and normalized mean
absolute error (nMAE) were used as regional PV generation forecasting errors [10–12,14,17,21–24].
Two accuracy indicators are defined in Equations (26) and (27).

nRMSE =

√√√√ 1
T

T

∑
t=1

(
Ppred(t)− Pact(t)

Creg, PV

)2

× 100% (26)

nMAE =
1
T

T

∑
t=1

∣∣∣Ppred(t)− Pact(t)
∣∣∣

Creg, PV
× 100% (27)

In this paper, above two indicators are used to evaluate regional rooftop PV generation
forecasting performance.

4.3. Simulation Results
4.3.1. Unauthorized Rooftop PV Detection Results

As mentioned in Section 4.1, the unauthorized PV detection model is tested for
1350 home. It corresponds to the total number of homes excluding 150 homes with autho-
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rized PV. They consist of 150 homes with rooftop PV and 1200 homes without rooftop PV.
If the predicted result and the actual configuration are the same, it can be said that the
performance of the PV detection model is good. Detection simulation procedure is run for
100 rounds. Authorized homes are different each round. The unit of accuracy metric is
percentage. The larger the value of the accuracy metric, the better the performance of the
detection model. As mentioned in Section 3.1.4, MLP is used as unauthorized PV detection.
MLP is a representative machine learning method utilized for classification or prediction,
which is chosen to show a good performance in classification problems. The parameters of
the MLP used the default parameters. The accuracy of detection is shown in Tables 4 and 5.

Table 4. Unauthorized PV detection result by method in [39].

Metric Best Average Worst

PA 96.00 90.69 77.33
NPA 99.67 96.58 89.67
OA 98.00 95.93 90.15

Table 5. Unauthorized PV detection result by proposed method.

Metric Best Average Worst

PA 100 99.81 96.67
NPA 98.33 97.02 95.67
OA 98.52 97.33 96.07

In Table 4, the detection result by the method in [39] is shown. Best in column of
Table 4 means best accuracy among 100 rounds. Worst in column means worst accuracy
among 100 rounds. Average in column means average value of 100 rounds’ accuracy. The
above description also applies to the columns in Table 5. In Table 5, detection result by
proposed method in this paper is shown. By adding features used to train detection model,
improved performance is identified in Table 5.

4.3.2. Unauthorized Rooftop PV Capacity Estimation Results

In this section, capacity for detected PV is estimated. Two cases of capacity estimation
in [35] and in this paper are presented. Capacity estimation simulation is run for 100 rounds.
Table 6 shows capacity estimation of [39] and the proposed method. Like Section 4.3.1, The
best, worst, and average results in Table 6. By modifying the unauthorized PV detection
model, capacity estimation performance is improved.

Table 6. Unauthorized PV capacity estimation result by method.

Study Best (%) Average (%) Worst (%)

[35] 66.00 92.79 113.00
Proposed method 34.00 44.21 63.00

4.3.3. Regional Rooftop PV Generation Forecasting Results

The result of clustering rooftop PV is shown Figure 8. Two is optimal value of the
number of clusters in K-means clustering. It was decided by silhouette coefficient [38]. Next,
six rooftop PVs are chosen as representative solar sites for each cluster. Then, individual
rooftop hourly PV generation for the next day is predicted by the SVR model [16].
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Figure 8. Result of rooftop PV in Australia clustering.

For detection and capacity estimation, PV generation forecasting runs 100 rounds by
selecting the authorized PV and representative solar sites differently each time by random
sampling. Two prediction accuracy metrics, nRMSE and nMAE, are used to evaluate the
individual PV generation forecasting model. Distribution of individual PV generation
forecasting is shown in Figure 9. PV power and weather forecast data for 2 years are used.
Data from 1 July 2011 to 3 February 2013 (i.e., 584 days) are used to train PV generation
forecasting model. Data after 4 February 2013 (i.e., 147 days) are used to test the trained PV
generation forecasting model. Average of nRMSE and nMAE are 9.18% and 4.60%. Once
individual PV generation forecasting is completed, regional PV generation is predicted
through the upscaling method as mentioned in Sections 3.3.3 and 3.3.4. The regional PV
generation forecasting error is shown in Table 7. These errors are obtained as the average
of the prediction errors of PV generation in each region calculated through 100 rounds
simulations. The prediction result is shown in Table 7. The difference in estimation results
in Tables 6 and 7 is due to the distribution of solar energy facilities. In most areas, such
as California, the solar capacity distribution is 1–3 kW [33]. However, in the case of [39],
the detection was conducted on houses with 4–6 kW capacity. In the case of houses with
large installation capacity, the net load pattern is clear, but detection is difficult because the
characteristics of the net load pattern are not clear when solar energy is installed in houses
with small installation capacity. Taking these features into account, we detect them, and
this difference improves the estimation of the proposed method and the performance of
predicting local-unit solar power generation.

Figure 9. Distribution of individual PV generation forecasting (a) nRMSE (b) nMAE.
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Table 7. Regional PV generation forecasting error without detection and capacity estimation.

