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A B S T R A C T   

A simple, novel, rapid, and non-destructive spectroscopic method that employs the deep spectral network for 
beef-freshness classification was developed. The deep-learning-based model classified beef freshness by learning 
myoglobin information and reflectance spectra over different freshness states. The reflectance spectra (480–920 
nm) were measured from 78 beef samples for 17 days, and the datasets were sorted into three freshness classes 
based on their pH values. Myoglobin information showed statistically significant differences depending on the 
freshness; consequently, it was utilized as a crucial parameter for classification. The model exhibited improved 
performance when the reflectance spectra were combined with the myoglobin information. The accuracy of the 
proposed model improved to 91.9%, whereas that of the single-spectra model was 83.6%. Further, a high value 
for the area under the receiver operating characteristic curve (0.958) was recorded. This study provides a basis 
for future studies on the investigation of myoglobin information associated with meat freshness.   

1. Introduction 

Beef is one of the most widely consumed foods in daily life and 
contains several nutrients such as proteins, vitamins, and minerals (Dixit 
et al., 2017; Huang, Zhao, Chen, & Zhang, 2014). Owing to the 
increasing concern towards beef quality and safety, consumers expect 
manufacturers and retailers to offer superior-quality products (Dixit 
et al., 2017). The most important parameter for determining beef quality 
and safety assessment is freshness, which is closely related to the con
sumers’ intention of purchasing beef (Font-i-Furnols & Guerrero, 2014; 
Huang et al., 2014). Therefore, to satisfy consumers’ expectations and 
improve the commercial value of beef, the development of practical 
methods for analyzing beef freshness is crucial (Dixit et al., 2017; Huang 
et al., 2014; Mustafa & Andreescu, 2018). As the storage period of beef 
increases, its freshness decreases owing to microbial spoilage and 
biochemical reactions. Many methods of measuring freshness degrada
tion have been proposed (Cai, Chen, Wan, & Zhao, 2011; Faustman & 

Cassens, 1990; Tao, Peng, Li, Chao, & Dhakal, 2012). Traditional 
analytical methods use sensory evaluation, chemical analysis, and mi
crobial population evaluation to assess beef freshness (Huang et al., 
2014; Zhang, Tong, Chen, & Lan, 2008). However, implementing these 
methods is time-consuming and can damage the beef samples during the 
pre-treatment process. In addition, the accuracies of the measurements 
and results are highly dependent on the proficiency of the experimenter 
(Huang et al., 2014; Kuswandi & Nurfawaidi, 2017; Yamamoto & 
Sonehara, 1953). Hence, the purpose of this study was to develop an 
advanced method that can be used to analyze beef freshness expedi
tiously and consistently, overcoming the limitations of traditional 
methods. 

Recently, near-infrared spectroscopy (NIRS) and other near-infrared 
(NIR)-related technologies (e.g., Fourier-transform (FT) NIRS) have 
been applied to assess parameters related to meat freshness in an effi
cient and non-destructive manner (Cai et al., 2011; Chen, Cai, Wan, & 
Zhao, 2011; Dixit et al., 2017; Liao, Fan, & Cheng, 2010). Because they 
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do not require any pre-treatment process and can be applied to several 
foods including meat (Cai et al., 2011; Chen et al., 2011; Dixit et al., 
2017; Liao et al., 2010; Porep, Kammerer, & Carle, 2015), NIRS and FT- 
NIR have gained attention as alternative methods of meat-freshness 
measurement. In particular, FT-NIRS offers high resolution and accu
racy with a high signal-to-noise ratio (Agelet & Hurburgh, 2010). 
However, this approach requires a complex and expensive system for 
measurement and needs to constantly update the calibration models. 
Furthermore, both NIRS and FT-NIR systems must be utilized in regu
lated conditions because the system is sensitive to measurement condi
tions such as temperature and vibration (Agelet & Hurburgh, 2010; Dixit 
et al., 2017; Salguero-Chaparro, Baeten, Fernández-Pierna, & Peña- 
Rodríguez, 2013). Therefore, in this study, we propose the use of diffuse 
reflectance spectroscopy (DRS) with deep learning to analyze beef 
freshness using a low-cost and simple system while retaining the ad
vantages of NIRS and FT-NIR. 

DRS is an optical technique that quantifies the composition of 
chromophores by illuminating the sample surface and fitting the ob
tained diffuse reflectance spectra to an analytical photon diffusion 
model in a turbid medium (Kim, Kim, & Kim, 2019; Nachabé, Hendriks, 
van der Voort, Desjardins, & Sterenborg, 2010; Nguyen & Kim, 2019). 
DRS utilizes light in the visible, NIR, and mid-infrared regions to 
quantify the composition of chromophores with known absorption co
efficients in a simple and efficient manner (Mirabella, 1998). The DRS 
system does not require any calibration model updates and utilizes an 
affordable and easily configurable spectrometer rather than a spectro
photometer, which is used in NIRS and FT-NIRS (Agelet & Hurburgh, 
2010; Mirabella, 1998; Nguyen, Kim, & Kim, 2019). 

