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1 Introduction

In the context of gauge-gravity duality [1–3], an asymptotically AdS two-sided black hole
geometry is dual to two copies of the corresponding boundary theory entangled in a ther-
mofield double state [4]. The geometry contains a wormhole connecting the two asymptotic
regions where the boundary theories live. The wormhole is not traversable, which is con-
sistent with the fact that the boundary theories do not interact with each other.

In general, the non-traversability of wormholes is a consequence of the Average Null
Energy Condition (ANEC), which basically states that the stress energy tensor integrated
along a complete achronal null geodesic is always non-negative∫

Tµνk
µkνdλ ≥ 0 , (1.1)

where kµ is a tangent vector and λ is an affine parameter. Eq. (1.1) establishes that the
Average Null Energy (ANE) can be used as a diagnosis of traversability.
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Gao, Jafferis and Wall(GJW) realized that ANEC can be violated and the wormhole
can be made traversable in a two-sided BTZ black hole by coupling the two boundary
theories with a relevant perturbation of the form

δH =
∫
dtdxh(t,x)OL(−t,x)OR(t,x) , (1.2)

where O is a scalar operator dual to a bulk scalar field φ [5]. They work in the context of a
semiclassical approximation, in which the gravitational field is treated classically, while the
matter fields are treated quantum mechanically. In this context, one writes the Einstein
equation by replacing the matter stress energy tensor by its expectation value in a given
state

Gµν = 8πGN 〈Tµν〉 , (1.3)

where Gµν is the Einstein tensor. GJW showed that the double trace deformation can be
chosen in such a way that makes the expectation value of the quantum matter stress tensor
violate the ANEC (1.1). The physical picture is that the boundary deformation introduces
a field excitation in the bulk that has negative energy. The backreaction of this negative
energy is given in terms of a negative-energy shock wave that causes a time advance for
the geodesic, as opposed to the usual time delay caused by positive-energy shock waves.
This allows us to transfer information through the wormhole, as shown in figure 4. In the
dual field theory description, the traversability of the wormhole is related to a teleportation
protocol [6, 7]. The above-mentioned results lead to several interesting developments [8–26],
including a proposal for studying quantum gravity experimentally [27, 28].

Most of the works involving traversable wormholes by a double trace deformation only
deal with lower dimensional cases, like black holes in 2D or 3D gravity, while in more
realistic experimental setups one usually expects higher-dimensional systems. In fact, due
to technical problems, the case of higher-dimensional black holes is more complicated, and
it has not been explored in detail.1 In this work, we fill this gap in the literature by
studying traversable wormholes in the context of Rindler-AdS/CFT. We generalize GJW
results to the case of a Rindler-AdSd+1 (d ≥ 2) geometry and show that the same results
can be obtained using the eikonal approximation, as done in [6] for a 2D gravity theory.

Another motivation for our work comes from the existence of a no-go theorem regarding
eternal traversable wormholes in higher dimensions [29]. In fact, by considering a pair of un-
entangled CFTs, assuming Poincare invariance in the boundary directions, and using Weyl
invariant matter fields, the authors of [29] proved the non-existence of eternal semi-classical
traversable wormholes in spacetime dimensions higher than two. In this paper we point out
that it is possible to evade this no-go theorem and explicitly construct higher dimensional
examples of traversable wormholes if we assume: (i) non-eternal traversable wormholes,
(ii) two entangled copies of the CFT, and (iii) matter fields without Weyl symmetry.

This work is organized as follows. In section 2, we review our holographic setup. In
section 3, we derive analytic formulas for the ANEC violation, discuss backreaction effects
and derive semi-analytic formulas for a two-sided correlator that diagnoses traversability.

1See, however, [14].

– 2 –



J
H
E
P
0
7
(
2
0
2
1
)
2
1
9

In section 4, we derive a parametric bound on the amount of information that can be
transferred through the wormhole and discuss the dependence on the dimensionality of the
spacetime. In section 5, we compute the change of energy and entropy that result from the
double trace deformation. We discuss our results in section 6 and relegate some technical
details to appendix A.

2 Gravity set-up

We work in the context of Einstein gravity

S = 1
16πGN

∫
dd+1x

[
R+ d(d− 1)

`2

]
, (2.1)

and we consider a Rindler-AdS solution, which can be constructed as follows. We start with
a pure AdSd+1 geometry, which can be defined as the universal cover of the hyperboloid

− T 2
1 − T 2

2 +X2
1 + · · ·+X2

d = −`2 , (2.2)

embedded in a space with ambient metric given by

ds2 = −dT 2
1 − dT 2

2 + dX2
1 + · · ·+ dX2

d . (2.3)

Here, ` denotes the AdS length scale. In what follows, we set ` = 1 for simplicity. We then
parametrize the embedding coordinates as follows

T1 =
√
r2 − 1 sinh t ,

T2 = r coshχ,

Xd =
√
r2 − 1 cosh t,

X2
1 + · · ·+X2

d−1 = r2 sinh2 χ ,

(2.4)

where t ∈ (−∞,∞), and r, χ ∈ [0,∞). In terms of these coordinates, the metric becomes

ds2 = −
(
r2 − 1

)
dt2 + dr2

r2 − 1 + r2dH2
d−1 , (2.5)

where dH2
d−1 = dχ2 + sinh2 χdΩ2

d−2 denotes the unity metric in a (d − 1)−dimensional
hyperbolic space, Hd−1, with dΩ2

d−2 being the unity metric on the (d − 2)−sphere. The
AdS boundary is located at r =∞, and the geometry has a horizon at r = 1, which leads
to a non-zero Hawking temperature given by T = 1

β = 1
2π .

The coordinates (t, r,x), where x ∈ Hd−1, describe an accelerating observer in AdS,
and they only cover a subregion of the spacetime known as the Rindler wedge of AdS,2

which is shown in light gray in figure 1. In this particular hyperbolic foliation of AdS, the
dual boundary theory is a CFTd living in R×Hd−1.

2In the literature, the solution (2.5) is also referred to as a ‘topological’ hyperbolic black hole [30].
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Figure 1. Rindler wedges of global AdS (solid cylinder).

The full spacetime can be described either in Kruskal-Szekeres coordinates, or in global
coordinates. Let us start by introducing Kruskal-Szekeres coordinates (U, V ) as

V = +er∗−t , U = −er∗+t , left wedge
V = −er∗−t , U = +er∗+t , right wedge
V = +er∗−t , U = +er∗+t , future interior
V = −er∗−t , U = −er∗+t , past interior

(2.6)

where the tortoise coordinate is defined as

r∗ =
∫ r dr′

r′2 − 1 = log
(
r − 1
r + 1

)1/2
. (2.7)

In terms of Kruskal-Szekeres coordinates, the metric becomes

ds2 = − 4dU dV
(1 + UV )2 +

(1− UV
1 + UV

)2
dH2

d−1 . (2.8)

The above result can also be obtained by substituting the following embedding coordinates

T1 = U + V

1 + UV
,

T2 = 1− UV
1 + UV

coshχ,

Xd = U − V
1 + UV

,

X2
1 + · · ·+X2

d−1 =
(1− UV

1 + UV

)2
sinh2 χ ,

(2.9)

into the embedding space metric (2.3). In Kruskal-Szekeres coordinates (U, V,x), the AdS
boundary is located at UV = −1, and there is a coordinate singularity at UV = 1. The
geometry contains two horizons, which are located at U = 0 and V = 0. Figure 2 shows the
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Future Interior

Past Interior
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Right
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V U

Figure 2. Penrose diagram for two-sided black holes with asymptotically AdS geometry.

corresponding Penrose diagram. The two exterior regions correspond to the two Rindler
wedges of AdS.

Each Rindler wedge is described by a CFT living in R × Hd−1. We denote these
hyperbolic space CFTs as CFTL and CFTR, where L and R label the left and the right
boundary, respectively. The maximally extended geometry (2.9) is dual to a thermofield
double state constructed by entangling the two hyperbolic space CFTs

|TFD〉 = Z−1/2∑
n

e−βEn/2|En〉L ⊗ |En〉R, (2.10)

where L and R label states in CFTL and CFTR, respectively, and Z =
∑
n e
−βEn is the

thermal partition function at inverse temperature β. The Rindler-AdS geometry fixes
β = 2π.

The description above shows that a global AdS geometry can be seen as a maximally
extended black hole-like geometry, whose boundary description is given in terms of a ther-
mofield double state of two CFTs in hyperbolic space. This can be understood as follows.
In global coordinates, one chooses the following parametrization

T1 =
√
ρ2 + 1 cos τ , T2 =

√
ρ2 + 1 sin τ , X2

1 + · · ·+X2
d = ρ2 , (2.11)

in terms of which the metric becomes

ds2 = −(1 + ρ2)dτ2 + dρ2

1 + ρ2 + ρ2dΩ2
d−1 , (2.12)

where τ ∈ (−∞,∞), ρ ∈ [0,∞). The AdS boundary is located at ρ =∞ and the dual field
theory description is given in terms of a CFT in R × Sd−1. In particular, the pure global
AdS geometry describes the vacuum state |0〉global of such CFT.

Given a constant time slice of the geometry, we can divide the spatial boundary into
two hemispheres BL and BR, and decompose the Hilbert space accordingly, i.e., H =
HBL ⊗HBR . It turns out that the vacuum state of the CFT defined on the full sphere can
be written as a thermofield double state constructed out of the states of the CFTs defined
on the hemispheres. Finally, we can use conformal transformations to map the domain of
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dependence of both BL and BR to R×Hd−1. This implies that vacuum state |0〉global can
be written as a thermofield double state of two hyperbolic space CFTs [31, 32]

|0〉global = Z−1/2∑
n

e−πEn |En〉L ⊗ |En〉R , (2.13)

where EL and ER label the energy eigenstates of CFTL and CFTR. This provides the
field theory explanation of why global AdS can be thought of as a maximally extended
hyperbolic ‘black hole’.

The above discussion is related to the so-called subregion duality, which states that if
we only have access to a subset of the boundary, we can only describe a subregion of the bulk
geometry. In this particular example, a CFT that has support on only half of the boundary
of global AdS will not describe the full bulk geometry, but only the corresponding Rindler
wedge of AdS. For a more detailed discussion about subregion duality, we refer to [33].

2.1 Bulk-boundary propagators

In this section, we compute bulk-boundary propagators of scalar fields in the maximally
extended Rindler-AdS geometry. These propagators will be important ingredients in the
computation of ANEC violation in the following sections. We first compute bulk-bulk
propagators between two bulk points, and then we obtain bulk-boundary propagators by
taking one of these points to the boundary.

