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Abstract: Many studies have proposed a peer-to-peer energy market where the prosumers’ actions,
including energy consumption, charge and discharge schedule of energy storage systems, and
transactions in local energy markets, are controlled by a central operator. In this paper, prosumers’
actions are not controlled by an operator, and the prosumers freely participate in the local energy
market to trade energy with other prosumers. We designed and modeled a local energy market with
a management algorithm that uses community energy storage for prosumers who competitively
participate in trade in the real-time energy market. We propose an energy-trade management
algorithm that manages the trades of prosumers in two phases based on bids and offers submitted by
prosumers. The first phase is to manage the trade of prosumers who have submitted fair prices to
trade with other prosumers in the real-time energy market. The second phase is managing the trade
of prosumers that could not trade in the first phase. Community energy storage is employed in the
second phase and controlled by a reinforcement learning-based trading algorithm to decide whether
to buy, sell, or do nothing with the prosumers. The action of buying and selling means charging and
discharging the community energy storage, respectively. Numerical results show that the proposed
trading algorithm gains a near-maximum profit. Besides, we verified that community energy storage
yields more profit than the battery wear-out cost.

Keywords: smart grid; local energy market; peer-to-peer energy trade; community energy storage;
reinforcement learning

1. Introduction

The greenhouse gases, which are the most significant driver of global warming, mainly
originate from the use of fossil fuels. In 2018, 75% of greenhouse gases were emitted by fossil
fuel combustion, and most of them are used in our daily lives, for example, for transporta-
tion, energy generation, and industrial use [1,2]. To reduce the amount of greenhouse gas
emission, renewable energy sources (RES), including wind, solar, geothermal, and biomass
energies, are gaining attention as alternatives to replace fossil fuels. In 2018, worldwide
investments in renewable energy amounted to $272.9 billion, and such large investments in
RES have affected consumers [3]. Many consumers have installed private RES-generation
facilities with government support to lower their electricity bills through self-generation
and self-consumption and make profits by selling the surplus energy. Many consumers
have become prosumers who can produce energy independently. However, it is difficult
for most prosumers to earn a profit by trading with the utility company due to the low
feed-in tariff. This led prosumers to create an independent local energy market (LEM)
where prosumers can sell their energy to their neighbors. For example, a Dutch company
called Vandebron was established in 2014 to provide the first online peer-to-peer (P2P)
energy trading, and in the UK, an open utility has launched in 2015 as a pilot program for
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P2P-trading services [4]. In the USA, the first solar energy sale between neighbors was
recorded in Brooklyn, New York, in 2016 [5].

The P2P energy trade gives prosumers an option to trade not only with the utility
company but also with other prosumers. The challenge that arises in the P2P energy trade
is finding a proper bidding strategy to gain profit. Prosumers have to decide the proper
bidding price at the proper time when they need to trade energy according to their demand.
If prosumers fail to trade energy, they have to trade with the utility at a low price. There is
also an option of adopting an energy storage system (ESS) for time-flexible trading with
prosumers, but it is difficult to make profits considering the high battery wear-out cost
(BWC). Several studies have demonstrated the economic effects of adopting ESS, and in
most cases, it was difficult to make profits without government aid [6].

Herein, we adopt the concept of sharing ESS with nearby local prosumers, known
as community energy storage (CES), in LEM to reduce the maintenance cost of ESS. CES
can also be used for demand-side management [7], but herein, it is used for prosumers.
CES is managed by an energy-trade supporter (ETS) who oversees the trade of prosumers.
In our proposed LEM, prosumers submit their bids and offers to ETS, and the ETS decides
whether to use CES for prosumers. ETS manages the trade of prosumers in two phases.
The first phase is real-time arbitrage trading, and the second phase is reinforcement learning
(RL)-based arbitrage trading. In the real-time arbitrage trading phase, the ETS trades with
prosumers according to their bids and offers. Prosumer’s energy is transferred from the
seller to the buyer according to ETS, so CES is not used in this phase. In the second phase,
the ETS decides whether to trade with a prosumer who failed to trade in the first phase.
The ETS decides whether to buy, sell, or do nothing. If the ETS decides to buy energy
from a prosumer, the energy is stored in CES, and if the ETS decides to sell energy to a
prosumer, the energy stored in CES is discharged to the buyer. Notably, the stored energy
in CES is only sold to prosumers in the second phase. The ETS chooses its action through
an RL-based algorithm that focuses on maximizing its arbitrage trading profit. The key
contributions of this work are as follows:

• We designed an LEM where prosumers are not controlled by a central operator.
Prosumers freely participate in the LEM, and the trade between prosumers is managed
based on the bids and offers submitted by prosumers.