In our previous research, we utilized DRS to quantify the proportions 
of different myoglobin redox forms, which are the most dominant pig
ments in beef muscle (Nguyen et al., 2019). Myoglobin is a heme protein 
that delivers oxygen to muscle cells. After a cow is slaughtered, the 
myoglobin undergoes continuous changes in its form (Hui, Nip, & 
Rogers, 2001; Mancini & Hunt, 2005; Millar, Moss, & Stevenson, 1996). 
The various myoglobin redox forms are identified by a gradual discol
oration in the beef; the most common forms are oxymyoglobin (oxy- 
Mb), deoxymyoglobin (deoxy-Mb), and metmyoglobin (met-Mb), asso
ciated with the colors cherry red, red-violet, and brown, respectively 
(Faustman & Cassens, 1990). Supplementary Figs. 2 & 4 depict this 
process. Generally, deoxy-Mb is predominantly found in beef before 
slaughter. As the beef is exposed to air after slaughter, deoxy-Mb on the 
surface of the beef is rapidly converted to oxy-Mb through oxygenation 
(Nguyen, Phan, Lee, & Kim, 2016; Richards, 2013). This process pro
gresses from the surface to the interior of the beef over several days 
(Dikeman & Devine, 2014). Simultaneously, oxidation occurs from the 
interior of the beef, which converts oxy-Mb and deoxy-Mb into met-Mb 
(Mancini & Hunt, 2005). As the storage period increases, the rate of 
oxygenation reduces until the oxidation process occurs predominantly. 
As a result, met-Mb becomes the predominant form, eventually turning 
the color of the beef to brown (Hui et al., 2001). Further, as the beef 
spoilage process begins, sulfmyoglobin (sulf-Mb), which has a green 
color, is sporadically formed by bacteria on the surface of beef (Faust
man & Cassens, 1990). Each myoglobin redox form has different ab
sorption coefficients in the visible and NIR regions, and their 
proportions change during storage (represented graphically in Supple
mentary Figs. 2 & 3) (Mancini & Hunt, 2005; Nguyen et al., 2019). In 
other words, the diffuse reflectance spectra of fresh and spoiled beef 
differ because of the difference in proportions of myoglobin redox forms 
that arise due to extended storage (Supplementary Fig. 5). Therefore, the 
differences between the diffuse reflectance spectra of fresh and spoiled 
beef can enable the classification of beef freshness using DRS. 

Deep learning has widely been studied as a powerful algorithm for 
classification (Esteva et al., 2017; He, Zhang, Ren, & Sun, 2016; Rus
sakovsky et al., 2015; Yoo, Gujrathi, Haider, & Khalvati, 2019). Previous 
studies have highlighted the superior performances of speed and pre
cision of deep learning compared with the existing analytical methods in 

many fields such as medical science (Back et al., 2019), signal analysis 
(Drugman, Stylianou, Kida, & Akamine, 2015; Tekbıyık, Akbunar, Ekti, 
Görçin, & Kurt, 2020), and food safety and quality management (Liu, 
He, Cen, & Lu, 2018; Moon et al., 2020; Rodríguez, García, Pardo, 
Chávez, & Luque-Baena, 2018; Yu, Tang, Wu, & Lu, 2018). Liu et al. and 
Rodríguez et al. utilized a convolutional neural network (CNN), the most 
widely used deep learning algorithm, for detecting defects in vegetables 
and fruits from RGB images. When the training dataset includes normal 
and defective fruit images, CNN can automatically detect optimal fea
tures to classify normal images and defects without any prior knowledge 
and pre-treatment; the model also exhibits robustness in size and color of 
fruits if the training data include various colors and sizes. Similarly, the 
quality of shrimps was measured using CNN with hyperspectral imaging 
(Yu et al., 2018). A recent report by Moon et al. showed high accuracy in 
the classification of salmon, tuna, and beef using the spectral data with a 
CNN based machine learning algorithm (Moon et al., 2020). 

Therefore, we employed a deep learning algorithm to classify beef 
freshness using the spectral data obtained from DRS. In this study, we 
developed a deep spectral network based on a CNN to fully exploit the 
advantages of CNN with spectral data. The deep spectral network can 
automatically detect optimal patterns for classifying beef-freshness 
using reflectance spectra without any calibration models. Myoglobin 
information was either fused with the input reflectance spectra during 
the early fusion stage or was fused with the convolutional layers during 
the later fusion stage (Figs. 1 & 2). Additionally, the input spectral re
gions that greatly influenced the classification of beef freshness were 
visualized using gradient-weighted class activation mapping (Grad- 
CAM) (Selvaraju et al., 2017); this was done both with and without 
myoglobin information fusion to determine the effect of myoglobin in
formation fusion on the overall classification performance. 

2. Materials and methods 

2.1. Sample preparation and storage 

For the experiment, 78 beef samples collected from the round (n =
40) and sirloin (n = 38) parts of cows were used. The round samples 
were purchased from a local butcher shop (Gwangju, Korea) on the day 
of slaughter, and the sirloin samples were purchased from the same 
place on the day after slaughter. All samples were stored in an ice-filled 
cooler and transported to the laboratory within 30 min. Immediately 
after arrival, the samples were sliced into pieces of dimensions of 3 
(±1) × 3(±1) × 2(±0.1) cm (length × width × thickness). The 
weight of each sample was approximately 20 ± 5 g. After slicing, each 
sample was wrapped individually in a low-oxygen-permeability poly
ethylene sheet and stored in a refrigerator at 0.5 ◦C. 

2.2. Diffuse reflectance spectroscopy system and spectra acquisition 

The DRS system consisted of the following main components: a 
broadband light source (tungsten halogen lamp, HL-2000-HP, Ocean 
Optics, Delray Beach, FL, USA) and a spectrometer (USB4000, Ocean 
Optics, Delray Beach, FL, USA) that collected reflectance spectra from 
the beef samples. The measurement probe in our system comprised two 
optical fibers (of diameter 200 μm). One fiber was connected to a 
tungsten halogen lamp, which illuminated the beef samples, and the 
other was connected to a spectrometer, which collected light within a 
470–1148 nm wavelength range with a 100 ms integration time. For the 
deep spectral network, the spectra from 480 to 920 nm were used 
because the signals at other wavelength ranges had a low contribution. 
The distance between the two optical fibers was 2 mm. A 1-mm-thick 
acrylic plate was used to prevent contamination of the beef samples 
owing to the measurement probe. Supplementary Fig. 1 displays a 
schematic diagram of the experimental setup. 