These propagators are given in terms of geodesic distances between two points. In
embedding coordinates, the geodesic distance d(P, P ′) between two points P = (T1, T2, Xi)
and P ′ = (T ′1, T ′2, X ′i) in the ambient space can be written as

cosh d(P, P ′) = T1T
′
1 + T2T

′
2 −

d∑
i=1

XiX
′
i . (2.14)

The bulk-bulk propagator between P and P ′ is given by [34]

G∆(P ;P ′) = c∆ξ
∆

2F1

(∆
2 ,

∆ + 1
2 ; ∆ + 1− d

2 ; ξ2
)
, (2.15)

ξ ≡
(
cosh d(P, P ′)

)−1
, c∆ ≡

Γ(∆)
2∆+1πd/2Γ(∆ + 1− d/2)

,

where ∆ is the conformal dimension of the scalar operator.
The bulk-boundary propagator can be computed by taking P or P ′ to the boundary.

It is more convenient to do that after specifying a coordinate system. By writing the
embedding coordinates in terms of Rindler-AdS coordinates (t, r,x), we can show that

cosh d(P, P ′) = −
√
r2 − 1

√
r′2 − 1 cosh(t− t′) + rr′ cosh d(x,x′) , (2.16)

– 6 –
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where d(x,x′) is the geodesic distance between x and x′ in Hd−1. Here, we follow the
convention of GJW and compute the bulk-boundary propagator as3

K∆(U, V,x; t′,x′) ≡ 〈φ(U, V,x)O(t′,x′)〉 = lim
r′→∞

r′∆G∆(r, t,x; r′, t′,x′) , (2.17)

where O is a boundary operator, with conformal dimension ∆, and φ is the corresponding
dual bulk field. With the above definition we obtain

K∆(r, t,x; t′,x′) = c∆
[
−
√
r2 − 1 cosh(t− t′) + r cosh d(x,x′)

]−∆
. (2.18)

For later purposes, it will be convenient to write the bulk-point (r, t,x) in terms of Kruskal-
Szekeres coordinates (U, V,x). In this case, the propagator becomes

K∆(U, V,x; t′,x′) = c∆

( 1 + UV

V et′ − Ue−t′ + (1− UV ) cosh d(x,x′)

)∆
. (2.19)

The above formula is valid when both the bulk point (U, V,x) and the boundary point
(t′,x′) are in the right exterior region (right Rindler wedge). Later, we will also need the
formula for the case in which the boundary point is on the left asymptotic boundary. This
formula can be simply obtained by replacing t→ −t+ iπ in (2.19).

3 ANEC violation and traversable wormhole

Let us now review how exactly the violation of the ANEC leads to a traversable wormhole
in a Rindler-AdSd+1 geometry. We start by considering the linearized Einstein equation in
Kruskal coordinates

d− 1
2`2

(
hUU + ∂U (UhUU )

)
+ 1

2`2∂
2
Uhχχ = 8πGNTUU , (3.1)

where we denote the fluctuations as δgµν = hµν . Integrating (3.1) with respect to U with
` = 1, we obtain

d− 1
2

∫
hUUdU = 8πGN

∫
TUUdU . (3.2)

A null ray which originates from the past infinity to future infinity along the horizon
(V = 0) undergoes a shift in the V direction by

∆V (U) = − 1
2gUV (0)

∫ U

−∞
hUUdU , (3.3)

where gUV (0) = −2 for the Rindler-AdSd+1 geometry. Combining (3.2) and (3.3), we find

∆V = 4πGN
d− 1

∫
TUUdU . (3.4)

3It is also customary to define the bulk-boundary propagator as [34]

K∆(t, r,x; t′,x′) ≡ (2∆− d) lim
r′→∞

G∆(t′, r′,x′) .

The factor of 2∆− d is included to guarantee that limr′→∞ r′d−∆K∆(t, r,x; t′,x′) = δ(t− t′)δd−1(x− x′).

– 7 –
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The above result shows that ∆V becomes negative if
∫
TUUdU < 0. In this case, the shift

∆V corresponds to a time advance, and a signal coming from the left (right) asymptotic
boundary can reach the right (left) asymptotic boundary of the geometry. In other words,
if the ANEC is violated the wormhole becomes traversable.

GJW showed that ANEC can be violated if one introduces a double trace deformation
that couples the two boundary theories [5]. They computed the 1-loop expectation value
of the bulk stress tensor in a BTZ black hole using a point splitting method. GJW’s result
can be written as follows4

∫ ∞
U0

TUUdU = −
hΓ(∆ + 1

2)2

π(2∆ + 1)Γ(∆)2

2F1
(

1
2 + ∆, 1

2 −∆; 3
2 + ∆; 1

1+U2
0

)
(1 + U2

0 )∆+ 1
2

, (3.5)

where the deformation is turned on at some time t0, i.e., h(t,x) = h θ(t− t0) and U0 = et0 .
Also, the traversability of the GJW wormhole can be diagnosed by a two-sided correlator
that can be computed using the eikonal approximation [6].

In this section, we generalize the expression of ANE (3.5) for a (d + 1) dimensional
Rindler-AdS geometry using two different methods, namely, the point splitting method
used in [5], and the eikonal method used in [6]. We show that both methods give results
that are consistent with each other. For future reference, we will use the following notation
for the ANE

A∞(U0) ≡
∫ ∞
U0

TUUdU , (3.6)

and change a subscript or superscript as occasion demands.

3.1 Point splitting method

In this section, we compute the 1-loop expectation value of the stress tensor of the scalar
field in the presence of the double trace deformation that couples the two asymptotic
boundaries of the geometry. We consider the double-trace deformation, which corresponds
to a time dependent piece in the Hamiltonian that is given by5

δH(t) =
∫
dxh(t,x)OL(−t,x)OR(t,x) , (3.7)

where dx = sinhd−2 χdχdΩd−2 and we take h(t,x) = h θ(t− t0). This deformation induces
a quantum correction in the matter stress tensor that can lead to a violation of the ANEC.

For a scalar field with an action

Sscalar = −1
2

∫
dd+1x

√
−g

(
gµν∂µφ∂νφ+m2φ2

)
, (3.8)

the stress energy tensor can be obtained by varying the action with respect to gµν

Tµν = ∂µφ∂νφ−
1
2gµνg

αβ∂αφ∂βφ−
1
2m

2gµνφ
2 . (3.9)

4Here we simplify GJW’s result a little bit by using the identity Γ(∆ + 1/2) =
√
πΓ(2∆+1)

22∆Γ(∆+1) .
5The condition for δH to be a relevant deformation is ∆O ≤ d/2, where ∆O is the scaling dimension of

the operator O. The unitarity bound implies ∆O > d/2− 1.

– 8 –
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The 1-loop expectation value of the stress energy tensor can be computed by point splitting

〈Tµν〉 = lim
x→x′

(
∂µ∂

′
νG(x, x′)− 1

2gµνg
αβ∂α∂

′
βG(x, x′)− 1

2m
2gµνG(x, x′)

)
, (3.10)

where x and x′ denote bulk points, and G(x, x′) is a (renormalized) scalar two point function
under the presence of the deformation

G(x, x′) = 〈φHR (t, r,x)φHR (t′, r′,x′)〉
= 〈U−1(t, t0)φIR(t, r,x)U(t, t0)U−1(t′, t0)φIR(t′, r′,x′)U(t′, t0)〉, (3.11)

where U(t, t0) = T e−i
∫ t
t0
dt′δH(t′) denotes the evolution operator in the interaction picture.

The subscript R indicates a field in the right wedge, while the subscripts H and I indicate
fields in the Heisenberg and interaction pictures, respectively. By considering a small h
expansion, we write

G(x, x′) = G0(x, x′) +G1(x, x′)h+O(h2) , (3.12)

and we use (3.10) to compute 〈Tµν〉 as

〈Tµν〉 = 〈Tµν〉0 + 〈Tµν〉1 h+O(h2) . (3.13)

In the Rindler AdSd+1 background, the 1-loop contribution to the bulk two point
function, evaluating at V = 0 in Kruskal coordinates, is given by

G1(U,U ′,x,x′) = 2 sin (π∆)c2
∆

∫
dU1
U1

∫
dx1h(U1,x1) θ

(
U

U1
− cosh d(x,x1)

)
(3.14)

×
( 1

U
U1
− cosh d(x,x1)

)∆( 1
U ′U1 + cosh d(x′,x1)

)∆
+ (U,x↔ U ′,x′)

≡ F (U,U ′,x,x′) + F (U ′, U,x,x′) ,

where d(x,x1) is the geodesic distance between x and x1 in Hd−1.
For simplicity, we set x = x′ = 0 so that the geodesic distance is given by d(x1,x) = χ1.

This is equivalent to consider homogeneous perturbations, in which case G1 does not depend
on x and x′ and we can conveniently set them to zero. By defining y = coshχ1, we obtain
the UU -component of the stress energy tensor on the horizon as follows

TUU = 2 lim
U ′→U

∂U∂U ′F (U,U ′) (3.15)

=−2∆cO hvol(Sd−2) lim
U ′→U

∂U

∫ U

U0

dU1
U1

∫ U/U1

1

dy

(y2−1)
3−d

2

U∆
1

(U−U1y)∆(U ′U1 +y)∆+1 ,

where cO = 2 sin(π∆)c2
∆. With the above expression, we show in appendix A that

A∞(U0) =−vol(Sd−2)
hπ

1−2d
2 Γ(d−1

2 )
2(2∆+1)

Γ(∆+ 1
2)Γ(∆+ 3−d

2 )
Γ(∆+1− d

2)2

2F1

(
∆+ 1

2 ,
1
2−∆,∆+ 3

2 ; 1
1+U2

0

)
(1+U2

0 )∆+ 1
2

.

(3.16)
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∆ ∆

A
∞

(1
)

A
∞

(1
)

Figure 3. A∞(U0) =
∫∞

U0
TUUdU versus ∆ for increasing values of d. On the left panel we have d =

2 (black curve), d = 3 (blue curve), d = 4 (purple curve). On the right panel we have d = 4 (purple
curve), d = 5 (red curve), d = 6 (brown curve). The solid curves are plotted for d

2 − 1 ≤ ∆ ≤ d
2 ,

which is the range in which the deformation is relevant, while the dashed ones are plotted for
d
2 − 1 ≤ ∆ ≤ d+1

2 , which is the range in which (3.16) is valid. Here, we set U0 = 1.