• We proposed a new role called ETS that manages trades in the LEM. ETS not only acts
as a middleman between prosumers but also as a supporter for prosumers who failed
to trade in real-time LEM.

• CES is applied to the LEM and controlled by ETS. CES is used only for prosumers who
failed to trade in real-time LEM. Through numerical simulations, we showed that the
limited use of CES has more economic benefits than using the CES for all prosumers.

• We adopted an RL-based energy trade management technique for CES, which targets
maximizing the trading profit considering BWC. We compared the BWC and economic
benefits of CES from the RL-based energy trade management algorithm.

The rest of this paper is organized as follows: Section 2 provides an overview of the
recent research on energy trade management systems; Section 3 presents the LEM market
design; Section 4 presents the proposed energy trade management algorithm; Section 5
provides the numerical results of the proposed algorithm; Section 6 summarizes the key
results of this study.

2. Related Work

We categorize previous studies on energy trade management in LEM into three types:
transactive energy management system (EMS), P2P energy trade system, and energy trade
system with CES.

2.1. Transactive EMS

The demand response (DR) is a demand-side management technique that attempts to
change the energy usage pattern of consumers in response to changing the price or giving
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incentives [8]. The term transactive energy is being said as a generalized form of DR that
focuses on balancing supply and demand by incentivizing prosumers [9]. In transactive
energy, the distributed energy resources of prosumers are controlled by their owners,
but the transaction mechanism is designed in a system-friendly manner.

In [10–12], a transactive EMS that considers selling prosumer’s energy to the grid for
demand-side management was introduced. Daneshvar et al. [10] designed four mathemati-
cal models of microgrids using a transactive EMS. These models have different optimization
goals with different constraints. The optimization goal could be individual or collective,
and each model has different energy cost-saving constraints. The main contribution of [10]
is on proposing an effective model that considers both the collective and individual interest.
Nizami et al. [11] designed a transactive EMS managed by a management framework
that starts in the day-ahead stage. The house-level EMS minimizes the operational cost
of homes by scheduling optimized energy use in the day-ahead stage. In the real-time
stage, the house-level EMS participates in LEM when the real-time demand exceeds the
scheduled demand. The transaction information from house-level EMSs is gathered by
the local transaction agent (LTA) who decides the market clearing rate. The LTA receives
requests from not only EMSs but also the grid by a grid agent. The main contribution of [11]
is on proposing a transactive EMS to mitigate grid overloading in a two-stage management
model. Koltsaklis et al. [12] designed a transactive EMS similar to [11] that starts in the
day-ahead stage. The main contribution of [12] is that they implemented three short-term
forecasting processes for the optimal day-ahead energy scheduling.

In [13,14], a grid-independent system that does not consider the grid but only coor-
dinates the shared energy between prosumers was introduced. Celik et al. [13] proposed
two coordination algorithms that operate in a day-ahead scheme. Houses are assumed
to have an ESS and this storage is controlled by the energy coordination algorithm. The
main contribution of [13] is on proposing a day-ahead decentralized coordination method
to minimize the electricity bills of prosumers. Akter et al. [14,15] proposed a centralized
coordination scheme for different types of houses, dividing the houses into three types.
The first type includes houses with a rooftop solar photovoltaic (PV) system and ESS,
the second includes houses with only a PV system, and the third includs traditional houses
with no additional systems. The main contribution of [14,15] is proposing a transactive
EMS solving a centralized energy management problem of different types of houses.

The common point of transactive systems [10–15] is the design of the management
system of LEM in a system-friendly manner. The energy of prosumers is shared and
managed by a centralized agent or aggregator. Herein, we focused on designing a user-
friendly system that supports the active trading of a prosumer with other prosumers to
earn more profit. The proposed system can be categorized as a P2P energy trade system
and is discussed in the following subsection.

2.2. P2P Energy Trade System

P2P energy trading refers to the direct trading of energy between prosumers and
consumers [16]. The P2P energy trade system is designed in a user-friendly manner
in which prosumers act competitively compared to the transactive EMS. A retailer or
broker can facilitate trading among prosumers, but prosumers’ energy is not shared,
and prosumers optimize their profit using a bidding strategy. Most research issues in the
P2P energy trade system are discussed from the prosumers’ perspective.