The diffuse reflectance spectra were measured once at 10 pm on the 
day the samples arrived (Day 0). Subsequently, they were measured 
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every 12 h for 16 days. Accordingly, the measured values added up to a 
total of 2574 data points ([1 + (2 × 16)] × 78). For each measurement, 
the probe was covered with black fabric to avoid the influence of 
ambient light. The reference spectra (Rreference) were then measured using 
a 99% reflection plate (SRT-99-050, Labsphere, USA), and the spectra of 
the beef samples (Rsample) were divided by the reference spectra to obtain 
their respective diffuse reflectance spectra (Rmeasured). To minimize the 
effect of temperature on the measurements, the temperature was 
maintained at 25 ± 1 ◦C during collection of the reflectance spectra. All 
the measurements were performed within a few seconds, and the process 
of transferring the beef samples from the refrigerator to the lab benchtop 
using an ice tray was also performed in minutes, thereby minimizing the 
formation of moisture during measurement. The relationship between 
Rsample, Rreference, and Rmeasured can be represented as 

Rmeasured =
Rsample

Rreference
(1)  

2.3. pH measurement and beef freshness labeling 

pH measurement, one of the chemical methods for assessing beef 
freshness, was used in the experiment for freshness labeling (Monin, 
1998). It is important to obtain the pH value at the site of spectral 
measurement for training the deep learning model accurately. Further
more, the pH values measured using different types of electrodes from 
the pork and beef samples do not differ significantly (Korkeala, Mäki- 
Petäys, Alanko, & Sorvettula, 1986). Consequently, a skin pH meter (HI- 
99181, HANNA instruments, Woonsocket, RI, USA) was used for the 
measurements in this study. The temperature was maintained at 25 ±
1 ◦C during the pH measurement, which was the same as that main
tained during spectral data collection. The pH meter was washed after 
every measurement to prevent possible contamination from spreading 
across the beef samples. The freshness of the samples was labeled ac
cording to the pH criteria established by the Food and Agriculture Or
ganization of the United Nations and the Ministry of Food and Drug 
Safety (Heinz & Hautzinger, 2007; Korea food additives code, Ministry 
of Food and Drug Safety, 2015). Following these criteria, the measured 
pH values were classified into three categories: values below 6, between 

6 and 6.3, and above 6.3 were labeled “fresh” (n = 1817), “normal” (n =
139), and “spoiled” (n = 618), respectively. 

2.4. Sample temperature effects on measurement 

Two conditions of sample temperature change were considered: 1) 
between the frozen state and unfrozen state, and 2) when the temper
ature increased from 2 ◦C to 10 ◦C. For the first experiment, beef samples 
were stored in the freezer for a day and the DRS measurements were 
performed immediately after the samples were taken out of the freezer 
until the samples reached a temperature of 2 ◦C on the surface. For the 
second experiment, the beef samples stored in the refrigerator were 
taken out; then, as the samples reached a temperature of 2 ◦C, the pH 
and DRS data were acquired with every 2 ◦C increase until the tem
perature of the samples reached 10 ◦C. The temperature change of the 
beef samples was observed using an infrared camera (FLIR C3, FLIR 
Systems, Inc., Sweden), and the locations of the pH and DRS probes on 
the samples were fixed to minimize the effect of inhomogeneity of beef 
composition. The number of beef samples used in each experiment was 
five. 

2.5. Quantification of the myoglobin redox forms 

The analytical photon diffusion model in a turbid medium, derived 
by Farrell et al., was used to quantify the chromophore composition 
(Farrell, Patterson, & Wilson, 1992). This analytical model is related to 
the absorption and scattering coefficients of a medium and delineates 
the diffuse reflected light from the illuminated position to the position 
detected using extrapolation boundary conditions. Its operation can be 
represented mathematically as follows. 

Rfitting
(
μa(λ), μ’

s(λ), ρ
)
=

μ’
s

4π(μ’
s + μa)

[

z0

(

μeff +
1
r1

)
exp(− μeffr1)

r2
1

+(z0

+ 2zb)

(

μeff +
1
r2

)
exp(− μeffr2)

r2
2

]

(2) 

Here, Rfitting is the diffuse reflectance spectra derived from the 
diffusion theory; μa is the absorption coefficient; μ’

s is the reduced 

Fig. 1. Schematic diagram of the deep spectral network for beef freshness classification. The network consists of a main network for classification and a fusion 
network for combining the input reflectance with myoglobin information. In the fusion network, DRS is used to estimate the proportions of the myoglobin redox 
forms from the input reflectance spectra, and the estimated proportions are combined with the early or later stage of the main network. 
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scattering coefficient; μeff =
[
3μa(μa + μ’

s)
]1/2 is the effective attenuation 

coefficient, and ρ represents the source–detector separation distance. 
Descriptions of the other parameters (z0, zb, r1, and r2) can be found in 
the report by Farrell et al. (1992). 

The light absorption and scattering of the sample are described in 
Eqs. (3) and (4), respectively. In our previous study (Nguyen et al., 
2019), only oxy-Mb, deoxy-Mb, and met-Mb were considered as the 
main chromophores in beef. However, in this study, as the storage 
period of the beef samples was longer than that in the previous experi
ment, sulf-Mb was also considered as one of the main chromophores. 
The absorption coefficients of the sample are expressed as a combination 
of the proportions (poxy, pdeoxy, pmet, and psulf) and extinction coefficients 
(εoxy, εdeoxy, εmet, and εsulf) of each myoglobin redox form. 

μa(λ) = poxyεoxy(λ)+ pdeoxyεdeoxy(λ)+ pmetεmet(λ)+ psulfεsulf(λ) (3) 

Here, λ is a specific wavelength, and the extinction coefficients of the 
four chromophores were adopted from previous studies (Nguyen et al., 
2016; Zijlstra, Buursma, & Meeuwsen-Van der Roest, 1991). The 
reduced scattering coefficients of the samples were expressed as com
binations of Mie and Rayleigh scattering coefficients (Jacques, 2013; 
Nachabé et al., 2010). 

μ’
s(λ) = α

[

γMR

(
λ
λ0

)− b

+(1 − γMR)

(
λ
λ0

)− 4
]

(4) 

Here, α is the scattering amplitude; γMR is the ratio of Mie scattering 
to total scattering; λ is the specific wavelength, λ0 is the normalized 
wavelength (λ0 = 500nm), and b is the Mie slope (Bi, Dong, & Lee, 
2013). 

To quantify the four myoglobin redox forms (i.e., oxy-Mb, deoxy-Mb, 
met-Mb, and sulf-Mb) using the measured diffuse reflectance spectra 
(Rmeasured), Eqs. (3) and (4) were substituted into Eq. (2). The 480–700 
nm spectral range was used for fitting because the main absorbers in beef 
in this range are oxy-Mb, deoxy-Mb, met-Mb, and sulf-Mb. After the 
substitution, we obtained the seven unknown variables from the equa
tion: poxy, pdeoxy, pmet, psulf , α, γMR, and b. Subsequently, non-linear least- 
squares fitting (lsqcurvefit, Matlab, MathWorks, Natick, MA, USA) was 
applied to solve the equation. Supplementary Fig. 2 shows the entire 
process of obtaining the proportions of myoglobin redox forms using 
DRS. 

