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ABSTRACT In recent years, various neural network architectures have been successfully applied to natural
language processing (NLP) tasks such as named entity normalization. Named entity normalization is a
fundamental task for extracting information in free text, which aims to map entity mentions in a text to
gold standard entities in a given domain-specific ontology; however, the normalization task in the biomed-
ical domain is still challenging because of multiple synonyms, various acronyms, and numerous lexical
variations. In this study, we regard the task of biomedical entity normalization as a ranking problem and
propose an approach to rank normalized concepts. We additionally employ two factors that can notably affect
the performance of normalization, such as task-specific pre-training (Task-PT) and calibration approach.
Among five different biomedical benchmark corpora, our experimental results show that our proposed model
achieved significant improvements over the previous methods and advanced the state-of-the-art performance
for biomedical entity normalization, with up to 0.5% increase in accuracy and 1.2% increase in F-score.

INDEX TERMS Named entity normalization, natural language processing, text mining, text recognition.

I. INTRODUCTION

With the rapid development of computational technology,
a large amount of literature has accumulated on various
aspects regardless of domain. Based on a large amount of text
data, many researchers consider constructing multiple knowl-
edge bases (KB) of domain-specific ontologies. It is generally
useful in many applications, from the general domain to
specialized domains such as biomedicine, and beneficial for
extracting key information related to entities of interest [1].
Because newly discovered biomedical evidence is written in
natural language, accurate and efficient extraction of informa-
tion from unstructured data has become important in natural
language processing (NLP) [2], [3].

Named entities are meaningful terms or multi-word
phrases and named entity recognition (NER) is an important
task for identifying named entities and classifying the domain
of pre-defined entities or entity types from informal texts [4].
After named entities in texts have been recognized, the next
step is named entity normalization by mapping recognized
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mentions to suitable identifiers (IDs) in the pre-defined dic-
tionary. The entity normalization task in the biomedical
domain is necessary to resolve semantic ambiguity, as each
biomedical entity may be written in numerous forms [5]. For
example, although ‘cancer’ and ‘tumor’ are apparently differ-
ent forms in the text, they can be normalized to ‘neoplasms’
with the same concept ID (MeSH:D009369). On the other
hand, ‘AS’ can be expanded to various words after abbrevia-
tion resolution like ‘Angelman Syndrome (MeSH:D017204)’
or ‘Ammonium Sulfate (MeSH:D000645).” Although many
researchers consider the ambiguity resolution to avoid these
difficulties, the normalization task in the biomedical domain
is still challenging because of multiple synonyms, various
acronyms, and numerous lexical variations [6].

The goal of this study is to improve the performance
of the biomedical entity normalization by utilizing differ-
ent scoring schemes between mentions and concept names.
To achieve the goal, we generate a list of candidate con-
cept names of the input biomedical mentions sorted by their
similarity scores and then re-rank the retrieved candidate
concept names by developing scoring systems. Addition-
ally, we employ our architecture focused on the following
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two points: a semi-supervised learning model using unla-
beled task-specific data [7] and a calibrated classification
model [8]. We evaluate our system using five biomedical
corpora with four entity types and various assessment meth-
ods. Our experimental results show that the proposed method
significantly outperforms the existing state-of-the-art (SOTA)
models on biomedical corpora for the task of normalization.

The main contributions of our proposed study are as
follows: (i) We demonstrate the effectiveness of word
representations with pre-trained language models (LMs)
rather than context-independent representation; (ii) We uti-
lize pre-trained LMs with task-specific sentences in terms
of the ranking tasks for biomedical normalization; (iii) We
prove that our models employing the calibration method
show significant improvements in normalization perfor-
mance; and (iv) We show that a simple but effective strategy
of implementing the incorporation of two different scoring
systems is a key factor for performance improvement of our
models.