Chen et al. [17,18] designed several behavior models of the participants. In [17], pro-
sumers were modeled to maximize their trading profit by utilizing a wind turbine and ESS.
Prosumers choose to charge or discharge the ESS, and at the same time, they choose to buy
or sell energy in LEM. An RL algorithm that decides the action at a given time to maximize
profit was employed. In [18], a middleman, who maximizes their profit by managing the
trade among prosumers, was designed. The middleman is called a retail energy broker and
determines the market clearing time and clearing rate of prosumers using an RL algorithm.
Long et al. [19] employed a game theoretic approach to the P2P trading mechanism of
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prosumers. Jing et al. [20] divided the prosumers into commercial and residential pro-
sumers and proposed a fair pricing strategy for P2P trading between the two types of
prosumers. The proposed trading mechanism in [20] sought to maximize the trading profit
of prosumers while also considering the fair trading profit of prosumers. Bose et al. [21]
proposed a RL-based trading model that gives the option to prosumers to choose between
different trading strategies with different gains and penalties. Kim et al. [22] proposed a
RL-based trading model with a new trading evaluation criterion that considers the main
factors in LEM.

Since research on P2P energy trading is far in progress, some studies focused on
actual implementation issues. Guerrero et al. [23] proposed an energy trading scheme that
guarantees network constraints in energy trading. Thakur et al. [24] implemented a secure
trading platform using blockchain for P2P energy trade. Umer et al. [25] proposed a P2P
energy trading scheme that guarantees the privacy of prosumers. Herein, the implementa-
tion issues, including grid network constraints or trading platforms, are not discussed. We
focused on designing a trade management algorithm for prosumers in the P2P energy trade
system with assumptions similar to those in previous studies [17–22], but we employed
the CES that were not considered in [17–22].

2.3. Energy Trade System with CES

The good feature of ESS is its support for time-flexible energy use under uncertain
demand and generation. The disadvantages of ESS include high capital cost and the degra-
dation of the battery; thus, attempts have been made to reduce capital cost by identifying
the optimal battery size [26] and modeling battery degradation as a cost function [27].
Currently, the cost of batteries for storage is decreasing rapidly [28], but it is not assured
that ESS can yield many benefits without government aid.

The concept of CES can be seen as an effort that could minimize cost and maximize
utilization by installing a shared ESS. Researchers have sought to determine the economic
value of CESs, demonstrating that CESs not only have economic benefits but also offer
wider societal benefits [6,29]. The early use of CES concentrated on demand-side manage-
ment with a CES manager that control the action of prosumers [7,30], but recent studies
investigated the economic benefits of CES by integrating it into LEM for P2P energy trad-
ing [31]. Herein, the CES is managed by a RL-based trading algorithm for supporting
the trade of prosumers. Prosumers in the proposed LEM are not controlled by a central
operator, but their trades are supported by using the CES.

While using either ESS or CES, it is important to prove that the profit is higher than
that of BWC. Herein, we employed an existing BWC model [27] and demonstrated that the
proposed energy trade management algorithm using CES earns more profit than BWC.

3. System Model

This section describes our proposed energy market and explains how prosumers
submit their bids and offers to the market.

3.1. Proposed Energy Market

The proposed energy market is shown in Figure 1. The proposed market follows
the double auction market where multiple buyers and sellers submit bids and offers
simultaneously to trade [32]. We divide each day into n time slots, and T is defined as the
interval between time steps, which is equal to 24 h

n . At each time step t, prosumers submit
their bids and offers, and the ETS manages prosumers’ trade based on the submitted bids
and offers.
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Figure 1. LEM design with a centralized CES.

3.2. Prosumers

Prosumers are represented as a set of sellers I and buyers J according to their energy
demands. A single seller is denoted as i and the buyer as j. The time when i and j submit
their offers and bids is defined as tsell

i and tbuy
j , respectively. Prosumers i and j wait to trade

until wsell
i and wbuy

j , respectively. After wsell
i and wbuy

j has passed, i and j leave the LEM.
The offers and bids submitted by prosumers include the price and amount of energy they
want to trade. The price offered by seller i is denoted as psell

i , and the price bided by buyer

j is denoted as pbuy
j . Similarly, the offer energy that seller i requests to sell is esell

i , and the

bid energy that buyer j requests to buy is ebuy
j .