The process of determining myoglobin information is summarized as 
follows. First, the reference spectra (Rreference) and the diffuse reflectance 
spectra of the beef samples (Rsample) were obtained. We then divided 
Rsample by Rreference to calculate Rmeasured, as expressed in Eq. (1). Finally, 
the myoglobin information was determined from the absorption 

Fig. 2. Two types of fusion networks for beef freshness classification. a. Early fusion combining the estimated proportions of myoglobin redox forms with the input 
reflectance spectra. b. Late fusion combining the estimated proportions with the embedded reflectance spectra. To match the dimensions with the embedded spectra, 
the estimated myoglobin proportions are also embedded using the convolution layers. 
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coefficients mentioned in Eq. (3) by fitting Rmeasured and the theoretical 
value (Rfitting) in Eq. (2). 

2.6. CNN for beef freshness classification 

In the CNN, convolutional layers extract the local features of the 
input spectra by striding the filters, and the extracted features are shared 
throughout the network as embedded features. Thereafter, linear layers 
classify the embedded features into the three aforementioned categories 
(fresh, normal, or spoiled). More specifically, the outputs of the linear 
layers pass via the softmax layer. The softmax layer converts output 
features of linear layers into a value between 0 and 1, which indicates 
the probability that a given datum belongs to a given category (i.e., the 
confidence score of each category). 

P(x) = Softmax(Linear(CNNmain(x) ) ) (5) 

Here, x is the input reflectance, where x ∈ R1x981; CNNmain(∙), 
Linear(∙), and Softmax(∙) represent the functions of the convolutional 
layers in the main network, the linear layers, and the softmax layer, 
respectively. P(x) is the probability that a given datum belongs to a 
given category (fresh, normal, or spoiled). 

Our CNN model consists of five convolutional layers, three linear 
layers with dropout, and a softmax layer. Each layer follows a modified 
version of AlexNet (Drugman et al., 2015), which is a well-known ar
chitecture for image classification. The initial convolutional layer has a 
large filter size (11–13) to accommodate raw reflectance spectra, which 
contain a substantial amount of noise. Large filters smoothen the input 
spectra by averaging the input in the filter range, making our CNN 
model robust to noise. All models were trained with 70% of the data, and 
the remainder was used for evaluation (fresh (n = 546), normal (n = 42), 
spoiled (n = 185)). 

The Adam optimizer, with a learning rate of 0.001, was utilized to 
update the model parameters, and the batch size was set to 1024. Cross 
entropy loss was utilized for training the deep spectral network, and the 
synthetic minority oversampling technique (SMOTE) was applied to 
deal with the unbalanced number of data (Chawla, Bowyer, Hall, & 
Kegelmeyer, 2002). The SMOTE selected samples of the minority class 
and calculated a decision boundary based on the selected samples. 
Thereafter, it synthesized new samples for the minority class at a point 
within the decision boundary, thereby reducing the imbalance between 
the minority and majority classes. Each convolutional layer contained a 
rectified linear unit activation function to address non-linearity in the 
given data. All deep learning models were implemented using Python 
3.7. 

2.7. Mechanism of the deep spectral network 

The deep spectral network extracts spectral characteristics from 
spectra through a CNN model composed of convolutional and linear 
layers, along with one softmax layer (Fig. 1). The CNN model detects 
optimal patterns for classifying beef freshness from the spectra. If the 
number of data points is small or the representation of input features is 
insufficient to identify these patterns, the deep spectral network cannot 
produce the desired results. In such cases, auxiliary features can be 
utilized to support the network. In the proposed network, the myoglobin 
information performed the role of these features. Myoglobin informa
tion corresponds to the proportions of myoglobin redox forms, which 
govern the discoloration associated with beef spoilage. The proportions 
of myoglobin redox forms were estimated from the reflectance spectra 
using DRS and were subsequently combined with the CNN network 
through a fusion network (Fig. 1). 

The fusion network has two types: early fusion and late fusion 
(Fig. 2a & b). Early fusion combines the myoglobin information with 
reflectance spectra during the early stage of the deep spectral network 
(Fig. 2a). In Eq. (5), x is replaced with the combined input of early 

fusion, xearly. 

P(x) = Softmax
(
Linear

(
CNNmain

(
xearly

) ) )
(6)  

xearly = x ⊕ DRS(x) (7) 

Here, xearly is the fused input of the reflectance spectra and the esti
mated myoglobin redox forms, where xearly ∈ R1x985; DRS(∙), CNNmain(∙), 
and Softmax(∙) are functions of DRS that estimate the myoglobin redox 
forms, the convolutional layers in the main network, and the softmax 
layer, respectively. ⊕ indicates concatenation of two variables. 

As mentioned in Section 2.5, the CNN model consists of convolu
tional and linear layers, along with one softmax layer for embedding the 
input features and classifying the embedded features. Unlike early 
fusion, late fusion combines the myoglobin information with the 
embedded features of the reflectance spectra, not the input spectra. To 
match the dimensions of the myoglobin proportions to those of the 
embedded reflectance spectra, additional convolutional layers are 
applied to embed the myoglobin proportions. These additional layers 
contain 1 × 1 convolutional filters, which convert the channel size of the 
myoglobin proportions into the same dimensions as those of the 
reflectance spectra. Subsequently, the embedded Mb proportions and 
reflectance spectra are combined before being fed to the linear layers. In 
Eq. (5), the output of the convolutional layers, CNNmain(x), is replaced 
with CNNlate(x) (Fig. 2b). 

P(x) = Softmax(Linear(CNNlate(x) ) ) (8)  

CNNlate(x) = CNNmain(x) ⊕ CNNfusion(DRS(x) ) (9) 

Here, x is the input reflectance, where x ∈ R1x981; DRS(∙) is the DRS 
function for estimating the myoglobin redox forms; CNNmain(∙) and 
CNNfusion(∙) are functions of the convolutional layers in the main 
network and fusion network, respectively. Softmax(∙) is a function of the 
softmax layer, and CNNlate(x) represents the combined embedded fea
tures. ⊕ indicates concatenation of two variables. 