Il. RELATED WORKS

The biomedical entity normalization is a long-standing and
important task in the biomedical NLP domain [9]-[11] and
the goal of a biomedical normalization task is to map a
mention in a document to a unique concept ID in a biomed-
ical ontology [12]. Various challenges have been organized
to solve the normalization problem, and many researchers
have participated in these assessments of the NLP methods.
As one of the representative challenges, the BioCreative
workshops provided a set of biomedical tasks to encourage
NLP research and related applications. Focusing specifically
on the normalization track, the BioCreative I, II, and III
workshops were designed to address a number of gene
names [13]-[15], and the BioCreative V workshop aimed to
normalize disease and chemical mentions from MEDLINE
abstracts [16]. CLEF eHealth has been running an annual
evaluation campaign in the medical and biomedical domain,
and the Shared Annotated Resources (ShARe) project has
created a disorder mention corpus from clinical texts. There-
fore, the ShARe/CLEF eHealth 2013 Challenge offered the
NER task for disorder mentions in clinical notes, along with
the normalization task to map unique identifiers [17]. Fur-
thermore, a part of the SemEval workshop was designed as
a follow-up to the ShARe/CLEF eHealth 2013 Challenge.
Using the ShARe/CLEF corpus, the SemEval-2014 Task 7
(Task B) [18] and the SemEval-2015 Task 14 (Task 1) [19]
organized open challenges to recognize the span of a disorder
mention in the clinical text and to normalize the disorder to a
unique CUI in the SNOMED-CT subset of UMLS terminol-
ogy. The Text Analysis Conference (TAC) is another series
of workshops organized to assess a variety of NLP methods.
To detect the adverse drug reactions (ADR) described in the
structured product labels of drugs, the TAC 2017 challenge
consisted of several intermediate tracks including the ADR
extraction from drug labels and normalization through Med-
DRA terminology [20]. To provide various NLP tasks with
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annotated data in the clinical domain, the Informatics for
Integrating Biology and the Bedside (i2b2) project has orga-
nized a series of shared tasks since 2006. In 2010, i2b2 with
VA Salt Lake City Health Care System has run a medical
NLP workshop for clinical records, called the 2010 i2b2/VA
challenge, and they released a manually annotated corpus
of patient reports [21]. The MCN (medical concept nor-
malization) corpus is a subset of discharge summaries from
the fourth i2b2/VA 2010 shared task [22] and this corpus
is utilized as a shared-task dataset in the 2019 National
NLP Clinical Challenges (n2c2)/Open Health NLP (OHNLP)
track 3 [23].

The community-wide tasks have greatly promoted biomed-
ical NLP research by building benchmark datasets and inno-
vative methods. Through these challenges, many researchers
have examined various techniques, such as dictionary-based,
rule-based, machine learning-based, and deep learning-based
methods.

The most common traditional normalization approaches
are dictionary-based and rule-based methods, which use
pattern matching based on dictionary lookup and heuristic
matching rules, respectively. The sieve-based system [12] is
a cascade architecture based on ten kinds of manual rules
and Apache Lucene [24] is a Java-based text indexing and
searching engine library by calculating the similarity between
a document and a query. Although these approaches can
be easily applied to broad areas such as disease, gene, and
chemical name normalization tasks [25]-[29], they may often
be inefficient and less accurate for words not in the dictionary
or ungrammatical text with typos.

Although many normalization tools still tend to rely on the
accuracy of well-constructed dictionaries or domain-specific
rules, several studies have applied machine learning tech-
niques to overcome the previous limitations. DNorm [10]
proposed a pairwise learning-to-rank method to measure
the similarities between entity mentions and candidate con-
cepts. TaggerOne [30] is a machine learning-based system
that jointly performs disease NER and normalization by
utilizing semi-Markov models. Another machine learning
technique for biomedical normalization is to utilize word
representations in vector space. For instance, the Word2 Vec-
based method [6], convolutional neural network (CNN)-
based ranking method [31], BNE [32] using a long short-term
memory (LSTM), and NormCo [33] using a gated recurrent
unit (GRU) network proposed entity representation architec-
ture to calculate semantic similarities between biomedical
mentions and candidate concepts.