Prosumers freely submit offers and bids to the market according to their demand,
but the trading price is regulated by the ETS to guarantee a fair profit for sellers and
buyers. Seller i should submit psell

i at a higher rate than the utility’s feed-in tariff to
make a profit [33]. At the same time, psell

i should not exceed the utility’s service rate;
otherwise, buyers will choose to trade with the utility instead of seller i. Thus, psell

i should
guarantee that

pfeed-in ≤ psell
i < prate − η, ∀i ∈ It, (1)

where pfeed-in is the feed-in tariff per kWh offered by the utility, and prate is the service rate
per kWh charged by the utility. The variable It denotes the subset of sellers who await
trade in the market at time t. The value of η is the price regulation of ETS. Similarly, for the
bid price of buyer j, it should be guaranteed that

pfeed-in + η < pbuy
j ≤ prate, ∀j ∈ Jt, (2)

where pbuy
j is the bid price of buyer j. The variable Jt denotes the subset of buyers waiting

to trade in the market at time t.

4. Energy Trade Management Algorithm

Algorithm 1 is the proposed energy trade management algorithm. In each time step t,
the trade between prosumers is managed by ETS in two phases. The first phase is real-time
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arbitrage trading phase, and the second phase is RL-based arbitrage trading phase. In
the real-time arbitrage trading phase, ETS acts as a middleman who tries to maximize its
profit by trading in real-time with prosumers. The ETS buys energy from sellers and sells it
directly to buyers. The ETS continues to trade with prosumers until there is a profit. In the
RL-based arbitrage trading phase, the ETS trades with prosumers who failed to trade in the
real-time arbitrage trading phase. The ETS decides whether to buy energy, sell energy, or do
nothing. If the ETS decides to buy energy, the ETS selects a seller to buy energy, and that
seller’s energy is stored in CES. If the ETS decides to sell energy, the ETS selects a buyer
to sell energy, and the stored energy in CES is discharged to that buyer. Notably, the CES
is used only in the RL-based arbitrage trading phase. The RL-based trading algorithm
is applied in this second phase, which aims at maximizing the ETS trading profit. The
following subsections explain the two phases using the example shown in Figures 2 and 3.

Algorithm 1: Energy trade management algorithm
Result: ETS profit, BWC
for t = 0→ n do

Prosumers It,Jt submit transaction request (psell
i , esell

i ), ∀i ∈ It and

(pbuy
j , ebuy

j ), ∀j ∈ Jt to ETS;
ETS buys energy from It and sells energy to Jt in real-time (Real-Time
Arbitrage Trading Phase);

ETS trades with the remaining It, Jt using the CES (RL-based Arbitrage Trading
Phase);

end
// At the end of the day
ETS sells the remaining CES energy to the utility company;

Figure 2. An example of real-time arbitrage trading.

Figure 3. An example of RL-based arbitrage trading with CES.

4.1. Real-Time Arbitrage Trading Phase

In the real-time arbitrage trading phase, the ETS selects prosumers to trade energy.
The selected sellers directly send energy to the selected buyers; thus, CES is not used in the
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real-time arbitrage trading phase. Figure 2 shows an example with four buyers and four
sellers in the market at a certain time t. The ETS selects to trade with sellers i3 and i4 who
have submitted a lower offer price compared to other sellers. The energy bought from i3
and i4 is sold to buyers j1 and j2, who have submitted the higher bid price compared to
other buyers. The real-time arbitrage trading phase can be formulated by an optimization
problem as follows:

max
Xbuy, Xsell

∑
j∈Jt

pbuy
j xbuy

j − ∑
i∈It

psell
i xsell

i

subject to ∑
j∈Jt

xbuy
j − ∑

i∈It

xsell
i = 0

0 ≤ xsell
i ≤ esell

i , ∀i ∈ It

0 ≤ xbuy
j ≤ ebuy

j , ∀j ∈ Jt,

(3)

where xsell
i ∈ Xsell and xbuy

j ∈ Xbuy are the total amounts of energy that would be traded
for the ith seller and jth buyer. The first constraint shows that all energy bought from the
sellers is sold to the buyers. The last two constraint shows that xsell

i and xbuy
j should be

lower than seller ith offer energy and buyer jth bid energy, respectively.
After the real-time arbitrage trading phase, the prosumers who were not selected by

the ETS remain in the market. The remaining prosumers in the market can be seen as
prosumers who have failed to submit a proper price to trade with ETS. A formal middleman
will stop trading in this phase because the energy cannot be sold with profit in real-time.
There is an option of storing the energy in a battery to sell at a higher price, but the
BWC cost should be considered while using a battery. Herein, ETS tries to trade with
the remaining prosumers using CES. The details of how ETS trades with these remaining
prosumers are described in the following subsection.