Note that we recover GJW result (3.5) by setting d = 2 in (3.16). The unitarity bound
implies ∆ ≥ d

2−1, while the condition for the deformation to be relevant reads ∆ < d
2 . The

derivation of (3.16) using the point splitting method requires ∆ < d+1
2 (see appendix A),

but the same formula can be obtained using the eikonal method (see section 3.2) without
any upper bound on ∆. Figure 3 shows A∞(U0) versus ∆ for increasing values of d. The
violation of ANEC quickly decreases as we increase the dimensionality of the spacetime.
This suggests that it is more difficult to send information through the wormhole in higher
dimensional cases, as compared to lower dimensional cases. We will confirm that this is
indeed the case in section 4, where we study bounds on information transfer.

Note that A∞(U0) is related to a perturbation in which h(t,x) = h θ(t− t0). It is also
convenient to consider an instantaneous perturbation hinst(t,x) = h δ(t− t0). In this case,
the average null energy is

Ainst = −U0∂U0A∞(U0). (3.17)

By direct differentiation of (3.16), we obtain

Ainst(U0) = −h vol(Sd−2) π
1−2d

2

2
Γ(d−1

2 )Γ(∆ + 1
2)Γ(∆ + 3−d

2 )
Γ(∆ + 1− d

2)2

(
U0

1 + U2
0

)2∆+1
. (3.18)

This provides a higher-dimensional generalization (d ≥ 3) of the results for a BTZ black
hole derived in [14]

Ainst
d=2(U0) = −

hΓ(∆ + 1
2)2

πΓ(∆)2

(
U0

1 + U2
0

)2∆+1
. (3.19)

In the next section, we show that (3.16) and (3.18) can also be obtained by using the
eikonal approximation, as done in [6] for a two-dimensional gravitational system.

3.2 Eikonal method

In this section, we analyze the traversability wormholes in higher dimensions (d ≥ 2) by
following the approach of [6], which uses the eikonal approximation to directly compute

– 10 –



J
H
E
P
0
7
(
2
0
2
1
)
2
1
9

OL OR

ψL(−t1)

ψR(t2)

V U

Figure 4. The non-local coupling between OL and OR introduces a negative-energy shock wave in
the bulk that makes the wormhole traversable. The traversability can be diagnosed by a two-sided
correlation function (3.20) involving ψL and ψR.

the expectation value of a two-sided correlation function of the form

〈
[
ψL(−t1,x1), e−iVψR(t2,x2)eiV

]
〉, (3.20)

where the expectation value is taken in a thermofield double state, and

V = 1
K

K∑
i=1

∫
dt′ dx′h(t′,x′)OiL(−t′,x′)OiR(t′,x′) (3.21)

is a double trace deformation involving K light fields. It is convenient to consider more
than one field because the large K limit leads to simplifications.

The correlation function (3.20) measures the response of ψR to a perturbation on the
left side of the geometry. It takes a non-zero value when the signal can travel through the
wormhole and reach the right boundary [6]. The double-trace deformation V introduces
a negative-energy shock wave in the bulk, which makes geodesics crossing the shock wave
suffer a negative shift in the V direction.6 This negative shift is responsible for making
the bulk field corresponding to the operator ψL correlate with the operator ψR, as shown
in figure 4. As we will see in the following, (3.20) contains information about the ANEC
violation and provides a method to compute ANE, which is perfectly consistent with the
one by the point-splitting method in [5].

It turns out to be more convenient to work with the following correlation function

C = 〈e−iVψR(t2,x2)eiVψL(−t1,x1)〉, (3.22)

whose imaginary part gives the original commutator 〈
[
ψR, e

−iVψLe
iV
]
〉 = −2 i Im(C). In

the large K and small GN limits, C takes a simple form [6]

C = e−i〈V〉C̃ , C̃ ≡ 〈ψR(t2,x2)eiVψL(−t1,x1)〉 . (3.23)
6This should be contrasted with the positive shift introduced by a positive-energy shock wave.
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The correlator C̃ has all the information we need about the traversability of the wormhole.
For simplicity, let us first consider a small h (recall that V ∼ h) expansion and compute
the result at linear order in h

C̃1 = i

K

K∑
j=1

∫ t

0
dt′
∫
dx′〈ψR(t2,x2)OjL(−t′,x′)OjR(t′,x′)ψL(−t1,x1)〉h(t′,x′), (3.24)

which is basically an out-of-time-order correlator that can be computed using the techniques
introduced in [35]. For convenience, we omit the sum in K for now and consider K = 1.
Explicit expressions involving K will be reintroduced when the large K approximation is
needed.

By following [8, 35], we now review and generalize the method of [6] for cases in which
d ≥ 2. We first write C̃1 as an amplitude

C̃1 = i 〈out|in〉, (3.25)

where the ‘in’ and ‘out’ states are defined as follows

|in〉 = OR(t′,x′)ψL(−t1,x1)|β〉, |out〉 = O†L(−t′,x′)ψ†R(t2,x2)|β〉. (3.26)

In the bulk, |in〉 and |out〉 can be thought of as two-particle states. One of the particles
represents the signal, while the other represents the negative energy introduced by the
double trace deformation. In the |in〉 state the two particles are heading to collide and in
the |out〉 state the particles are leaving the collision region. See figure 4 of [35].

For relatively large values of |t1 + t0|, the signal and the negative energy have a large
relative boost, and we can think of C̃1 as the amplitude of a high energy collision that takes
place near the black hole horizon. For such high energy collision, the gravitational inter-
action dominates and can be computed by resumming a series of gravitational exchanges
involving ladder and crossed-ladder diagrams [36]. In a basis of well-defined longitudinal
momentum and tranverse position, the amplitude is simply given by a phase, the eikonal
phase, which only depends on the classical action of the signal and negative energy. This
assumes GN � 1 and small momentum transfer.

Expanding |in〉 and |out〉 in a basis of well-defined momentum in the U or V direction
and well-defined transverse position x̃ ∈ Hd−1

|in〉 =
∫
dpU1 dp

V
4

∫
dx̃1dx̃4ΨOR(pV4 , x̃4)ΨψL(pU1 , x̃1)

(
|pV4 , x̃4〉 ⊗ |pU1 , x̃1〉

)
in
, (3.27)

|out〉 =
∫
dpU2 dp

V
3

∫
dx̃2dx̃3ΨOL(pV3 , x̃3)ΨψR(pU2 , x̃2)

(
|pV3 , x̃3〉 ⊗ |pU2 , x̃2〉

)
out

, (3.28)

where the integral is over all the exposed variables. The wave functions are given by Fourier
transforms of bulk-boundary propagators along either the U = 0 or V = 0 horizons

ΨOR(pV4 , x̃4) =
∫
dUeia0pV4 U/2〈φO(U, V, x̃4)OR(t′,x′)〉V=0,

ΨψL(pU1 , x̃1) =
∫
dV eia0pU1 V/2〈φψ(U, V, x̃1)ψL(−t1,x1)〉U=0,

ΨψR(pU2 , x̃2) =
∫
dV eia0pU2 V/2〈φψ(U, V, x̃2)ψ†R(t2,x2)〉U=0,

ΨOL(pV3 , x̃3) =
∫
dUeia0pV3 U/2〈φO(U, V, x̃3)O†L(−t′,x′)〉V=0,

(3.29)
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where a0 denotes the UV component of the metric either at U = 0 or at V = 0.7 Here,
φO and φψ denote the bulk fields which are dual to the boundary operators O and ψ,
respectively. The basis is normalized as

〈pU ,x|qU ,x′〉 = a2
0 p

U

4πrd−1
0

δ(pU − qU )δ(x,x′), (3.30)

where δ(x,x′) denotes a delta function in (d− 1) dimensional hyperbolic space

δ(x,x′) = δ(χ− χ′)
sinhd−2 χ

δ(θ1 − θ′1) · · · δ(θd−3 − θ′d−3)
sin θ1 · · · sind−3 θd−3

δ(φ− φ′). (3.31)

By using the bulk-boundary propagator (2.19), which is valid for both (U, V,x) and (t′,x′)
in the right exterior region, we obtain the following wave functions

ΨOR(pV4 , x̃4) = Θ(pV4 )2πicO et
′

Γ(∆O)

(−ia0p
V
4 e

t′

2

)∆O−1
ei
a0
2 p

V
4 e

t′ cosh d(x̃4,x′),

ΨψL(pU1 , x̃1) = Θ(pU1 )2πicψ et1
Γ(∆ψ)

(−ia0p
U
1 e

t1

2

)∆ψ−1
ei
a0
2 p

U
1 e

t1 cosh d(x̃1,x1),

ΨψR(pU2 , x̃2) = Θ(pU2 )2πicψ e−t
∗
2

Γ(∆ψ)

(−ia0p
U
2 e
−t∗2

2

)∆ψ−1
ei
a0
2 p

U
2 e
−t∗2 cosh d(x̃2,x2),

ΨOL(pV3 , x̃3) = Θ(pV3 )2πicOe−t
′∗

Γ(∆O)

(−ia0p
V
3 e
−t′∗

2

)∆O−1
ei
a0
2 p

V
3 e
−t∗ cosh d(x̃3,x′),

(3.32)

where we used the Hankel representation of the Gamma function 1
Γ(z) = 1

2πi
∫
τ−zeτdτ .

Now we use the eikonal approximation to write

out
(
〈pV3 , x̃3|〈pU2 , x̃2|

) (
|pV4 , x̃4〉|pU1 , x̃1〉

)
in

=
(
a2

0
4π

)2

pU1 p
V
4 e

iδδ(pU1 − pU2 )δ(pV3 − pV4 )δ(x̃1, x̃2)δ(x̃3, x̃4) , (3.33)

where the phase shift δ is given by the sum of the classical actions of the fields φψ and φO.
In our setup, we obtain

δ = 4πGNa0 p
U
1 p

V
4 f(x̃1, x̃4) . (3.34)

We will review the calculation of transverse profile f(x̃1, x̃4) in section 4. Then, at first
order in h we can write C̃1 as

C̃1 = α2
∫
dpU1 dx̃1

[
pU1 Ψ∗ψR(pU1 , x̃1)ΨψL(pU1 , x̃1)

]
×
∫
dpV4 dx̃4

∫
dt′dx′

[
h(t′,x′)pV4 Ψ∗OL(pV4 , x̃4)ΨOR(pV4 , x̃4)eiδ

]
, (3.35)

where dx = dχ sinhd−2 χdΩd−2 and α = a2
0

4π .
7For a Rindler-AdS geometry of the form (2.8), a0 = 4. For convenience, we keep the parameter a0 in

our expressions.