2.8. Comparison metrics 

The metrics for measuring the classification performances were 
based on sensitivity and specificity: 

Sensitivity =
∑n

i=1

1
n
*
(

TPi

TPi + FNi

)

(10)  

Specificity =
∑n

i=1

1
n
*
(

TNi

TNi + FPi

)

(11)  

F1score =
∑n

i=1

1
n
*
(

2TPi

2TPi + FPi + FNi

)

(12) 

Here, n indicates the number of freshness classes, and i denotes a 
number from 1 to 3 indicating the freshness class: 1 indicates fresh, 2 
indicates normal, and 3 indicates spoiled. Pi is the number of positive 
samples, i.e., those that are graded as class I; Ni is the number of negative 
samples, indicating those graded as class I; TPi is the number of accu
rately predicted positive samples; and TNi is the number of accurately 
predicted negative samples.FPi is the number of negative samples pre
dicted as positive inaccurately, and FNi is the number of positive samples 
predicted as negative inaccurately. The sensitivity and specificity 
measured the reliability of our model in generating positive and nega
tive results, respectively. 

To evaluate the multi-class classification performance of our 
network, sensitivity and specificity were combined to measure the 
overall performance. The most widely used evaluation metrics are the 
AUC and F1 score. AUC is the area under the sensitivity–specificity 
curve, which indicates the capability of distinguishing between classes. 
The F1 score is the harmonic mean of precision and recall, as described 
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in Eq. (12), which is sensitive to biased results caused by unbalanced 
data. Both the AUC and F1 score use the macro-averaging method for 
multi-class classification. We trained each model and performed 10 it
erations each, and then measured and compared the classification per
formances using the above metrics. 

2.9. Visualizing highlighted features of the deep spectral network 

To realize the effects of the myoglobin fusion on beef freshness 
classification, the Grad-CAM method was utilized. Grad-CAM visualizes 
the highly referenced input features when a deep learning model makes 
a decision (Selvaraju et al., 2017). It computes the gradient of the target 
class with respect to the given input feature. When the given input 
features are relevant to the target class, a large amount of gradients flow 
into the features during backpropagation. By visualizing the amount of 
gradient flow, Grad-CAM selectively highlights the features useful for 
classification. In this study, the Grad-CAM model highlighted certain 
areas of the input spectra with red, which indicated that those areas had 
a high positive effect on the beef freshness classification. In contrast, the 
blue areas signified features that were irrelevant to the classification, as 
shown in Fig. 5. By analyzing the differences in the highlighted areas 
between the deep spectral network and others, the effects of myoglobin 
fusion could be explained. 

2.10. Statistical test 

To analyze the relationship between the myoglobin proportions and 
beef freshness, we performed an analysis of variance (ANOVA) test to 
verify whether the proportions of the myoglobin redox forms differed, 
with statistical significance, depending on the beef freshness. When the 
P-value obtained from ANOVA was lower than the significance level α, 
which was set to 0.05, a post-hoc (Tukey’s honestly significant differ
ence (HSD)) test was performed to demonstrate which freshness state 
had statistically different proportions of myoglobin redox forms. P ≤
0.05, P ≤0.01, and P ≤ 0.001 were considered statistically significant, 
highly statistically significant, and very highly statistically significant. 

3. Results 

3.1. Relationship between beef freshness and proportions of myoglobin 
redox forms 

According to previous research, the proportions of the myoglobin 
redox forms change with storage time through oxygenation, oxidation, 
and microbial reactions (Supplementary Fig. 2c) (Dikeman & Devine, 
2014; Hui et al., 2001; Mancini & Hunt, 2005; Millar et al., 1996; 
Nguyen et al., 2016; Richards, 2013). To analyze the relationship be
tween beef freshness and proportions of the myoglobin redox forms, we 
utilized the ANOVA and post-hoc analysis (Tukey’s HSD test). Overall, 
the average proportion of each myoglobin redox form showed very 

highly significant differences (ANOVA test; P ≤ 0.001 for all myoglobin 
redox forms). Following the ANOVA test, Tukey’s HSD test was per
formed to determine which beef freshness status had significantly 
different proportions for each myoglobin redox form. The average oxy- 
Mb proportion of the fresh class (oxy-Mb = 53.35%) was statistically 
higher than that of the normal (oxy-Mb = 10.00%) and spoiled (oxy-Mb 
= 8.64%) classes (Tukey HSD test; both P≤ 0.001). The proportion of 
oxy-Mb in the normal class was slightly higher than that in the spoiled 
class, although it was not significant (Tukey HSD test; P = 0.777) 
(Fig. 3a). The average met-Mb proportions in all the classes were 
different with statistical significance. When the fresh class decayed into 
the normal class, the average met-Mb proportions increased from 
37.63% to 72.50% (Tukey HSD test; P ≤ 0.001). The spoilage of beef 
samples from normal ones decreased the average met-Mb proportions 
(met-Mb = 28.73%) with very high statistical significance (Tukey HSD 
test, P ≤ 0.001) (Fig. 3c). 

In contrast, the average proportions of both deoxy-Mb and sulf-Mb 
increased as the beef decayed. The average deoxy-Mb proportion of 
the normal class (deoxy-Mb = 17.50%) was significantly higher than 
that of the fresh class (deoxy-Mb = 9.01%) but significantly lower than 
that of the spoiled class (deoxy-Mb = 62.10%) (Tukey’s HSD test, both P 
≤ 0.001) (Fig. 3b). The average sulf-Mb proportion of the normal class 
(sulf-Mb = 0.03%) was slightly higher than that of the fresh class (sulf- 
Mb = 0.007%); however, the difference was not statistically significant 
(Tukey HSD test, P = 0.701). When the beef was spoiled, the average 
sulf-Mb proportion (sulf-Mb = 0.54%) increased significantly compared 
to that of the normal or fresh classes (Tukey HSD test, P ≤ 0.001) 
(Fig. 3d). 