4.2. RL-Based Arbitrage Trading with CES Phase

In RL-based arbitrage trading with the CES phase, the ETS decides whether to trade
energy with a prosumer who failed to trade in the real-time arbitrage trading phase. The
objective of RL-based arbitrage trading with the CES phase is to maximize the ETS profit
using CES, thereby maximizing the amount of energy to be traded between prosumers.
If ETS decides to buy energy from a seller, the seller’s energy is stored in CES. If ETS
decides to sell energy to a buyer, the CES energy is sent to that buyer.

After real-time arbitrage trading phase (Figure 2) is completed, the market would be
as shown in Figure 3, which presents the prosumers who failed to trade with the ETS. The
ETS decides whether to buy energy from a seller, sell energy to a buyer, or do nothing. If
the ETS decides to buy energy, the ETS buys energy from i2, who submitted the lowest
offer price, and if the ETS decides to sell energy, the ETS sells energy to j3, who submitted
the highest bid price. The action of ETS at time t is defined as at, and the action space A is
defined as follows:

A = {acharge, adischarge, aidle}, (4)

where acharge is the action of buying energy from a seller and storing it in CES, adischarge is
the action of selling the energy stored in CES to a buyer, and aidle represents the action of
doing nothing at time t.

The ETS refers to three state values to decide which action maximizes the profit. These
values are ot, bt, and ct, related to the seller’s offer price, buyer’s bid price, and CES state
of charge (SOC), respectively. The aforementioned variables are used as a part of the state
st, which is defined as:

st = (ot, bt, ct) ∈ S , (5)
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where S denotes the state space. The first state variable ot is the converted value of pcharge
t ,

representing the relative price of the seller. The value of pcharge
t is calculated as follows:

pcharge
t =

min
i∈It

(psell
i )− pfeed-in

prate − pfeed-in − η
, (6)

where pcharge
t is set to have a value in the range of 0 ≤ pcharge

t ≤ 1. The value of pcharge
t

is replaced by ot, which is an integer in the range of 0 ≤ ot ≤ 9. The value of pcharge
t is

converted to ot as follows:

ot =


0, if there are no sellers in RL-based arbitrage trading phase

n, if 0.11× (n− 1) ≤ pcharge
t < 0.11× n, for 1 ≤ n ≤ 8, n ∈ N

9, otherwise,

(7)

where n is a natural number in the range of 1 ≤ n ≤ 8.
The second state variable bt is calculated through the same process as the first state

variable ot. The value of bt is the converted value of the relative price of the buyer. The value
of pdischarge

t is calculated as follows:

pdischarge
t =

max
j∈Jt

(pbuy
j )− pfeed-in − η

prate − pfeed-in − η
, (8)

where pdischarge
t is set to have a value in the range of 0 ≤ pdischarge

t ≤ 1. The value of
pdischarge

t is replaced by bt, which is an integer in the range of 0 ≤ bt ≤ 9. The value of
pdischarge

t is converted to bt as follows:

bt =


0, if there are no buyers in RL-based arbitrage trading phase

n, if 0.11× (n− 1) ≤ pdischarge
t < 0.11× n, for 1 ≤ n ≤ 8, n ∈ N

9, otherwise,

(9)

The third state value ct is a converted value of the CES SOC dCES
t , which is defined

as follows:

dCES
t =

eCES
t

ECES , (10)

where eCES
t is the stored energy in the CES at time t, and ECES is the capacity of CES.