– 13 –



J
H
E
P
0
7
(
2
0
2
1
)
2
1
9

At all orders in h, one can show that the result exponentiates [6]

C̃ = α

∫
dq dx̃1qΨ∗ψR(q, x̃1)ΨψL(q, x̃1) e−iD, (3.36)

where
D = −α

∫
dpdx̃4

∫
dt′dx′h(t′,x′)pΨ∗OL(p, x̃4)ΨOR(p, x̃4)eiδ, (3.37)

where we replace pU1 and pV4 by q and p, respectively. Using the explicit form of the wave
functions (3.32), we find

C̃ = −α
22∆ψπ2c2

ψ

Γ(∆ψ)2

∫
dq dx̃1q

2∆ψ−1e2iq(e−t2 cosh d(x̃1,x2)+et1 cosh d(x̃1,x1))e−iπ∆ψe−iD, (3.38)

with

D = α
π2c2
O22∆O

Γ(∆O)2

∫
dp dx̃4

∫
dt′ dx′p2∆O−1e4ip cosh d(x̃4,x′) cosh t′e−iπ∆Oeiδ. (3.39)

Let us first compute the exponent D. Evaluating the integral with respect to p, we find

D = α 24∆Ob2OΓ(2∆O)
∫
dx̃4

∫
dt′dx′ h(t′,x′)[

4 cosh d(x̃4,x′) cosh t′ + 16πGNqf(x̃1, x̃4)
]2∆O

,

(3.40)
where bO = πcO

2∆OΓ(∆O) .

Probe limit. Here, we consider the probe limit, in which the backreaction of the signal
is too small to deform the negative-energy shock wave geometry. We implement this
approximation by performing an expansion to the first order in GNq and evaluating D

order by order. We find D = D0 +D1q, where

D0 = α b2OΓ(2∆O)
∫
dt′dx′dx̃4

h(t′,x′)[
cosh d(x̃4,x′) cosh t′

]2∆O
, (3.41)

and
D1 = −α b2O

∆OΓ(2∆O)
2

∫
dt′dx′dx̃4

16πGNf(x̃1, x̃4)h(t′,x′)[
cosh t′ cosh d(x̃4,x′)

]2∆O+1 . (3.42)

The correlator in the probe approximation can then be written as

Cprobe ≡ e−i〈V〉C̃ |D=D0+qD1

= 〈ψRe−iD1qψL〉 = 〈ψRe
iD1

2
a0
p̂V ψL〉 = 〈ψRei∆V p̂V ψL〉 . (3.43)

In the first line, the zeroth order term D0 corresponds to −〈V〉 and cancels the overall
factor of e−i〈V〉 in the correlator. In the second line we used that the momentum of the
signal along the horizon is q. The above result shows that D1 corresponds to a shift in the
V direction, i.e. ∆V = 2

a0
D1. The ANE can then be computed as∫

TUUdU = d− 1
4πGN

∆V = d− 1
8πGN

D1, (3.44)

where we used (3.4) and a0 = 4, which is appropriate for a Rindler AdS geometry.
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Note that the negative-energy shock wave renders the wormhole traversable. The
backreaction of the bulk fields corresponding to the operators ψL and ψR can be described
by a positive-energy shock wave geometry which have the tendency to close the wormhole.

Using (3.44) and (3.42), we can evaluate the ANE and compare the result with the
one obtained by the point-splitting method in section 3.1. The consistency between the
two different methods was checked numerically for a rotating BTZ black hole in [9]. In
the following, we will show the equivalence between both methods by finding an explicit
analytic formula for the ANE using the eikonal approximation.

3.2.1 Homogeneous perturbations

In this section, we consider the case in which the double trace deformation produces a
shock wave that is homogeneous in the transverse space, i.e, the shock wave transverse
profile does not depend on the coordinates x ∈ Hd−1. The signal, on the other hand, we
consider to be produced by a local operator. In this case, we can derive a formula for D1
that is very similar to (3.42).

First, we expand the initial and final states of the field excitations produced by the
operators OR and OL in a basis of well-defined momentum |p〉, instead of |p, x̃〉. Sec-
ond, we remove the x̃ dependence of the phase shift, which we take as follows8 δhom =
4πGNa0p

V
1 p

U
4 /(d− 1). Proceeding as before, we can show that

D1 = −α b2O
∆OΓ(2∆O)

2(d− 1)

∫
dt′dx′ 16πGNh(t′,x′)[

cosh t′ cosh d(x′,0)
]2∆O+1 . (3.45)

To simplify the calculation of D1, we ignore the dependence on the coordinates on the
sphere Sd−2, and write the geodesic distances as d(x,x′) = χ− χ′. Moreover, we consider
an instantaneous perturbation h(t′,x′) = h δ(t′ − t0). Then, by direct integration of (3.45)
and using (3.44), we obtain9

Ainst(U0) = −hvol(Sd−2)π
1−2d

2

2
Γ(d−1

2 )Γ(∆O + 1
2)Γ(∆O + 3−d

2 )
Γ(∆O − d−2

2 )2

(
U0

1 + U2
0

)2∆O+1
, (3.46)

where U0 = et0 . The above result perfectly matches the result obtained by point splitting
for an instantaneous perturbation (3.18).

We can now consider the case where h(t′,x′) = h θ(t′ − t0). We just have to use the
relation

A∞(U0) =
∫ ∞
U0

dU

U
Ainst(U) (3.47)

8For homogeneous shocks, the shock wave transverse profile does not depend on the coordinates in the
transverse space, and f(x̃1, x̃4) is replaced by 1

d−1 . See section 4.
9Here we used the identities

∫∞
0 dχ sinhd−1 χ

(coshχ)2∆+1 = 1
2

Γ( d−1
2 )Γ(∆+ 3−d

2 )
Γ(∆+1) and Γ(2∆) = Γ(∆)Γ(∆+1/2)√

π21−2∆ .
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By (3.47) and using the identity Γ(∆ + 1− d
2) = (∆− d

2)Γ(∆− d
2), we can show that

A∞(U0) = −h vol(Sd−2)π
1−2d

2

2 (3.48)

×
Γ
(
d−1

2

)
Γ
(
∆ + 1

2

)
Γ
(
∆ + 3−d

2

)
Γ
(
∆ + 1− d

2

)2

2F1

(
1
2 + ∆, 1

2 −∆, 3
2 + ∆, 1

1+U2
0

)
(2∆ + 1)(1 + U2

0 )∆+ 1
2

.

The above result perfectly matches the formula for the ANE obtained via point-splitting
in (3.16), and it provides a generalization of the results of [5] and [6] to higher dimensions
(d ≥ 2).

We recall that D1 = 2∆V characterizes the null shift that a probe particle undergoes
when crossing the shock wave produced by the double trace deformation. When ∆V < 0, a
signal can be transmitted through the wormhole, producing non-trivial correlations between
left and right boundary operators, which can be measured by correlators of the form (3.22).

By writing D = D0 +D1q, and integrating (3.38) with respect to q, we obtain

Cprobe = −α24∆ψb2ψ

∫
dx̃1

Γ(2∆ψ)e(t1−t2)∆ψ

[2 (e−t2 cosh d(x̃1,x2) + et1 cosh d(x̃1,x1))−D1]2∆ψ
(3.49)

where we used the relation C = e−i〈V〉C̃, with 〈V〉 = D0. To study the behavior of commu-
tator (3.20), we will consider the behavior of the correlator Cprobe whose imaginary part
gives the original commutator 〈

[
ψR, e

−iVψLe
iV
]
〉 = −2i Im(C). We set χ1 = −χ2 = ∆χ

2 and
write the geodesic distances as d(x̃1,x1) = χ̃1− ∆χ

2 and d(x̃1,x2) = χ̃1 + ∆χ
2 . In this case,

the correlator (3.49) depends on the boundary parameters (t1, t2,∆χ) and on the scaling
dimension ∆ψ of the signal, as well as the information from the double trace deformation,
which is encoded in D1. To investigate the traversability of the wormhole, we follow the
method of [8]. As the time interval between t1 and t2 increases, the denominator decreases
and becomes negative. Thus, we can find the line where the denominator of the integrand
in (3.49) vanishes and the region where the commutator (3.20) takes non-zero values. In-
side this region, the wormhole becomes traversable. This region forms a sort of light-cone
interior in the sense that the slope of its boundary is the speed of light. In order to find
this region, we fix the value of t1 and study the behavior of the commutator as a function
of t2 and ∆χ. The result is shown in figure 5, in which the interior of the light-cone like
region is shown in blue. In this region the commutator is non-zero for several values of t1.

Consistently with [8], we observe that the commutator is zero if t2 is smaller than the
absolute value of a critical time scale which is given by Tc = logD1 < 0. Besides, the
region of non-zero commutator only appears in a finite time if we choose |t1| > |Tc|. The
interpretation is that the signal should be early enough to be able to escape from the black
hole and reach the right boundary. Interestingly, the critical time Tc plays a role similar
to the role played by the scrambling time t∗ ∼ log 1

GN
in the behavior of OTOCs. In fact,

for t0 = 0, we can write the critical time as Tc = −t∗+ log(hd1), where we wrote the phase
shift as D1 = hGNd1, where d1 is a function of ∆O, and d. This shows that are calculation
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(a) t1 = 1.001Tc. (b) t1 = 1.05Tc.

(c) t1 = 2Tc. (d) t1 = 3Tc.

Figure 5. Blue region (the light-cone like region) in the space of (t2/Tc,∆χ) where the imaginary
part of Cprobe takes non-zero values. The light-cone like region only appears for t2 ≥ |Tc| and
|t1| > |Tc|. The commutator diverges when ψL and ψR are light-like separated (the boundary of the
blue region), and its value decreases very quickly to zero as move to the region inside the blue region,
taking non-zero values in the blue regions shown above. Here we set t0 = 0,∆O = 1.4, and GN = 1.

is barely consistent with the probe approximation, being valid in a time window of size
δt ∼ log(hd1). We refer to [8] for a more detailed discussion about this point.

The commutator diverges10 at the boundary of the blue region in figure 5 and decays
very quickly to zero as move to the region inside the light-cone, taking non-zero values in the
blue region. As t1 approaches Tc, with |t1| > |Tc|, the blue region where the commutator
is non-zero moves more and more to the future. The light-cone like structure appears
because we are considering homogeneous shocks for the backreaction of the field excitations
produced by operators OR and OL. These light-cones will be replaced by butterfly cones
once we consider localized shocks. This will be discussed in the next subsection.

3.2.2 Localized perturbations

In this section, we consider the case in which the double trace deformation is produced by
local operators. For simplicity, we do not consider any dependence on the coordinates on
the sphere Sd−2, but our operators depend on the hyperbolic coordinate χ.