Along with the success of deep learning, recent studies
have focused on a paradigm shift in NLP from task-specific
training methods to fine-tuning approaches based on general-
purpose LMs. Following this trend, the most commonly used
pre-trained model is bidirectional encoder representations
from Transformers (BERT) [34] based on the transformer
architecture [35]. BERT is a contextual language represen-
tation model that uses pre-trained deep bidirectional repre-
sentations from the unlabeled text. Recently, BERT has been
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adapted to the biomedical domain by further pre-training on
additional corpora as follows:

BioBERT: BioBERT [36] is a domain-specific language
representation model designed for biomedical text, and the
model is initialized with the checkpoint of BERT, followed by
training the BERT model on PubMed abstracts and PubMed
Central full-text articles again. BloBERT achieves SOTA per-
formance on various biomedical NLP tasks with task-specific
fine-tuning while requiring only minimal architectural
modifications.

SciBERT: Similar to BioBERT, SciBERT [37] is another
BERT-based model following the same architecture as BERT.
Although BERT was pre-trained using general-domain cor-
pora, SciBERT was pre-trained from scratch using several
scientific papers that consisted of the full text of computer sci-
ence and biomedical domains. Furthermore, they constructed
a new in-domain vocabulary on their scientific text corpora,
called SciVocab.

PubMedBERT: PubMedBERT [38] is another pre-trained
LM, following the same architecture as BERT. However,
unlike the mixed-domain pre-training models, the weights of
the PubMedBERT model were not initialized with those of
BERT during pre-training. They constructed an in-domain
vocabulary of the target biomedical domain and pre-trained
from scratch on PubMed abstracts and additional data from
PubMed Central full-text articles.

These fine-tuned versions of BERT-based models are
often combined with various machine learning approaches to
deliver good performance in biomedical normalization tasks.
Ji et al. [39] applied an ensemble approach based on Lucene
and a pair-wise BERT classifier, and Xu et al. [40] also pro-
posed a hybrid system based on Lucene or a multi-class
BERT classifier for the candidate generation, and a list-wise
BERT classifier for ranking. BIOSYN [41] utilized entity
representation from the BERT-based model and developed
a synonym marginalization method with marginal maximum
likelihood.

ill. METHODOLOGY

In this section, we propose a method for entity normalization
using the BERT-based model. First, we assume that an input
mention m has its own concept ID ¢, and each ¢ has at least
one concept name n according to the dictionary. Our goal in
this study is to assign a biomedical mention m to its unique
concept ID c in the target dictionary. Formally, given a list
of biomedical mentions M = {my, mo, ...} from a document
and a set of concept IDs C = {c, ¢z, ...} and concept names
N = {n1,ny,...} from the ontology, the goal of concept
normalization is to map the i-th mention m; to its correct
concept ¢* through a normalization function f:

¢ =f(m,N) = ID(arg max P(n|m;; 6)) ey
ne

where ID(n) is a function that returns the unique ID of the
concept name n, and 6 denotes a parameter corresponding
to our normalization model. As shown in Fig. 1, our system
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for biomedical entity normalization consists of three steps:
candidate concept generation, candidate concept ranking, and
entity disambiguation. A detailed description of these steps is
provided in the following sections.

A. CANDIDATE CONCEPT GENERATION

Traditional word embeddings are context-independent rep-
resentations such as Word2Vec [42] and GloVe [43], which
constitute a single vector for each word regardless of the
meaning and position of the word in the sentence.

With advances in contextualized representations, including
ELMo [44] and BERT [34], the ability to share contex-
tual information of words in sentences has further improved
performance in various NLP tasks and demonstrated that
relatively simple models using contextualized embeddings
can outperform complex models using non-contextualized
embeddings [45]. Therefore, we employed contextual repre-
sentation models (i.e., BERT-based models) to extract feature
embeddings for candidate concept generation.

Recent studies suggest further pre-training of a pre-trained
LM with the in-domain data for task adaptation and show
improved performance and effectiveness on downstream
tasks from each target domain [7], [36], [37], [46]. To employ
this strategy, we first collect corresponding texts from the
same target task, which only makes use of the in-task text
without any label as task-specific pre-training (Task-PT) data.
Subsequently, we employ the original BERT-based models
and continually execute an additional phase of pre-training
with a masked language model (MLM) and next sentence
prediction (NSP) approach on the Task-PT data.