The value of dCES
t is converted to ct as follows:

ct =


0, if the CES is empty in RL-based arbitrage trading phase
n, if 0.11× (n− 1) ≤ dCES

t < 0.11× n, for 1 ≤ n ≤ 8, n ∈ N
9, otherwise,

(11)

The value of st and at determines the reward used to learn the RL agent. The reward
function rt(st, at) is defined as follows:

rt(st, at) =


rbuy, if at = acharge

rsell − p, if at = adischarge

0, otherwise,

(12)
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where rbuy and rsell − p are the rewards for charge and discharge actions, respectively.
The variable p is the penalty for trying to sell energy when there are no buyers. Each
reward is defined as follows:

rbuy = gbuy(prate − η −min
i∈It

(psell
i ))− hbuydCES

t ,

rsell = gsell(max
j∈Jt

(pbuy
j )− psell

i ) + hselldCES
t ,

p =

{
β, if bt = 0
0, otherwise,

(13)

where gbuy and gsell are the coefficients to control the effect of the price, and hbuy and
hsell are the coefficients to control the effect of the amount of energy that remains in CES.
The value hbuydCES

t is subtracted to obtain rbuy, which makes the RL agent avoid buying
energy if there is much energy in CES. In the case of rsell, the value hselldCES

t is added to the
reward that makes the RL agent sell energy if there is a lot of energy in CES.

The Q-learning algorithm is employed to maximize the amount of energy to be traded
between prosumers by finding the optimal policy that maximizes the profit of the arbitrage
trade of the ETS [34]. The Q-table is updated as follows:

Qnew(st, at) = (1− α) Q(st, at) + α rt(st, at) + α γ max
a

Q(st+1, a), (14)

where α is the learning rate, and γ is the discount factor.

5. Numerical Simulation

Section 5.1 describes the transaction data of prosumers and the learning parameters
used for the simulation. Section 5.2 shows the simulation results of CES’s economic
benefits and the average profit of the proposed algorithm. In the last section, Section 5.3,
we compare the profit of the proposed algorithm in the RL-based arbitrage trading phase
to other kinds of trading strategies.

5.1. Simulation Setting

The setting used for the simulation is shown in Table 1. We divided each day into
72 time steps, allowing 20-min intervals for an event to occur. We assumed that 50 buyers
and 50 sellers enter the market once per day. The transaction data of prosumers are
generated for each day with the distribution shown in Table 1. Many sellers enter the
market around noon when the amount of PV generation is expected to be high, and many
buyers enter the market in the afternoon when the amount of energy use is expected to
be high. The prosumers’ waiting time is fixed to w, which is a constant value ranging
from 0 to 3. The average feed-in tariff and service rate in Germany is used as the boundary
value of psell

i and pbuy
j [35,36]. In this study, the ETS does not regulate the prosumers’

price, so η is set to 0. We assume that CES uses a lithium-ion battery pack, which costs
$137 per kWh [37]. The battery efficiency is 0.95, which elicits about 90% of round trip
efficiency. The capacity of the CES is 400 kWh, except for the simulation in Section 5.3 that
shows the ETS profit for the CES capacity ranging from 100 to 800 kWh. The Q-learning
parameters, including learning rate α, discount factor γ, and ε greedy parameter, are set
to 0.1.
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Table 1. Values and units of each notation.

Notations Descriptions Values Units

n Number of time step 72 -
T Interval between time steps 24 h

n -
|I| Number of sellers 50 -
|J| Number of buyers 50 -
tsell
i Market entry time of seller i N (µ = 39, σ2 = 122) T

tbuy
j Market entry time of buyer j N (µ = 54, σ2 = 122) T

wsell
i Waiting time of seller i w T

wbuy
j Waiting time of buyer j w T

w Waiting time of prosumers 0 ~ 3 T
psell

i Offer price of seller i U (a = 0.08, b = 0.38) $
pbuy

j Bid price of buyer j U (a = 0.08, b = 0.38) $
esell

i Offer energy of seller i U (a = 20, b = 40) kWh
ebuy

j Bid energy of buyer j U (a = 20, b = 40) kWh
η Price regulation of the ETS 0 $
ECES Battery capacity 100 ~–800 kWh
µ Battery efficiency 0.95 -
µ2 Battery round trip efficiency 0.9025 -
α Learning rate 0.1 -
γ Discount factor 0.1 -
ε Epsilon-greedy parameter 0.1 -
gbuy Weight coefficient 5 -
gsell Weight coefficient 2.5 -
hbuy Weight coefficient 2 -
hsell Weight coefficient 2 -

5.2. Simulation Results

In order to validate the economic benefits of using CES, we compared the total profit
resulting from RL-based arbitrage trading to the CES phase with BWC. The total profit
includes the ETS profit and the prosumers’ profit from trading with the ETS instead of the
utility. The total profit obtained by the proposed trading algorithm is defined as follows:

Total Profit = ETS Profit + Sellers Profit + Buyers Profit, (15)

Sellers Profit = ∑
i∈I

(psell
i − pfeed-in)xsell

i , (16)

Buyers Profit = ∑
j∈J

(prate − pbuy
j )xbuy

j , (17)

where psell
i − pfeed-in and prate − pbuy

j indicate the price advantage of prosumer i and j can
obtain by trading with ETS instead of the utility.