Error Metric (%) Case 1 Case 2 Case 3

Normalized Root Mean Square Error (nRMSE) 11.29 6.41 5.41
Normalized Mean Absolute Error (nMAE) 6.01 3.52 2.95

Regional PV generation forecasting performance considering unauthorized PV de-
tection and estimation much better than otherwise. This is because the uncertainty of the
unauthorized PV capacity is reduced by detection and capacity estimation model.

These errors are obtained as the average of the prediction errors of PV generation in
each region calculated through 100 simulations. The prediction result without detection
and capacity estimation is shown in Table 7. In Table 7, Case 1 is a situation that does not
consider unauthorized PV detection. Case 2 is a situation considering unauthorized PV
detection in [39]. Case 3 is a situation considering unauthorized PV detection in this study.

Also, distributions of regional solar power prediction are shown in Figure 10.

Figure 10. Regional PV output forecasting distributions; (a1) nRMSE of Case 1 (a2) nMAE of Case 1
(b1) nRMSE of Case 2 (b2) nMAE of Case2 (c1) nRMSE of Case 3 (c2) nMAE of Case 3.
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Figure 10(a1,b1,c1) represents the nRMSE distributions of Case 1, Case 2, and Case 3,
respectively. The others (i.e., Figure 10(a2,b2,c2)) represent the nMAE distributions of Case
1, Case 2, and Case 3, respectively.

It is also possible to identify the effect through Figure 11. Case 1 is the regional PV
output prediction situation without unauthorized PV detection and capacity estimation.
On the other hand, Case 2 is the regional PV output prediction situation with unauthorized
PV detection and capacity estimation in [35]. Case 3 is similar to Case 2. However, Case 3
is used to proposed the unauthorized detection method instead. Here, it is assumed that
rAu is 0.5 based on the Cape Town case [29]. In Case 1, where unauthorized PV detection
is not considered, the prediction values differ from real generation values. Because the
upscaling factor was obtained incorrectly only considering authorized PV installation.
In Case 2, the upscaling factor error between real PV capacity and estimated could be
reduced through unauthorized PV detection. Furthermore, it is possible to reduce the
error in predicting the amount of solar power generation by adding a feature capable of
discriminating unauthorized PV detection in the model in Case 3.

Figure 11. Regional PV generation forecasting results.

5. Discussion
5.1. Upscaling Factor Analysis

The upscaling factor is key to predicting accurate regional PV generation. In this
section, upscaling factors with several situations are compared to highlight the importance
of unauthorized PV detection and capacity estimation.

In this section, the upscaling factor distributions are covered in Figure 12. In Case 1,
upscaling factor range between Case 1 and real values is differ significantly. It results in a
large error in predicting regional PV output. On the other hand, the upscaling factor can
be estimated similarly to the real value through unauthorized PV detection in Case 2. In
addition, by improving the detection accuracy of unauthorized PV, Case 3 has a smaller
upscaling factor error than Case 2. Through the improved unauthorized PV detection
model in Figure 12, it is possible to improve the prediction of regional PV output.

5.2. Feature Correlation Analysis

In this section, analysis between features and results is discussed for detection. The
maximal information coefficient (MIC) is used to analyze correlation between features and
result for detection and capacity estimation [39]. MIC values of features are shown in Table
8. Through MIC values, FD

5 and FD
6 in this study have a stronger correlation in this study.

Overall detection accuracy is improved due to the use of these features.

Table 8. Maximal information coefficient (MIC) of features for detection in this study.

Feature FD
1 FD

2 FD
3 FD

4 FD
5 FD

6

MIC value 0.445 0.135 0.217 0.207 0.600 0.722
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Figure 12. Comparison of upscaling factor distribution (a) Case 1 (b) Case 2 (c) Case 3.

6. Conclusions

This study presents a new forecasting method for regional rooftop PV power genera-
tion. It aims to accurately forecast aggregated PV power of rooftop PV in the entire region
under unauthorized PV installation. In the first step, an unauthorized PV detection model
based on MLP by trained virtual TNLP and MNLP is proposed to detect whether rooftop
PV is installed or not. In the second step, an unauthorized PV capacity estimation model
dealing with the imbalance of PV capacity distribution through virtual NL generation
based on a bootstrap approach is proposed. In the final step, regional rooftop PV generation
forecasting based on an upscaling method considering unauthorized PV installation is
proposed. A realistic dataset from Sydney (NSW, Australia) consisting of 300 residential
customers with rooftop PV system was used to evaluate the performance of the proposed
methodology. The results show that the proposed methodology has good overall perfor-
mance compared with previous regional rooftop PV generation forecasting approaches.
Furthermore, the impact of unauthorized PV detection and capacity estimation on the
upscaling factor value is investigated. The results indicate that PV detection and capacity
estimation reduce the upscaling factor error under unauthorized PV installation. Addition-
ally, by analyzing proposed features for the detection model, the proposed methodology
shows its effectiveness. In conclusion, the proposed methodology can contribute to accurate
regional PV output forecasting. Future work possibilities are as follows:
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1. Investigating the impact of NL home-owned energy storage and electric vehicles on
unauthorized PV detection performance.

2. Exploring rooftop PV capacity uncertainty in addition to unauthorized PV installation.
For example, there are rooftop PV faults and real-time rooftop PV penetration.
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