The candidate concept generation step is retrieved to con-
struct a list of candidate names N,, € N, which consists of
possible k concept names in the ontology for the given men-
tionm € M .Based on the BERT-based model, we first extract
embeddings e;, and e, for mention m and each concept name
n € N, respectively. BERT uses WordPiece tokenization [47],
which split an input word into pre-defined subword units to
reflect rare words and morphological variation in linguistics.
To retain linguistic information, we sum up embeddings of
the subwords by the BERT encoder into one vector as desired
embeddings of the input word. To retrieve relevant k candi-
date concept names for each mention m, we define the scoring
function as a static BERT-score (scoregp) of each pair (m, n)
as follows:

€m * €n

— €
llemll lenll

Scoresg(m, n) = sim(ey,, e;) = 2)
where sim(ey,, e,) is calculated using the cosine similarity
between two vectors e, and e,, which is a value € [0, 1].

B. CANDIDATE CONCEPT RANKING

In this section, we re-rank the list of candidate concepts
by fine-tuning the BERT-based models, where we transform
a binary classification task into a ranking task. Suppose
there are k candidates in N,, = {ny, ..., n;} for the input
mention m. We can generate all mention-candidate name
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FIGURE 1. Overview of our normalization model. Candidate concept generation: An input mention and all concept names in a dictionary are represented
by a task-specific pre-trained (Task-PT) LM, and we can generate a list of candidate names sorted by scoregg. Candidate concept ranking: We calculate
the scoregg of the list of candidates by utilizing the fine-tuned Task-PT LM along with the calibration method. Entity disambiguation: We re-rank the list

of candidates using final scores and infer the proper concept ID with the best score.

pairs {(m, ny), (m, n2), ..., (m, ng)} from a list of the mention
m and their candidate names N,,. We design the label of
mention-candidate pairs as binary classes, which are repre-
sented as either ‘correct’ or ‘incorrect.” If the i-th candidate
concept name 7; is related to the mapping concept ID c for the
target mention m, then it is labeled as ‘1°, otherwise ‘0’, which
means that the candidate n; is irrelevant with the mention m
as a negative sample.

Concretely, for each pair of the mention m and the i-th
candidate name n;, we take an input sequence ‘[CLS]m [SEP]
n;’ of the fine-tuning procedure, where ‘[CLS]’ is a special
token and ‘[SEPY’ is a special separator token between m and
n;. To apply BERT for the classification task, we used the final
layer of the special token ‘[CLS]’ in the mention-candidate
pair to compute the probability distribution of binary classes,
and the output probability for each class was calculated using
the softmax function.

However, these hard labels may adversely affect model
generalization as the probabilistic models become overcon-
fident about their predictions and overfit the training data
with hard targets [48]. To solve this problem, we employ the
confidence panelty as a regularization term for the loss func-
tion to alleviate the peaked distributions [8]. The conditional
distribution pg(y|x) is described as:

H(po(ylx) = =Y po(yilx) log(pe (vilx)) 3)

where py is the probability of class y; given an input sequence
x and i indicates the index of each class. The confidence
penalty loss (CPL) function ensures that the low entropy out-
put distributions are penalized by adding the negative entropy
H to the negative log-likelihood training objective as follows:

L(0) = — Z log(pe (vilx)) — BH (pe(y|x)) “
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where § controls the strength of the confidence penalty. Thus,
the incorporation of negative entropy into the original loss
function enables overfitting and improves the generalization
performance [49].