3.2. CNN-based beef freshness classification 

As each myoglobin redox form had a different extinction coefficient, 
the differences in the reflectance spectra of the beef samples were also 
found to depend on the freshness. As a baseline, we established a naive 
Bayes model for beef freshness classification based on the differences in 
myoglobin proportions. By simply exploiting the different proportions of 
the myoglobin redox forms (oxy-Mb, deoxy-Mb, met-Mb, and sulf-Mb) 
the model reached an average area under the receiver operating char
acteristic curve (AUC) of 0.943 with an accuracy of 84.7% (Table 1). 
However, although the baseline achieved an acceptable level of classi
fication performance, its accuracy was low and unbalanced for the fresh 
and spoiled classes, resulting in a low F1 score of 0.707, as shown in 
Supplementary Fig. 6. 

Consequently, a CNN-based deep learning model prevalently used in 
classification was adopted. This model classified the beef freshness 
based on the differences in the reflectance spectra. The spectra were 
used as input, and the model was evaluated under the same conditions as 
those of the baseline for a fair comparison. The model achieved an 
average AUC of 0.947 and accuracy of 83.6%, as well as an F1 score of 
0.713, which are slightly higher than those of the baseline (Table 1). 

Fig. 3. Change in proportions of the myoglobin redox forms depending on beef freshness status. These plots were derived from a. oxy-Mb, b. deoxy-Mb, c. met-Mb, 
and d. sulf-Mb. The error bars denote 95% confidence intervals, and the diamond-shaped points indicate the outliers from the error bars. The bottom and top of each 
box represent the distribution range between the first quartile (25th percentile) and third quartile (75th percentile), respectively. The stars indicate the significance of 
the post-hoc test between two groups; *** indicates a highly significant difference with a P-value of 0.001. 
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3.3. Deep spectral network: fusion of myoglobin information into the CNN 

To improve the beef-freshness classification performance, we 
developed a deep spectral network by combining the CNN with 
myoglobin information. The proportions of the myoglobin redox forms 
were quantified by DRS and were fused with the reflectance spectra 
during the early fusion stage or were fused with the convolutional layers 
during the later fusion stage (Fig. 2). Both types of deep spectral net
works exhibited significantly improved average AUCs and F1 scores. The 
average AUC of the deep spectral network was 0.954 with early fusion 
and 0.958 with late fusion (Fig. 4). Moreover, deep spectral networks 
achieved an increase of 8.8% and 11.6% in the F1 score compared to the 
baseline models with early and late fusion, respectively. The significant 
improvements in the F1 score were due to the 5.5% increase in the ac
curacy of fresh-class classification compared to the baseline (accuracy 
(ACC) of fresh class in the baseline = 89.9%; ACC of fresh class in late 
fusion = 94.9%), colored blue in Supplementary Fig. 6. In addition to the 
increase in the fresh-class accuracy, the average accuracy of the deep 
spectral network with late fusion also increased by 8.5% compared to 
the baseline. Moreover, beef freshness could be classified within 1 s in 
the CPU environment using the deep spectral network. 

3.4. Sample temperature effects on the beef freshness classification 

Supplementary Fig. 7 summarizes these results, showing no signifi
cant difference in the proportions of myoglobin redox forms between the 
frozen and unfrozen states. When the beef samples were removed from 
the refrigerator, the proportion of myoglobin redox forms showed only a 
slight change (<2% in the values at 2 ◦C until the sample reached 10 ◦C), 
indicating that the sample temperature had a minor effect on the 
measured value. Similarly, it was also found that the pH value change 
was less than 0.05 from the values at 2 ◦C until the temperature of the 
sample reached 10 ◦C. In addition, the deep spectral network showed 

consistent classification results with increasing sample temperature, and 
the confidence score of each result was found to vary slightly, as shown 
in Supplementary Fig. 8. 

3.5. Visualizing the influence of myoglobin fusion: Grad-CAM 

To visualize the wavelength regions that considerably affect beef 
freshness classification before and after fusion, we compared the 
average Grad-CAM weights of the models. In Fig. 5a, the average Grad- 
CAM weights of the fresh class showed high values in the 575–600 nm 
wavelength range before fusion. Upon fusing the myoglobin information 
into the main network, the wavelength range that contributed to the 
classification of the fresh class was broadened (Fig. 5d) (490–600 nm 
and 660–750 nm). Similar effects were observed in the classification of 
the normal class. For the normal class, the 640–660 nm wavelength 
range affected the decision of the model more than other wavelengths 
before fusion. However, after fusion, the normal class also showed 
relatively high Grad-CAM weights in the wavelength ranges of 490–600 
nm and 660–750 nm. In contrast, the wavelength range that consider
ably affected the classification of the spoiled class remained in the 
visible region with increasing Grad-CAM weight, whereas the range in 
the NIR region became narrow with decreasing weight. 

4. Discussion 

Unlike most existing non-destructive methods of measuring the 
freshness of meat, our method is simple, efficient, and repeatable and 
has high accuracy. In general, spectroscopy-based methods (NIRS and 
FT-NIR) used in meat-freshness measurement focus mainly on functional 
groups such as O–H, C–H, S–H, and N–H (Chen et al., 2011; Huang 
et al., 2014); however, our method analyzes freshness based on 
myoglobin information, rather than on functional bonds. Thus, it was 
possible to use a more affordable spectrometer than those generally used 

Table 1 
Performances of freshness classification models on the evaluation dataset.  

Model Data ACC (%) (95% CI) AUC (95% CI) F1 score (95% CI) Sensitivity (95% CI) Specificity (95% CI) 

Naive Bayes Mb 84.7 (84.1–85.3) 0.943 (0.940–0.946) 0.707 (0.702–0.712) 0.779 (0.772–0.786) 0.924 0.923–0.925) 
CNN Spectra 83.6 (82.9–84.3) 0.947 (0.946–0.948) 0.713 (0.710–0.716) 0.809 (0.802–0.816) 0.934 (0.933–0.935) 
Early fusion Mb + spectra 90.3 (89.7–90.8) 0.954 (0.952–0.956) 0.769 (0.760–0.778) 0.804 (0.796–0.812) 0.948 (0.947–0.949) 
Late fusion Mb + spectra 91.9 (91.4–92.3) 0.958 (0.957–0.959) 0.789 (0.782–0.796) 0.815 (0.809–0.821) 0.954 (0.953–0.955) 

Naive Bayes, naive Bayes model; CNN, convolutional neural network; ACC, accuracy; AUC, area under the receiver operating characteristic curve, which uses a 
macro-averaging method in this environment; CI, confidence interval for 10 iterations of experiments; Early fusion, deep spectral network with early fusion; Late 
fusion, deep spectral network with late fusion; Mb, proportions of myoglobin redox forms; Spectra, reflectance spectra. 
* All models were trained with 70% of the dataset and evaluated with the remaining 30%. 