To simplify our calculations, let us consider the double trace deformation of the
form (3.21) in which

h(t′,x′) = h δ(t′ − t0)δ(x′, 0) , (3.50)

10This happens in the probe approximation. The result is not divergent when one considers the backre-
action of the probe. See for instance [6, 13].
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in such a way that (3.42) becomes

D1(χ1) = −αh b2O
∆OΓ(2∆O)

2 vol(Sd−2)
∫ ∞

0
dχ4

16πGN sinhd−2 χ4
(coshχ4 cosh t0)2∆O+1

e−µ|χ4−χ1|

d
,

(3.51)
where we use f(x̃1, x̃4) = e−µd(x̃1,x̃4)/d as the shock wave transverse profile for local
perturbations11 and use d(x̃1, x̃4) = |χ1 − χ4|.

The factor of e−µ|χ4−χ1| makes it hard to compute the integral analytically for general
d, especially because of the χ1 dependence. However, for a given d, we can compute the
integral analytically, and use it to numerically evaluate the correlator C̃ in (3.38). We can
use the relation C = e−i〈V〉C̃ to obtain the correlator C defined in (3.22). By performing
the integral in q in (3.38), and using that 〈V〉 = D0, we can write

Cprobe = −α24∆ψb2ψ

∫
dx̃1

Γ(2∆ψ)e(t1−t2)∆ψ

[2 (e−t2 cosh d(x̃1,x2) + et1 cosh d(x̃1,x1))−D1(x̃1)]2∆ψ
,

(3.52)
where bψ = πcψ

2∆ψΓ(∆ψ)
.

When we set d = 2 and evaluate D1 analytically, the above formula is consistent with
the result for a BTZ black hole obtained in [8, 38]. To compare with lower dimensional
cases (d ≤ 2), we take x2 = x1 and t0 = 0, and obtain

Cprobe = −α 24∆ψb2ψ

∫
dx̃1

Γ(2∆ψ)[
4 cosh

( t1+t2
2
)

cosh d(x̃1,x1) +D1(x̃1) e
t2−t1

2

]2∆ψ
. (3.53)

The above result is exactly the same as the results for d = 2 obtained in [6, 8] once we
implement the replacement D1(x̃1)→ D1 which is necessary because we are considering a
local perturbation, i.e., h(t′,x′) ∝ δ(x′, 0).

We now discuss the conditions under which traversability is optimal. In order to do
that, one can define a ‘sweet spot’ where traversability is optimal [6, 13], which can be
determined by the points where the commutator is maximal. To find the behavior of sweet
spot, we will consider the maximal value of Cprobe and use the relation 〈

[
ψR, e

−iVψLe
iV
]
〉 =

−2i Im(C). We put the double trace deformation at the origin of the coordinate system and
at t0 = 0, i.e., h(t, χ) = h δ(t) δ(χ), and we choose the signal coordinates as χ1 = χ2 = X

and t2 = −t1 = T . For simplicity, we do not consider any dependence on the coordinates
x ∈ Sd−2. With the above definitions, the correlator (3.53) becomes

Cprobe(T,X) = −α24∆ψb2ψvol(Sd−2)
∫
dχ̃1

Γ(2∆ψ)
[4 cosh (χ̃1 −X) + eTD1(χ̃1)]2∆ψ

, (3.54)

where D1(χ̃1) is given by (3.51).

11The transverse profile satisfies (4.11). In hyperbolic space, it is shown in [37] that µ is related to the
butterfly velocity as vB = 1/µ. We will see that besides characterizing OTOCs, vB also plays an important
role in GJW’s traversable wormhole setup.
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Since it is hard to obtain precise results by numerically integrating (3.54), we study
the region inside which the commutator is non-zero by finding the zeros of the denominator
in (3.54). More specifically, for a given X we find the curves T = F (χ̃1) such that

4 cosh (χ̃1 −X) + eTD1(χ̃1) = 0 . (3.55)

We plot the curves T = F (χ̃1) for different values of X in figure 6.
For a given fixed value of T and X, the correlator Cprobe is obtained by performing an

integral in χ̃1. We numerically observe that, for each X, the integral (3.54) takes complex
values in the region T ≥ F (χ̃1), and it is real for T < F (χ̃1). That implies that the commu-
tator 〈

[
ψR, e

−iVψLe
iV
]
〉 = −2i Im(Cprobe) takes non-zero values in the region T ≥ F (χ̃1).

Inside this region, traversability is possible when the commutator takes order one values.
We now would like to find the region in the space of (T,X) inside which traversability

is optimal. For a given X, the minimum value of T at which the commutator is non-
zero is indicated by the blue dots in figure 6. The optimal condition for traversability,
however, happens at a slightly later time. In fact, we numerically observe that the dominant
contribution to the integral (3.54) comes from the region at which χ̃1 ≈ X, and the maximal
value of commutator is obtained around the point (χ̃1, T ) ≈ (X,F (X)), indicated by the
red dots in figure 6. Note that the red dots roughly indicate the point after which the
curve T = F (χ̃1) becomes a straight line for each X. By considering the curves T = F (χ̃1)
for increasing values of X, we observe that the collection of red dots forms a curve that
approaches the orange line in figure 6. Considering ∆O � 1, we numerically check that the
slope of the orange line approaches 1/vB. We also observe that the gap near χ̃1 = 0 between
the orange line and the curves T = F (χ̃1) shrinks for ∆O � 1. That basically implies that
along the orange line we have T ≈ 1

vB
X +T ∗, where T ∗ is a constant. This shows that the

“sweet spot” for traversabilty is determined by the butterfly speed, vB, and by the time
scale T ∗. We will see in the following that T ∗ is closely related to the scrambling time.

To better understand the above numerical observations, we also evaluate Cprobe(T,X)
using a saddle point approximation. In the limit, 1 � ∆ψ � ∆O, one can find that the
integral (3.54) is dominated by the region in which χ̃1 ≈ X. As a result, the correlator is
well approximated by the following formula

Cprobe ∼
1

[4 + eTD1(X)]2∆ψ
. (3.56)

In the limit 1� ∆O taken above, the integral (3.51) giving D1 is dominated by the region
in which χ̃4 ≈ 0, which leads to the simple result

D1(X) ≈ −γO hGNe−(d−1)X . (3.57)

where γO = 8παb2O∆OΓ (2∆O). The correlator can then be written as

Cprobe ∼
1[

1− eT−T ∗−(d−1)X]2∆ψ
. (3.58)

where T ∗ = log
(

4
γO hGN

)
. From (3.58) , one can see that Cprobe behaves like an OTOC,

being characterized by a unity Lyapunov exponent and butterfly speed given by vB = 1
d−1 .
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(a) Zero lines of the denominator of (3.54) for
fixed values of X. The red dots indicate the
points that have a dominant contribution to the
integration.

(b) The blue lines denote curves of zeros. The
orange lines have slop of 2 = 1/vB (solid) and
1 = 1/c (dashed).

χ̃1χ̃1

T T

Figure 6. Curves along which the denominator of (3.54) vanishes. Here, we consider a perturbation
localized at χ0 = 0 and t0 = 0, and we set d = 3, ∆O = 1.4 and GN = 1.

The only difference is that now the critical time T ∗ is not precisely equal to the scrambling
time, because it also involves the coupling h. Note that Cprobe diverges along the line
T = T ∗ +X/vB. This line reproduces the orange line in figure 6 in the limit ∆O � 1.

Therefore, from (3.58) it is clear that the butterfly speed vB = 1
d−1 plays an important

role in the behavior of the commutator, and the ‘sweet spot’ for traversability is indeed
controlled by vB when both the signal and the deformation are produced by local operators.
The butterfly speed of the sweet spot defines a butterfly cone inside which the commutator
is non-zero.

In the case of a BTZ black hole, the butterfly cone is indistinguishable from a light-
cone [8, 13]. However, for d > 2 the butterfly speed is smaller than the speed of light (for
Rindler-AdS vB = 1

d−1), and the cones are clearly distinguishable. Here, our result shows
that vB plays a very important role in holographic teleportation protocols, having the same
relevance that it has in controlling the spatial behavior of OTOCs. To our knowledge, this
provides the first example in which the optimal condition for traversability is controlled by
the butterfly speed, with vB < 1.12

12In principle, one can also use the point splitting method to study traversability considering localized
perturbations. However, in this case we cannot set x = x′ = 0 in (3.14), and this makes calculation more
complicated.
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AUOL

OR

Figure 7. Positive-energy shock wave geometry produced by the backreaction of the signal, which
is introduced by the operator ψL. The negative-energy shock wave produced by the operator OR

suffers a time delay as it crosses the shock.

3.3 Beyond the probe approximation

So far, we have assumed the probe approximation. In this section, we consider the effect
of the backreaction of the signal produced by the boundary operator ψ. Contrary to
the double trace deformation, which creates a negative-energy shock wave that opens the
wormhole, the signal creates a positive-energy shock wave that closes the wormhole. The
opening of the wormhole is diagnosed by a violation of the ANEC, which makes ∆V < 0.
The backreaction of the signal introduces a positive contribution that makes ∆V less
negative, i.e., ∆V → ∆Vback, with |∆Vback| ≤ |∆V |.

Studying the backreaction effect in the proper way requires us to consider coupled
quantum fields and re-compute the stress tensor [14]. Instead of the full consideration of
this effect, we will consider an heuristic method and follow the approach adopted in [9],
which consists in setting the parametric behavior that corresponds to the backreaction
effect, then introducing an extra probe particle that experiences the shift ∆Vback.

For simplicity, we consider a signal traveling along the V = 0 horizon. The signal
produces a shock wave geometry that affects the negative-energy shock produced by the
operator OR, as shown in figure 7. The opening of the wormhole is measured by the
parameter AU , which is related to the total momentum of the signal as

AU = 16πGN
d− 1 qtot, (3.59)

where we consider a signal that is homogeneous along the transverse coordinates. The
effect of this shock wave is to produce a time-delay in the negative-energy shock produced
by OR, which can be incorporated by changing its wave function as

ΨOR → eiA
UpΨOR , (3.60)

in (3.37). Note that this change can be incorporated by replacing the phase shift as

δ → δback = δ +AUp , (3.61)

with δ given by
δ = 16πGN

d− 1 q p, (3.62)
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where q is the total momentum of the probe particle in the U direction. Using (3.59), we
can write

δback = 16πGN
d− 1 (q + qtot) p . (3.63)

With the above formulas, we can then rewrite D in (3.39) as

D = α
π2c2
O22∆O

Γ(∆O)2

∫
dpdt′ dx′p2∆O−1ei4p cosh d(x′,0) cosh t′e−iπ∆Oei

16πGN
d−1 (q+qtot) p, (3.64)

where we set x̃4 = 0 and do not integrate over x̃4 because we are considering a homogeneous
perturbation. Integrating (3.64) in p we obtain

D = α 24∆Ob2O

∫
dt′dx′ Γ(2∆O)h(t′,x′)[

4 cosh d(x′,0) cosh t′ + 16πGN
d−1 (q + qtot)

]2∆O
. (3.65)

Now, to obtain the shift ∆Vback suffered by the probe particle, we expand (3.65) for small
values of q and extract the coefficient of the linear order term in D = D0 + D1q. By
using (3.44), we find

∆Vback = −∆O
16πGN
d− 1 α 24∆Ob2O

∫
dt′dx′ Γ(2∆O)h(t′,x′)[

4 cosh d(x′,0) cosh t′ + 16πGN
d−1 qtot]2∆O+1 .