BWC when the stored energy in the battery changes from eCES
t+1 to eCES

t can be defined
as follows:

BWC = |eCES
t+1 − eCES

t | ×AWC(D), (18)

where AWC(D) is the average wear-cost per unit of energy transfer, and the inner variable
D indicates the battery depth of discharge (DOD). The AWC per kWh is formulated using
an existing BWC model in [27] as follows:
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AWC(D) =
Battery Price

Total Transferable Energy During the Life Cycle

=
Battery Price

ACC(D)× 2× D× ECES × µ2 ,
(19)

where µ is the battery efficiency, and µ2 indicates the round-trip efficiency of the battery.
ACC(D) is the average cycle count of a typical lithium-ion battery, which is defined
as follows:

ACC(D) =
a

Db , (20)

where a and b are battery-dependent parameters that can be acquired experimentally.
However, batteries that are made with the same material do not have the exact same
battery wear characteristics and thus need to be checked by experiments. The most typical
specifications are given by the battery manufacturers with respect to the DOD. Herein, we
applied the values of a typical lithium-ion battery, which are a = 694 and b = 0.795 [27].
A lithium-ion battery pack cost $137/kWh in 2020 [37]. We assume the other variable as
D = 1 and µ = 0.95; thus, AWC(1) = $0.1093/kWh.

Figure 4 presents the total profit and BWC resulting from the RL-based arbitrage
trading phase. The total profit is about $105.34 per day, and BWC is about $77.89 per day.
This result reveals that the proposed algorithm using CES yields a profit of $27.45 per day in
the proposed LEM. If we consider social benefits, such as the decrease in grid consumption,
we expect far more profits than the result.

Figure 4. The rotal profit and BWC by using the CES.

Figure 5 shows the daily profit of ETS. The ETS Profit with CES graph represents
the ETS profit using the proposed energy trade management algorithm. The ETS Profit
without CES graph represents the ETS profit using the proposed energy trade management
algorithm without RL-based arbitrage trading with the CES phase but only with real-time
arbitrage trading phase since it assumes that the ETS has no CES. The daily average of the
ETS profit is $69.58 and $36.22, respectively. The ETS can earn about $33.36 more using
the CES.
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Figure 5. The daily profit of ETS with and without CES.

Figures 6 and 7 show the average profit per day for the proposed algorithm and the
CES first algorithm. The CES first algorithm is an energy trade management algorithm
where the RL-based arbitrage trading phase starts before the real-time arbitrage trading
phase. The CES first algorithm uses CES to trade with a prosumer who submitted the
highest bid price or lowest offer price that can be traded with a high probability in the
RL-based arbitrage trading phase. This results in a lower profit of the CES first algorithm
compared to that of the proposed algorithm. There is a slight increase in the ETS profit if
prosumers wait for a certain time w to trade in the LEM, but there is no big difference in
the total profit. In Figure 6, the proposed algorithm shows an ETS profit of $69.58 and a
total profit of $105.34, and the CES first algorithm shows an ETS profit of $56.08 and a total
profit of $89.37. In Figure 7, the proposed algorithm shows an ETS profit of $71.99 and a
total profit of $105.29, and the CES first algorithm shows an ETS profit of $67.10 and a total
profit of $91.39.

Figure 6. The average profit per day of two algorithms with w = 0.
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Figure 7. The average profit per day of two algorithms with 0 ≤ w ≤ 3.

5.3. Simulation Analysis

In order to verify the performance of RL-based arbitrage trading in the proposed
algorithm, we compared the trading profit with that of three other trading strategies. The
first trading strategy is the previous action maintain (PAM), which repeats the action
chosen at the previous time step. PAM starts with buying energy until the CES reaches
its capacity, and after reaching the capacity, PAM then repeats selling energy. The second
strategy is called random action as it chooses actions in a random order. The last trading
strategy is named optimal, which gives the maximum profit with the perfect forecast of
the whole day’s transaction.