Fig. 4. Sensitivity–specificity curves for freshness classification models. AUC, area under the receiver operating characteristic curve, which uses a macro-averaging 
method in this experiment; naive Mb, a naive Bayes model trained with myoglobin proportions; CNN spectra, a CNN model trained with the reflectance spectra; early 
fusion, the deep spectral network with early fusion; late fusion, the deep spectral network with late fusion. 
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in other spectroscopy-based methods (Agelet & Hurburgh, 2010). 
Focusing on myoglobin information instead of functional groups allows 
the use of relatively short wavelength ranges (VIS/NIR, 480–920 nm), 
unlike previous studies that required relatively long wavelength ranges 
(NIR, typically 750–2500 nm) to analyze meat freshness (Cai et al., 
2011; Chen et al., 2011; Porep et al., 2015; Tøgersen, Arnesen, Nilsen, & 
Hildrum, 2003). Because water has high absorption coefficients in the 
wavelength range of 1000–2500 nm (Nachabé et al., 2010; Tøgersen 
et al., 2003; Wang, Peng, Sun, Zheng, & Wei, 2018), the moisture formed 
on the surface of a meat sample or the high humidity of the measure
ment environment makes analysis difficult. Unlike laboratory environ
ments in which conditions are controlled for experiments, it is common 
for moisture to form on meat surfaces in industrial environments so that 
existing methods which use long wavelengths have limitations in in
dustrial applications. 

A few studies also focused on meat quality analysis by utilizing 
visible and near-infrared (VIS/NIR) wavelengths of light, and most of 
them predicted the value related to freshness by developing a regression 
model (Andersen, Borggaard, Rasmussen, & Houmøller, 1999; Liao, Fan, 
& Cheng, 2012; Savenije, Geesink, Van der Palen, & Hemke, 2006). Liao 
et al. utilized visible and near-infrared (350–1100 nm) reflectance to 
predict the quality attributes of fresh pork by developing a partial least- 
squares regression (PLSR) model (Liao et al., 2010). In their study, the 
first derivative (1st order) and multiplicative scatter correction (MSC) 
were used for preprocessing to eliminate baseline offset and separate the 
multiplicative interferences. They predicted pH values from the reflec
tance spectra using a regression model, while our study classified 
freshness with a deep learning classification model, and thus their re
sults cannot be compared quantitatively with ours. However, our model 
recorded a very high accuracy of 94.9% for the pH range used in the 
validation set of Liao et al.’s study which was 5.06–5.98 (fresh class in 
our study; Supplementary Fig. 6d). In 2014, Reis & Rosenvold also 
predicted the pH value of beef samples with the PLSR models (VIS/NIR, 
350–2500 nm) and classified beef carcasses into two classes (normal: pH 
≤ 5.8; high: pH ≥ 5.8) based on the predicted pH (Reis & Rosenvold, 
2014). The highest classification accuracy was 89.5% from the PLSR 
model, which is lower than the accuracy of this study (93.9%, fresh: pH 
< 6, non-fresh: pH≥6; Supplementary Fig. 6d). Even though Reis & 
Rosenvold used a wider range of wavelengths (350–2500 nm) than those 
used in this study (480–920 nm), a deep spectral network model fused 
with myoglobin information produced higher accuracy than the model 
used by Reis & Rosenvold. 

Recently, Moon et al. reported that beef freshness can be classified by 
using spectral data obtained from a portable spectrometer with a CNN- 
based machine learning algorithm (Moon et al., 2020). VIS/NIR spectra 
(400–1000 nm) were obtained from beef samples (8 for the training set 
and another 8 for the verification set) incubated for 30 h at 25 ◦C and 

showed 92% overall accuracy of beef freshness classification (fresh, 
likely spoiled, and spoiled based on pH values). Compared to Moon 
et al.’s study, our study differs as follows. Firstly, they accelerated the 
process of spoilage by incubating the beef at 25 ◦C, while in this study, 
beef samples were stored in a refrigerator at 0.5 ◦C and spectra were 
acquired every 12 h for 17 days, which represents a more realistic 
consumer environment. Secondly, they obtained a reflectance spectrum 
and a pH value from a different beef sample because they clamped each 
beef sample with a spectrometer so that pH had to be measured from 
another three beef samples. The pH and reflectance spectrum can vary 
widely even in the same beef sample because of the inhomogeneous 
structure of beef. Therefore, in our study, the reflectance spectrum and 
pH were measured from the same position in the same sample. Lastly, 
Moon et al. selectively used spectral data of the “Likely Spoiled” class for 
the training and verification of their CNN-based model. During 30 h of 
the experiment, the “Likely Spoiled” state started from 2 to 3 h after 
incubating beef samples and lasted until the pH increased to 6.2 (~23 
h). However, only the spectral data between 8 and 15 h, which have 
small variations in pH values, were utilized to train and verify their 
CNN-based model, while all spectral data at each pH value were utilized 
in our study. The CNN model without fusion used in this study has the 
same architectures as that of Moon et al. When the model was validated 
with our data, it showed far lower performances without fusion (ACC =
83.6%, CNN model with Spectral Data at Table 1) than the deep spectral 
network (ACC = 91.9%) even though the reflectance spectra were 
measured with a more sensitive spectrometer than the ones in the study 
of Moon et al. It implies that our model performs better over ranges in 
which the meat freshness changes, which are harder to classify and were 
not included in the study of Moon et al. Therefore, the applicability of 
our results is judged to be high because we conducted experiments on a 
large number of beef samples (78 vs 16) while maintaining an envi
ronment similar to the beef storage at home and in food markets. 