Similar to the previous method [39], we defined the prob-
ability of label ‘1’ obtained from the softmax function as
a ranking BERT-score (scoregp) of each mention-candidate
pair (m, n) as follows:

Scoregp(m, n) = P(label = 1|m, n) € R (®)]

C. ENTITY DISAMBIGUATION

The final score is calculated for each candidate pair using
the two aforementioned scores both scoresp and scoregp as
follows:

Score(m, n) = Scoresg(m, n) + Scoregp(m, n) (6)

Using the above equation, we re-calculated the scores of all
the retrieved pairs and then re-ordered the list of candidates
according to the final ranking score in decreasing order.
Therefore, we could predict the proper concept ID ¢’ with the
highest score:

¢ = ID(arg max Score(m, n)) @)
neNy,

IV. EXPERIMENTAL SETUP

A. DATASETS

We evaluated our normalization approach on the English
biomedical benchmark corpora described in Table 1:
the National Center for Biotechnology Information dis-
ease (NCBI) corpus [50], the BioCreative V Chemicals Dis-
ease Relationship (CDR) corpus [16], the BioCreative II
Gene Normalization (GN) corpus [14], and the plant (Plant)
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TABLE 1. Data statistics of five benchmark datasets for the biomedical
entity normalization.

Corpus . Abstracts . Mentions

Train Dev  Test Train Dev Test
NCBI 592 100 100 5134 787 960
CDR-DIS 500 500 500 4182 4244 4424
CDR-CHEM 500 500 500 5203 5347 5385
GN 281 - 262 684 - 785
Plant 128 40 40 2647 709 629

corpus [6]. These corpora cover four major biological entity
types: disease, chemical, gene, and plant. We briefly explain
each corpus in the following sections.

NCBI for disease names: The NCBI corpus is the gold
standard dataset of disease name recognition and normaliza-
tion tasks, which consists of disease mentions mapped to their
concept IDs in the MEDIC [51] vocabulary of the Compar-
ative Toxicogenomics Database (CTD) project [52]. This cor-
pus is available at http://www.ncbi.nlm.nih.gov/CBBresearch/
Dogan/DISEASE/. In our experiments, we used the
July 2012 version of MEDIC, which contains 11,915 MeSH
and OMIM identifiers and 71,923 disease names with
synonyms.

CDR for disease and chemical names: The CDR corpus is
a dataset used for the BioCreative V challenge based on dis-
ease and chemical entity recognition and chemical-induced
disease relation extraction tasks. It can be downloaded from
http://www.biocreative.org/tasks/biocreative-v/
track-3-cdr/. It should be noted that we denote a subset
with disease entities and chemical entities as ‘CDR-DIS’
and ‘CDR-CHEM’, respectively. In this study, we used the
MEDIC version published in June 2015 and the CTD chemi-
cal vocabulary published in July 2015 for the experiments of
the CDR-DIS and the CDR-CHEM, respectively.

GN for human gene names: The GN corpus is the gold
standard for the gene normalization task in the BioCre-
ative II challenge to determine human genes or gene prod-
ucts mentioned in PubMed abstracts and to map them
to the unique concept IDs. This corpus can be found at
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-
iii/gn/. In this study, we used the EntrezGene [53] list, which
contains 32,975 identifiers and 182,989 gene names and
synonyms.

Plant for plant names: The plant corpus is a man-
ually annotated abstract-based corpus for the plant nor-
malization task with plant mentions and their unique
concept IDs. The plant corpus is freely available for
download (http://gcancer.org/plant/). Following a previous
study [6], we also used the viridiplantae ontology from the
NCBI taxonomy database [54].

B. IMPLEMENTATION DETAILS

1) PREPROCESSING

We performed several pre-processing strategies for each
mention and each concept in the KB as follows: (i) com-
bine mention information in the training set to increase the
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TABLE 2. The hyperparameters of our proposed model.

Datasets Training epoch ~ Weights of CPL
NCBI 10 0.2
CDR-DIS 5 0.2
CDR-CHEM 3 0.5
GN 3 0.1
Plant 5 0.1

coverage of the ontology [12]; (ii) resolve abbreviations using
the abbreviation resolution module [55]; (iii) lowercase all
characters; (iv) remove all characters except for the lowercase
alphanumeric for both mentions and concept names in the
dictionary; and (v) split composite mentions into separate
mentions using heuristic rules [12]. For example, we could
separate ‘breast and ovarian cancer’ into ‘breast cancer’ and
‘ovarian cancer’, respectively.