Figures 8 and 9 show the CES discharge rate and ETS profit with respect to the CES
capacity. The 100-day trading result is used to calculate the daily average of CES discharge
rate and ETS profit. The RL-based arbitrage trading in the proposed algorithm reveals a
high discharge rate, 0.97 on average, and the profit increases slightly as the CES capacity
increases. PAM also shows a high discharge rate of 0.98 when the CES capacity is 400 kWh.
However, there is a big difference in the ETS profit. PAM shows a profit of $9.02 per day
when the CES capacity is 400 kWh, whereas RL-based arbitrage trading in the proposed
algorithm shows a profit of $33.36 per day for the same CES capacity.

Figure 8. The average discharge rate with respect to CES capacity.
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Figure 9. The average ETS profit with respect to CES capacity.

Figures 10–13 show the details of 100-day trading when the CES capacity is 400 kWh.
Figure 10 shows the daily profit of the ETS for each trading strategy. The optimal strategy
shows a profit of $55.5 per day, resulting in a high selling price of energy with no surplus
energy in the CES. In the case of other trading strategies, we assume that the remaining
energy in the CES after a day is sold to the utility company. This prevents the CES from
being overloaded by energy having a low possibility of being sold to another prosumer.

Figure 10. Daily profit of ETS for each policy.

Figures 11 and 12 show the pattern of the daily use of CES. Since CES is used for
prosumers who failed to trade in the real-time arbitrage trading phase, the daily use graph
of the CES is irregular. PAM shows a typical CES use pattern compared to that of other
algorithms as it does not consider the price of a prosumer but only the SOC of CES. RL-
based arbitrage trading in the proposed algorithm shows an irregular CES use pattern,
but the charge and discharge graphs are similar, indicating the high selling rate of the
proposed algorithm.
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Figure 11. The daily amount of energy charged to CES.

Figure 12. The daily amount of energy discharged from CES.

Figure 13 shows the daily discharge rate for each algorithm. The daily discharge rate
shows the selling rate of arbitrage trading. PAM also shows a high discharge rate compared
to the RL-based arbitrage trading of the proposed algorithm. However, as we have seen
above, PAM was not able to sell its energy at a time when the prosumer price is high.

In addition, we have analyzed the performance of the RL-based trading algorithm
with different sizes of st. Figure 14 shows the daily profit of the ETS in RL-based ar-
bitrage trading phase when the CES capacity is 400 kWh. Increasing the size st from
5 × 5 × 5 to 10 × 10 × 10 shows an increase in profit of about $3.01, but increasing the
size from 10 × 10 × 10 to 15 × 15 × 15 shows a small decrease of about $1.18 in profit.
According to the simulation result, decreasing the size of st results in a smaller profit,
but increasing the size of st did not result in a bigger profit.
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Figure 13. The daily discharge rate of CES for each policy.

Figure 14. The average ETS profit for different sizes of st.

6. Conclusions and Discussion

In this study, an energy-trade management algorithm is proposed for managing the
trade of prosumers using CES. We designed and modeled a LEM that manages the trade of
prosumers who are not controlled by a central operator and act competitively with other
prosumers. The CES is managed by an RL-based algorithm and used for prosumers who
fail to trade in the real-time trading phase. Numerical simulations show that there are
more economic benefits if the CES is limited to prosumers who fail to trade in the real-time
trading phase. The main parameters considered in the numerical simulations are the ETS
profit from trading with prosumers, the prosumers profit from trading with the ETS instead
of the utility, and BWC. Numerical simulations show that the total trading profit by using
the CES is higher than the BWC. The primary results of the numerical simulations are
as follows:

• The total profit of the proposed energy management algorithm is $105.34 per day.
If CES is used in the real-time trading phase, the total profit decreases to $89.37 per day.

• The BWC of the proposed energy management algorithm is about $77.89 per day. This
result reveals that the proposed algorithm using CES yields a profit of $27.45 per day
in the proposed LEM.
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There are two limitations to this study, which we shall address in our future studies.
First, instead of generating the simulation data with specific mean and deviations, we hope
to analyze and apply real-world energy transaction data of prosumers. Second, since the
Q-learning algorithm has problems using continuous values for the state and action, we
can adopt a novel RL algorithm to trade more efficiently in the proposed LEM.
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