Model robustness and uniformity are significant challenges that need 
to be improved in spectroscopy-based methods. In particular, the sample 
temperature is one of the environmental factors that affects model 
robustness. The effects of sample temperature on the NIR spectra 
(1100–2500 nm) were reported by Tøgersen et al. (2003). In their study, 
most areas of the spectra (1100–2500 nm) were found to be influenced 
by changes in sample temperature. This implies that if there is a dif
ference between the temperature of the sample used to develop a cali
bration model and the temperature of the measured sample, inaccurate 
results will be derived. To avoid inaccurate results due to sample tem
perature differences, it is necessary to selectively use a wavelength that 
is relatively insensitive to temperature using a filter or to re-develop a 
calibration model (Tøgersen et al., 2003; Wang et al., 2018). In this 
study, however, the use of relatively short wavelength ranges (VIS/NIR, 
480–920 nm) minimized the effects of temperature on the classification 

Fig. 5. Average Grad-CAM weights for each freshness class with and without fusion. a, b, and c Average Grad-CAM weights of a CNN model without fusion, and d, e, 
and f average Grad-CAM weights of the deep spectral network with fusion for fresh, normal, and spoiled classes, respectively. Red indicates that the area significantly 
affects the model decision, and blue indicates that the area was not referenced for the model decision. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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results, and the confidence score was maintained, as shown in Supple
mentary Fig. 8. The confidence score is the probability that determines 
the reliability of the results of the deep spectral network. Small changes 
in input data can lead to a significant difference in confidence score 
although the classification results would remain the same. However, 
there was no significant difference in the confidence score during the 
change of temperature in the results (<3% from the values at 0 ◦C and <
0.01% from the values at 2 ◦C, shown in Supplementary Fig. 8a & b, 
respectively); this proves the robustness of our method against changing 
temperature. 

Existing spectroscopy-based methods require a calibration model 
that is specialized for a specific spectrometer; consequently, they are 
often incompatible with other spectrometers due to a lack of uniformity 
between instruments. Rebuilding and re-verifying the calibration model 
is time-consuming and laborious work and increases the difficulty in the 
application (Agelet & Hurburgh, 2010; Wang et al., 2018). However, 
because the DRS-based deep learning method used in this study utilizes 
the spectra obtained by dividing the reflectance spectra of the sample by 
the previously acquired reference spectra as input data, it can offset 
differences between spectrometers. The reference spectra can be ac
quired simply using an integrating sphere or a standard reflection plate; 
therefore, any spectrometer can be used in our method as long as it has a 
reasonable sensitivity in the wavelength range of 480–920 nm. 

Deep learning is like a black box, and how the decision is made 
during the process of classification remains unknown. Therefore, 
explainable artificial intelligence gets more attention from researchers. 
In this study, Grad-CAM analysis was performed to identify the wave
length regions that highly affected the decision making of the model 
before and after fusion with myoglobin information. Without the fusion 
of myoglobin information, both the fresh and normal classes showed 
narrow wavelength ranges that contributed to the freshness classifica
tion, whereas the spoiled class had a relatively wide wavelength range 
(520–600 nm) showing a high relevance to the classification (Fig. 5a-c). 
In contrast, the fusion of myoglobin information significantly broadened 
the wavelength range, contributing to the decisions of the model. All the 
freshness classes showed relatively high Grad-CAM weights in the 
wavelength range 490–600 nm, as shown in Fig. 5d-f, which includes the 
noticeable bands of deoxy-Mb and oxy-Mb reported in previous studies 
(Supplementary Fig. 3) (Krzywicki, 1979; Liao et al., 2010; Millar et al., 
1996; Suman & Joseph, 2013). These results support the possibility that 
myoglobin information can be used as an indicator of meat freshness and 
demonstrate that it contributed decisively to freshness classification. 
Interestingly, sulf-Mb, which has the highest absorption peak at 
approximately 625 nm, appeared to barely affect the classification 
performance, although its level was significantly higher in the spoiled 
class than those in the fresh and normal classes (Fig. 3d). It was mainly 
due to the small proportion of sulf-Mb in beef compared to those of other 
Mb redox forms; therefore, the Grad-CAM weights at 625 nm were also 
low in the spoiled class, both with and without myoglobin information 
fusion. From the biochemical aspects, sulf-Mb is not always formed 
when the beef freshness state changes from normal to spoiled (Nicol, 
Shaw, & Ledward, 1970), which could be another reason that the sulf- 
Mb did not play a significant role in the classification. 

Although the proposed method has advantages over other conven
tional methods, it has a limitation in the dataset. To achieve high per
formance in the classification, it is necessary to utilize a large volume of 
balanced data as input for the deep learning network. However, the 
sample size of the normal class in our study (n = 139) is much smaller 
than those of other classes owing to the fast conversion from fresh (n =
1817) to spoiled status (n = 618). Because the amount of training data is 
unbalanced, the results of the deep neural network can be biased to
wards the majority class. To prevent biased learning, SMOTE was 
applied during the training process, after which, the classification ac
curacy of normal samples was significantly improved compared to the 
value without SMOTE application, and biased learning could be pre
vented, as shown in Supplementary Fig. 9. In most food freshness studies 

including studies on meat, obtaining a balanced dataset is labor- 
intensive and time-consuming; thus, applying SMOTE to studies that 
use deep learning is expected to yield unbiased results. 

5. Conclusion 

A DRS-based deep spectral network was developed in this study for 
accurate, efficient, and non-destructive classification of beef freshness. 
The network classified the freshness of beef by utilizing both diffuse 
reflectance spectra and myoglobin information, and its validity was 
demonstrated with data obtained using 78 beef samples measured over 
17 days of observation, showing an accuracy of 91.9%. Unlike other 
spectroscopy-based methods, our method includes myoglobin informa
tion; thus, it was robust to environmental factors such as sample tem
perature and humidity, which is a great advantage for industrial 
applications. With statistical analysis, it was confirmed that the 
myoglobin information showed a significant difference depending on 
the freshness of beef; further, it was proven through Grad-CAM that this 
information contributed decisively to the improvement of model per
formance. From this study, we demonstrate that a simple spectrometer 
based DRS system can provide high accuracy in the classification of beef 
freshness by employing a deep learning algorithm, which confirms the 
great potential for artificial intelligence in food safety applications. 
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