(3.66)
To evaluate the above expression, we consider an instantaneous perturbation h(t′,x′) =
δ(t′ − t0) with operators that are homogeneous on Sd−2. We obtain

∆Vback = −4πGN
d− 1 ∆Oα b2O

vol(Sd−2)
(cosh t0)2∆O+1

∫ ∞
0

dχ′
sinhd−2 χ′ Γ(2∆O)[

coshχ′ + 4πGN qtot

(d−1) cosh t0
]2∆O+1 , (3.67)

which can be integrated to give

∆Vback = dO
Γ(2∆O − d+ 3)Γ(d−1

2 )
2Γ(2∆O − d−5

2 )

×
F1

(
2∆O − d+ 3, 2∆O + 1, 3−d

2 , 2∆O − d−5
2 ,− 4πGN qtot

(d−1) cosh t0 ,−1
)

(cosh t0)2∆O+1 , (3.68)

where F1 is the Appell hypergeometric function and dO = −8πGN
d−1 ∆Oα b2Ovol(Sd−2). The

above formula is valid for 2∆O > d − 3, and d > 1, which is always true for the cases
we consider. Note that our result for ∆Vback corresponds to a correction to the wormhole
opening ∆V obtained in section 3.2.1 in the probe limit and for homogeneous perturbations.

The opening of the wormhole as seen by the probe particle now depends on the total
momentum of the signal qtot, and in fact ∆Vback approaches zero as we increase qtot. This
is seen in figure 8. This backreaction effect has important consequences on the amount of
information that can be sent through the wormhole. This will be discussed in the section 4.2

The result of figure 8 can also be obtained using the point splitting method, as ex-
plained in [15]. This paper considers an AdS2 geometry which is closely related to the
geometry considered in [6]. Indeed, by taking the correspondence between the formula
in [15] and our formula (3.15), one might check that the backreaction effect from the signal
can be incorporated by introducing a shift δU in the U variable in (A.10). We will leave a
detailed investigation of this for future work.
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∆
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Figure 8. ∆Vback versus the total momentum of the signal. As the total momentum of the signal
increases, its backreaction becomes stronger and closes the wormhole. On the left panel, we show
the plots for several values of d. Here, we set ∆O = d−2

2 + 0.5 for each d. On the right panel, we
show the dependency on the conformal dimension when the d is fixed. As an example, we draw the
d = 3 case, but other values of d lead to the same qualitative behavior. Here we use t0 = 0.

4 Bound on information transfer in higher dimensions

In the previous section, we show that the wormhole connecting the two Rindler wedges
of AdS becomes traversable once we turn on a double trace deformation coupling the
two asymptotic boundaries. In this configuration, information can be transferred through
the wormhole, which can be diagnosed by a non-zero two-sided correlation function. In
this section, we compute parametric bounds on the amount of information that can be
transferred through the wormhole. The signal/message will be described by a positive-
energy shock wave in the bulk that interacts with a negative-energy shock wave introduced
by the double trace deformation.

4.1 Overview

First, we briefly review the derivation of information transfer bounds for lower dimensional
(d ≤ 2) black holes [6, 9, 14]. We then extend these ideas to higher dimensional (d ≥ 2)
setups and compare them with the analysis presented in [14].

The bound on information transfer appears because the backreaction of the signal
closes the wormhole. The idea is as follows. First, the double trace deformation introduces
a negative-energy shock wave in the bulk that opens the wormhole, allowing probe particles
to cross from one side of the geometry to the other side. Therefore, information can be
transferred through the wormhole by sending several particles, each one corresponding to
a bit of information. However, a signal containing too many particles might have a backre-
action on the geometry, which is described by a positive-energy shock wave geometry that
closes the wormhole. This effect limits the amount of information that can be transferred
through the wormhole - if we send too many bits, the wormhole closes.

Although it is hard to precisely derive a bound on the information transfer, it is possible
to derive parametric bounds, in which one cares about the parametric scaling of the bound
and ignores constant factors. Let ptot

V be the total momentum of a signal containing Nbits
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particles, each one with momentum peach
V , in such a way that we can write:

Nbits = ptot
V

peach
V

. (4.1)

We can now derive a bound on Nbits using the uncertainty principle and requiring that the
signal ‘fits’ in the opening of the wormhole. The uncertainty principle states that:

peach
V ∆Veach & 1 . (4.2)

Let us now assume that the double trace deformation opens the wormhole by an amount
∆V . In order for the signal wave function to pass through the wormhole, we need that

∆Veach ≤ |∆V | , (4.3)

which implies that
peach
V &

1
∆Veach

≥ 1
|∆V | . (4.4)

Combining (4.4) with (4.1) we find

Nbits . p
tot
V |∆V | . (4.5)

Finally, we require that the backreaction of the signal is small, in such a way that it does
not destroy the negative-energy shock wave geometry. The precise form of this probe
approximation depends on some details of the system in consideration, and whether the
signal is localized or not. For example, for a BTZ black hole, the probe approximation
implies [9, 14]

GNp
tot
V

r0
� 1 , (4.6)

where r0 is the horizon radius of the black hole in Schwarzschild coordinates. Using the
explicit form of the ANE for the BTZ black hole ∆V ∼ GNh

` K [14], where ` is the AdS
radius, one finds

Nbits . h
r0
`
K, (4.7)

where we consider the double trace deformation (3.21) with K fields with h(t′,x′) = h θ(t′−
t0) and the signal that is homogeneous in the transverse coordinates. The number of fields
K should also be constrained for this construction to be reliable. The authors of [14] argue
that K . `

GN
, which combined with (4.7) gives

Nbits . h
r0
GN
≈ hSBH , (4.8)

which implies that the information transfer is bounded by the black hole entropy SBH.
The precise parametric form of this bound changes in higher dimensional setups, and

it also depends on whether the signal is localized or not. We will dive into these details in
the next subsections.
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4.2 Homogeneous shocks

To derive parametric bounds on information transfer, we will use (4.5) with the explicit form
of ∆V , which in general depends on ∆O and d, combined with the probe approximation for
the signal. To impose the probe approximation, we will require that the classical action of
the signal on the background of the negative-energy shock wave is small. That is equivalent
to say that the phase shift δ that controls the interaction of the signal with the shock wave
produced by the operator O is small.

For simplicity, in this section we only consider shock waves that are homogeneous in
the transverse space, i.e., they do not depend on the transverse coordinates x ∈ Hd−1. Let
us start by describing the shock wave geometry produced by the negative energy. We take
the stress energy tensor of the shock as (see, for instance [35, 37]):

TUU = qU

rd−1
0

δ(U) . (4.9)

where r0 is the horizon radius, which we reintroduce for later convenience, and qU is
the total momentum associated with the shock. The corresponding backreaction on the
geometry is simply obtained by the replacement

ds2 → ds2 + h−UUdU
2 , h−UU = 16πGN

rd−3
0

qU δ(U) f(x− x′), (4.10)

where ds2 is the unperturbed geometry (2.8), and f(x) is the shock wave transverse profile,
which satisfies the following equation(

�Hd−1 −
2π
β
r0(d− 1)

)
f(x) = 1. (4.11)

Since TUU has no x dependence, we look for a solution in which f is constant. We obtain

f = β

2π(d− 1)r0
. (4.12)

We can finally write:

h−UU = 16πGN
rd−3

0
qU δ(U) 1

µ
, µ ≡ (d− 1)r2

0 . (4.13)

We now consider the stress energy tensor of the signal, which we also take as homogeneous:

T+
V V = pV

rd−1
0

δ(V ) . (4.14)

We can then compute the phase shift of the collision between the two shocks as [35]

δ = Sclassical = 1
2

∫
dd+1x

√
−g h−UU T

UU
+ = vol(Hd−1)4πGN

rd−3
0

qUpV
µ

, (4.15)

where TUU(+) = gUV gUV T
(+)
V V . To get rid of the volume factor vol(Hd−1) we write pV in terms

of the total momentum of the signal, which is ptot
V =

∫
dd+1x

√
−gTV V = vol(Hd−1) pV .

Therefore pV = ptot
V

vol(Hd−1) , and we can write

δ = 4πGN
rd−1

0

qUp
tot
V

d− 1 . (4.16)
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The probe approximation δ . 1 then becomes

ptot
V .

(d− 1)rd−1
0

4πGNqU
. (4.17)

The null shift ∆V can be written in terms of ANE as (3.4):

∆V = 4πGN
d− 1 A

∞
d (U0) , A∞d (U0) ≡

∫ ∞
U0

T−UUdU . (4.18)

Thus, we can write the bound on information transfer by using (4.5), (4.17) and (4.18)

Nbits . p
tot
V |∆V | .

(
(d− 1) rd−1

0
4πGNqU

)
4πGN
d− 1 |A

∞
d (U0)|. (4.19)

For homogeneous perturbations, A∞d (∆, U0) is given by (3.16). Note that
|A∞d (∆, U0)| ∝ hK, where the proportionality factor is a small number that decreases
as we increase d, see figure 3. To investigate in more detail the behavior of the bound on
ANE when we increase the spacetime dimensionality, we look into the minimum value of
the ANE in (3.16) in terms of d. For t0 = 0, the ANE takes its minimum value at ∆ = d

2 ,
and the scaling behavior with respect to d is roughly 1

d−a with a ∼ 1.7547, which can
be seen from figure 3. This means that |A∞d (∆, U0)| . 1

d−a with some constant a, which
shows that the violation of ANEC decreases as we increase d. This bounds the information
transferred through the wormhole as follows:

Nbits .
rd−1

0 hK

(d− a)qU
. (4.20)

This bound qualitatively agrees with the one derived in [6] in the context of JT gravity
when one takes qU ∼ O(1). It suggests that we can send an arbitrarily large amount of
information through the wormhole by increasing K. However, this is not the case. The
authors of [14] showed that the above construction only applies for K . 1

GN
, which implies

Nbits .
h

d− a
SBH , (4.21)

where we set qU = 1. This is in qualitative agreement with the analysis of [14] for homoge-
neous shocks, with the difference that (4.21) shows how the bound on information transfer
scales with d. In particular, (4.21) shows that the amount of information that can be trans-
ferred through the wormhole decreases as we increase the dimensionality of the spacetime.

Backreaction effect. In this section, we briefly discuss the effect of backreaction of the
signal on the bound of information transfer. We show in section 3.3 that the opening of
the wormhole decreases as we increase the total momentum of the signal qtot. As explained
in [9], this implies that the amount of information that can be transferred through the
wormhole, which is bounded by the maximal value of ∆Vbackq

tot, i.e.

N . max
[
|∆Vbackq

tot|
]
. (4.22)

In figure 9 we plot ∆Vbackq
tot versus qtot for increasing values of d. In this regard, the

bound on information transfer decreases as we increase d.
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Figure 9. Bound on information transfer as a function of the total momentum of the signal. On
the left panel, we find that the bound on information transfer with backreaction decreases as we
increase d. Here, we set ∆O = d−2

2 + 0.5. On the right panel, we show the dependency on the
conformal dimension when the d is fixed. As an example, we draw the d = 3 case, but other values
of d lead to the same qualitative behavior.

4.3 Localized shocks

We now discuss the case of localized shocks, in which the stress tensor of the signal and of
the negative energy read

T+
V V = pV

rd−1
0

δ(V )δ(χ− χ+), T−UU = qU

rd−1
0

δ(U)δ(χ− χ−) , (4.23)

where χ± denotes the position of the signal/negative energy. The backreaction of the
negative energy reads ds2 → ds2 + h−UUdU

2, with

h−UU = 16πGN
qU

rd−1
0

δ(U)f(χ− χ−) , (4.24)

where f(χ) ∼ e−(d−1)χ

d . The phase shift reads

δ =
∫
dd+1x

√
−g TUU+ h−UU = 4πGN

rd−1
0

pV qUf(χ+ − χ−) . (4.25)

The probe approximation δ . 1 then implies

pV .
drd−1

0
4πGNqU

, (4.26)

where we consider the minimal value of 1/f(χ+−χ−). The final piece of information that
we need to find a parametric bound on the information transfer is ∆V , since Nbits . ∆V pV .

In the case of local shocks, we have

∆V (χ1) = 16πGN hK CD1

∫ ∞
0

dχ4
sinhd−2 χ4

(coshχ4)2∆+1
e−(d−1)|χ4−χ1|

d
. (4.27)

where CD1 ≡ αh b2O
∆OΓ(2∆O)

4 vol(Sd−2). The correlator (3.53) involves an integral over χ1,
so the amount of information transfer varies as we vary χ1. The exponential dependence
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Figure 10. ANE for localized shocks as a function of the transverse coordinate of signal χ1 for
several values of d (left panel) and for several values of ∆O (right panel). We plotted (4.27) as
∆V/CD1 where CD1 ≡ αh b2O

∆OΓ(2∆O)
4 vol(Sd−2). We fixed ∆O = d−2

2 + 0.2 for each d in the left
panel, and we fixed d = 4 in the right panel. The minimum of ∆V decreases as we increase d.

makes ∆V much smaller than the corresponding quantity in the homogeneous case. This
suggests a more constrained bound for local shocks. By numerically studying the behavior
of the minimum value of ∆V in (4.27) as a function of d (see figure 10), we find that ∆V
scales as 1

d−b with b ∼ 1.1134. Proceeding as before, we can show that

Nbits .
h

d− b
SBH , (4.28)

which implies that the bound on information transfer in the case of localized shocks also
decreases as we increase the dimensionality of the spacetime. We note that the bound is
saturated only when the transverse bulk position of the signal matches the transverse bulk
position of the negative energy shock wave. This suggests that in practice the number
of bits that can be transferred in the case of localized shocks is actully much smaller
than (4.28) suggests.

We should note that not all this information reaches the right boundary of the ge-
ometry. This is because local perturbations have non-zero angular momentum quantum
numbers that introduce a potential barrier that tends to keep them in the near horizon
region [14]. It would be interesting to follow the approach used in [14] to investigate this
effect in our setup and possibly derive sharper bounds in the case of localized shocks.

Lastly, we observe that the decrease of the ANEC violation for d ≥ 2 can be explained
by the fact that the ANE scales roughly as 1

2∆O+1 (see (3.16)), and the range of values
that we choose for ∆O depends on d as d−2

2 < ∆ < d
2 . Combining these facts we can see

that the ANE scales roughly as 1
d−a , where a is some constant.

5 Change of entropy

In this section, we compute the change of energy of the CFT state that results from the
double trace deformation, and the corresponding change of entropy. Let’s focus on the
right boundary with Hamiltonian HR. Then the expectation value 〈ψ(t)|HR|ψ(t)〉 can be
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derived with the state

|ψ〉 = e−iH0(t−t0)U(t, t0)|TFD〉 (5.1)

U(t, t0) = T e−i
∫ t
t0
dt1δH(t1) (5.2)

where thermofield double state is defined as (2.10). By considering the result at first order
in h(t1), we can write

δER = i

∫ t

t0
dt1

∫
dxh(t1) 〈TFD| [δH(t1), HR] |TFD〉

=
∫ t

t0
dt1

∫
dxh(t1) 〈TFD| ∂tOR(t1,x)OL(−t1,x)|TFD〉

= h

(2π
β

)∫ t

t0
dt1

∫
dx 〈TFD| ∂tOR(2t1 + iβ/2,x)OR(0,x)|TFD〉

= h c∆

∫
dx
[ 1

(cosh(2t) + cosh(d(x,x′))∆ −
1

(cosh(2t0) + cosh d(x,x′))∆

]
,

(5.3)

where c∆ is given by (2.16). In the second line, we have used the KMS condition. Here,
if we turn off the interaction at time tf, t in (5.3) is replaced by tf. Assuming h > 0, the
change of energy is positive for t0 < tf < 0, and negative for 0 < t0 < tf, and the wormhole
is traversable in both cases. This feature was also observed in lower dimensional cases
(d ≤ 2) [8, 10].

We find a closed form for the change of energy by directly integrating (5.3). The result
can be written in terms of the Appell hypergeometric function

δER = hc∆vol(Sd−2)
Γ(∆−d+2)Γ(d−1

2 )
Γ(∆− d−3

2 )

[
F1

(
∆−d+2;∆, 3−d2 ;∆− d−3

2 ;−cosh(2tf),−1
)

−F1

(
∆−d+2;∆, 3−d2 ;∆− d−3

2 ;−cosh(2t0),−1
)]
, (5.4)

where we consider operators that do not depend on the angles on Sd−2. The above formula
is valid for ∆ > 2 − d and d − 1 > 0, which is always true for the cases we consider, in
which d ≥ 2 and ∆ ≥ d/2.

We can now use the first law of entanglement to compute the change of entropy as
δS = TδER = 1

2π δER. This implies that the entropy of the topological black hole, or,
equivalently, the entanglement entropy between the two sides of the geometry, reduces for
0 < t0 < tf, since in this case δER < 0. As explained in [10], from the boundary perspective
the decrease of entropy can be viewed as a result of the measurement in quantum telepor-
tation. This fact can be used to interpret the information transfer through the wormhole
as quantum teleportation.

Finally, it has been pointed out in [5] that the change of entropy δS resulting from the
double trace deformation can in principle be computed in the bulk in terms of quantum
extremal surfaces [39]. It would be interesting to investigate that by following the ideas
presented in [40].
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6 Discussion

In this work, we have studied the Gao-Jafferis-Wall (GJW) holographic teleportation pro-
tocol in a higher dimensional setup (d ≥ 2). In particular, we consider the hyperbolic
slicing of a pure AdS geometry, which can be thought of as a topological hyperbolic black
hole. The maximally extended geometry contains two exterior regions, the Rindler wedges
of AdS, which are connected by a wormhole.

We show that a double trace deformation involving a non-local interaction between
operators in the left and right boundaries can make the above-mentioned wormhole
traversable, allowing a sign to be transmitted between the two Rinlder wedges of AdS.
The traversability is due to a violation of the average null energy condition (ANEC) in the
bulk. We compute the average null energy using two different methods: the point splitting
method of GJW [5], and the eikonal method used in [6]. We generalize both methods to our
higher dimensional setup and show that they give consistent results. In particular, we find
an analytic formula for the ANE that nicely generalizes GJW result to higher dimensions
(d ≥ 2), and reduces to GJW result when we set d = 2. See (3.16). In particular, we show
in figure 3 that once we fix the coupling strength of the deformation the violation of ANEC
reduces very quickly as we increase the dimensionality of the spacetime.

Our setup evades the no-go theorem derived in [29], which establishes that semiclassical
eternal traversable wormholes are not possible in spacetime dimensions higher than two.
This theorem is derived under the assumption of Poincare invariance in the boundary
direction, and with the use of Weyl invariant matter fields. Moreover, in the setup of [29]
the two boundary CFTs are not entangled with each other. Our setup is different for
a few reasons: (i) our traversable wormhole is not eternal, i.e., the wormhole becomes
only becomes traversable after we introduce the double trace deformation at some time
t0, (ii) the two boundary CFTs in our setup are entangled in a thermofield double state,
(iii) the matter fields we use do not have Weyl symmetry. Therefore, our result is not in
contradiction with [29].

The Rindler-AdS geometry allows us to find several other analytic results, including
closed formulas that account for effects of backreaction (3.68), the change of energy of the
CFT state (5.4), and two-sided correlation functions that diagnose traversability (3.53).

We checked that the optimal condition for traversability is determined by the butterfly
speed vB. In fact, we show in section 3.2.2 that the sweet spot for traversability moves
with the butterfly speed. This is in accordance with previously established results [13], but
our setup provides the first example in which the butterfly cone is distinguishable from the
light-cone, i.e., the sweet spot moves with vB < 1.

In section 4, we derive parametric bounds on information transfer and discuss how
these bounds are affected by the dimensionality of the spacetime. In particular, we show
that the information transfer is bounded by the black hole entropy, as observed previously
in the literature [14]. In the case of homogeneous shocks, the bound on information transfer
scales as 1

d−a with a ∼ 1.7547, as seen in figure 3. For local perturbations, we numerically
estimate, based on the results of figure 10, that the bound on information transfer scales
as 1

d−b with b ∼ 1.1134. The above results are valid for a Rindler-AdSd+1 geometry, but
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the feature that the bound on information transfer reduces as we increase d might be a
general feature of higher dimensional systems.

Finally, the change of entropy that results from making the wormhole traversable could
in principle be computed using quantum extremal surfaces [39]. It would be interesting to
compute this change of entropy using quantum extremal surfaces and compare the results
with our result in section 5.
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A Details about the ANE calculation

In this section, we derive (3.16) in detail using the point splitting method. We first
use (3.15) to write:

A ≡
∫ ∞
U0

TUUdU = κd

∫ ∞
U0

dU lim
U ′→U

∂UG(U,U ′;U0)

= κd

[
G(∞,∞;U0)−G(U0, U0;U0)−

∫ ∞
U0

dU∂
(2)
U G(U,U ;U0)

]
(A.1)

where

κd = −4∆h vol(Sd−2) 2 sin π∆
πd(2∆− d)2

( Γ(∆)
2∆Γ(∆− d

2)

)2
(A.2)

and

G(U,U ′;U0) ≡
∫ U

U0
dU1

∫ U/U1

1

dy

(y2 − 1)
3−d

2

U∆
1

(U − U1y)∆(U ′U1 + y)∆+1 (A.3)

For d = 2, GJW [5] showed that G(∞,∞;U0) = 0 and G(U0, U0;U0) = 0 for ∆ < 3
2 so

that only the last term of the (A.1) contributes to the average null energy. We show in the
following that this is also true in our case. The integral with respect to y in (A.3) can be
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written as an Appell hypergeometric function

Iy =
∫ U/U1

1

dy

(y2 − 1)
3−d

2

U∆
1

(U − U1y)∆(U ′U1 + y)∆+1 (A.4)

=
Γ(d−1

2 )Γ(1−∆)
Γ(−∆ + d+1

2 )
2
d−3

2

( UU1
− 1)∆− d−1

2 (U ′U1 + 1)∆+1

× F1

(
d− 1

2 ; 3− d
2 ,∆ + 1;−∆ + d+ 1

2 ; U1 − U
2U1

,
U1 − U

U1(1 + U ′U1)

)
.

Here, we have used the integral form of Appell hypergeometric function

F1(a; b1, b2; c;x, y) = Γ(c)
Γ(a)Γ(c− a)

∫ 1

0
dt ta−1(1− t)c−a−1(1− xt)−b1(1− yx)−b2 (A.5)

with x = y−1
U/U1−1 . The above formula is valid for Re(a) > and Re(c) > 0. We now show that

both G(∞,∞;U0) and G(U0, U0;U0) vanish, which implies that
∫
dUTUU can be obtained

from the last term in (A.1). We first use (A.4) to rewrite (A.3) as

G(U,U ′;U0) =κd
Γ(d−1

2 )Γ(1−∆)
2

3−d
2 Γ(d+1

2 −∆)

∫ U

U0
dU1

F1

(
d−1

2 ; 3−d
2 ,∆+1;−∆+ d+1

2 ; U1−U
2U1

, U1−U
U1(1+U ′U1)

)
( UU1
−1)∆− d−1

2 (U ′U1 +1)∆+1

(A.6)
By defining z = U1−U0

U−U0
, we can write G(U0, U0;U0) as

G(U0,U0;U0)∝ lim
U→U0

∫ 1

0
dz(U−U0)

d+2
2 −∆ U

∆− d−1
2

0

(1−z)∆− d−1
2
F1

(
d−1

2 ;3−d2 ,∆+1;−∆+d+1
2 ;0,0

)
(A.7)

which vanishes for ∆ < d+1
2 . Next, we can replace U and U ′ by ∞ in order to get the first

term in (A.1):

G(∞,∞;U0)∝ lim
U→∞

1
U2∆+1

∫ 1

0
dz

(1+z)
d−3

2 (1−z)
d−1

2 −∆

zd−1 2F1

(3−d
2 ,1−∆, d+1

2 −∆, 1−z1+z

)
.

(A.8)
Using the above expression, we numerically checked that G(∞,∞;U0) also vanishes. Col-
lecting these results, we can write

A =
∫ ∞
U0

dU lim
U ′→U

∂U ′
∫ U

U0
dU1

∫ U/U1

1
dy(y2 − 1)

d−3
2

U∆
1

(U − U1y)∆(y + U1U ′)∆+1 (A.9)

= −
∫ ∞
U0

dU

∫ U

U0
dU1

∫ U/U1

1
dy(y2 − 1)

d−3
2

(∆ + 1)U∆+1
1

(U − U1y)∆(y + U1U)∆+2 (A.10)

= −
∫ ∞
U0

dU1

∫ ∞
U1

dU

∫ U/U1

1
dy(y2 − 1)

d−3
2

(∆ + 1)U∆+1
1

(U − U1y)∆(y + U1U)∆+2 (A.11)

= −
∫ ∞
U0

dU1

∫ ∞
U1

dU Iy (A.12)
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In the third line, we have changed the limits of the first two integrals while covering the
same region of integration. By changing variables as z = U−U1y

U−U1
, we can express Iy in

terms of an Appell hypergeometric function

Iy = (∆ + 1)(U + U1)
d−3

2 U2∆+5−d
1

(1 + U2
1 )∆+2(U − U1)∆− d−1

2 U∆+2

Γ(1−∆)Γ(d−1
2 )

Γ(d+1
2 −∆)

(A.13)

×F1

(
1−∆; 3− d

2 ,∆ + 2; d+ 1
2 −∆, U − U1

U + U1
; U − U1
U(1 + U2

1 )

)
. (A.14)

Here, we used the integral form (A.5) of the Appell hypergeometric function. The con-
straints Re(c) > 0 and Re(a) > 0 imply d+1

2 −∆ > 0 and ∆ < 1.13 Next, we consider the
integral in U . Changing variables as ω = U−U1

U+U1
, we write

A = − κ∆
2∆−d+1

∑
m

(1−∆)m(∆ + 2)m
(d+1

2 −∆)mm!
2m
∫ ∞
U0

dU1
U2

1
(1 + U2

1 )∆+2+mIω , (A.15)

where

Iω =
∫ 1

0
dω
ωm−∆+ d−1

2 (1−ω)2∆+2−d

(1 + ω)m+∆+2 2F1

(
1−∆ +m,

3− d
2 ; d+ 1

2 −∆ +m;ω
)
. (A.16)

To derive the above formula, we used the following relation between F1 and 2F1:

F1
(
a; b1, b2; c;x, y

)
=
∑
m

(a)m(b2)m
(c)m

ym

m! 2F1
(
a+m, b1; c+m;x

)
(A.17)

where (q)m = Γ(q+m)
Γ(q) is the rising Pochhammer symbol. By some manipulation, Iω becomes

Iω= 1
2∆+2+m

Γ(m−∆+ d+1
2 )Γ(2∆+3−d)Γ(2∆+1)

Γ(2∆+ 5−d
2 )Γ(∆+2+m) 2F1

(
2∆+3−d,2∆+1;2∆+ 5−d

2 ; 1
2

)
.

(A.18)
For the above result, we used the identities:∫ y

0
dx
xc−1(y − x)β−1

(1− zx)ρ 2F1

(
a, b; c; x

y

)
= yc+β−1

(1− yz)ρ
Γ(c)Γ(β)Γ(c− a− b+ β)
Γ(c− a+ β)Γ(c− b+ β) (A.19)

×3F2

(
β, ρ, c− a− b+ β; c− a+ β, c− b+ β; yz

yz − 1

)
, (A.20)

and
3F2 (a1, a2, a3; b1, a2; z) = 2F1 (a1, a3; b1; z) (A.21)

Lastly, we consider the integral in U1 in (A.18):∫ ∞
U0

dU1
U2

1
(1 + U2

1 )∆+2−m = 1
2(m+ ∆ + 1

2)2F1

(
m+ ∆ + 1

2 ,−
1
2;m+ ∆ + 3

2; 1
1 + U2

0

)
(A.22)

13Despite being an essential condition for the formula (A.13) to be valid, the condition ∆ < 1 does not
seem to be a necessary condition for our final formula (3.16) for

∫
dUTUU , which seems to be valid at least

for ∆ ≤ d+1
2 . In fact, (3.16) can also be derived using the eikonal approximation without any constraint on

the upper value of ∆.
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Here, we used

2F1 (a, b; c; z) = (1− z)−a2F1

(
a, c− b; c; z

z − 1

)
. (A.23)

Then we get the following result

A = − 2d−4−2∆κ∆

(1 + U2
0 )∆+ 1

2

[
Γ(1

2)Γ(2∆ + 5−d
2 )

Γ(∆ + 4−d
2 )Γ(∆ + 1))

]
Γ(2∆ + 3− d)Γ(2∆ + 1)

Γ(2∆ + 5−d
2 )

(A.24)

×
∑
m

(1−∆)m(∆ + 2)m
(d+1

2 −∆)mm!
(∆ + 1

2)m
(∆ + 3

2)m
1

(1 + U2
0 )m 2F1

(
∆ + 1

2 +m,−1
2; ∆ + 3

2 +m; 1
1 + U2

0

)
where we plugged (A.18), (A.22) into (A.15) and used the relation

2F1

(
a, b; a+ b+ 1

2 ; 1
2

)
=

Γ(1
2)Γ(1+a+b

2 )
Γ(a+1

2 )Γ( b+1
2 )

(A.25)

Finally, by using

∑
m

(1−∆)m(∆ + 1
2)m

m!(∆ + 3
2)m

( 1
1 + U2

0

)m
2F1

(
∆ + 1

2 +m,−1
2 ,∆ + 3

2 +m; 1
1 + U2

0

)
= 2F1

(
∆ + 1

2 ,
1
2 −∆,∆ + 3

2; 1
1 + U2

0

)
, (A.26)

and some simple manipulations obtain a closed form for the ANE:

1
vol(Sd−2)

∫
TUUdU (A.27)

= −
hπ

1
2−dΓ(d−1

2 )
(2∆ + 1)

Γ(∆ + 1
2)Γ(∆ + 3−d

2 )
Γ(∆ + 1− d

2)2

2F1

(
∆ + 1

2 ,
1
2 −∆,∆ + 3

2 ; 1
1+U2

0

)
(1 + U2

0 )∆+ 1
2

, (A.28)

which is valid for a Rindler-AdSd+1 geometry deformed by a non-local interaction of the
form (1.2). The unitarity condition for the scalar operators implies ∆ > d

2−1, while the con-
dition for the perturbation to be relevant is ∆ ≤ d/2. If we do not restrict our calculation
to relevant perturbations, our formula seems to be valid for ∆ < d+1

2 . The same formula
can be obtained using the eikonal approximation with (apparently) no upper bound for ∆.
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