2) TRAINING

Our experiments were conducted in a workstation with an
Intel(R) Xeon(R) Gold 5120 CPU, 265 GB RAM, and
three Tesla V-100-SXM2-32GB GPU. Our model was imple-
mented in Python and based on the source codes of BERT,
which were built using TensorFlow in the backend. To set
hyperparameters, we performed a grid search on the training
epochs and weights of CPL, and then selected the hyper-
parameters with the best performance in the development
corpus.

To re-rank the list of candidate concepts, we performed
fine-tuning by using the BERT-based models, where we
transform a binary classification task into a ranking task.
To fine-tune our models, we derived our training and devel-
opment datasets from the candidate concept generation step.
We heuristically selected £k = {100, 10} candidates for the
input mention to generate mention-candidate name pairs, and
then we employed the pairs to relation classification data as
training and development, respectively. Note that the number
of top candidates k was set to 20, as proposed by [41].

To set the training epoch and the weights of CPL, we per-
formed a grid search over the epochs from 1 to 10 and weight
values of CPL in {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, and then
selected the hyperparameters with the best performance on
the development dataset of each corpus. The hyperparameters
of our proposed model are described in Table 2. We set the
maximal sequence length to 64 and the batch size as 64, based
on the recommendation options in BERT and other training
settings including the optimizer are the same as those in the
original BERT.

Although it takes approximately 8.5 hours to pre-train our
models regardless of the length of task-specific data, each
epoch, during fine-tuning, takes a different time ranging from
10 minutes to 1.3 hours, depending on the size of the training
data.

3) EVALUATION

We applied two evaluation methods, namely accuracy and
F-measure, for comparison of previous studies which used
different evaluations.
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TABLE 3. Comparison of the experimental results on five biomedical entity normalization corpora. The values in bold denote the best performance of
each corpus and ‘-’ denotes that results are not reported in the compared model.

Models NCBI CDR-DIS CDR-CHEM
Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

Sieve-based Ranking [12] 84.7 - 84.1 - 90.7 -
TaggerOne [30] 87.1 - 88.9 - 94.1 -
CNN-based Ranking [31] 86.1 - - - - -
NormCo [33] 87.8 - 88.0 - - -
BNE [32] 87.7 - 90.6 - 95.8 -
BERT-based Ranking [39] 89.1 - - - - -
TripleNet [56] 90.0 - - - - -
BIOSYN [41] 91.1 93.9 93.2 96.0 96.6 97.2

Scoreg g 89.3 (£0.64) 94.9(+0.42) 92.4(40.22) 96.2 (£0.15) 954 (£0.09) 96.8 (+0.12)
Our models  Scorerp 91.8 (£0.66)  95.8 (£0.34) 93.3(£0.34) 96.5(40.35) 95.9 (£0.24) 97.1 (£0.14)

Score 92.1 (£0.48) 95.8 (£0.21) 93.7 (£0.14) 96.8 (+:0.26) 96.1 (£0.10) 97.2 (£0.12)

Models GN Plant
Precision Recall F-score Precision Recall F-score

GNAT [26] 90.7 82.4 86.4 - - -
GeNo [57] 87.8 85.0 86.4 - - -
GNormPlus [29] 87.1 86.4 86.7 - - -
Multi-stage system [58] 88.1 92.3 90.1 - - -
Word2vec-based Ranking [6] - - - 59.0 82.2 68.7
Lucene [24] - - - 82.2 93.0 87.3

Scoresp 85.5(£0.60) 91.2(£0.30) 88.3(40.44) 83.7(£042) 94.2(+£0.14) 88.7(+0.27)
Our models  Scorerp 87.6 (£0.43) 93.8(£0.35) 90.6 (+0.33) 86.9 (£0.85) 95.0 (£0.26)  90.7 (+0.54)

Score 88.7 (£0.45) 94.1 (£0.27) 91.3(£0.32) 86.8(+0.68) 95.1 (4+0.26) 90.8 (£0.44)

Accuracy: We assessed our model using the accuracy of
the top k predictions for the disease and chemical name
normalization tasks. We define Accuracy @n (Acc@n) as the
percentage of mentions in the corpus, which contain the cor-
rect concept ID within the top » retrieved candidates. We set
n = {1,5}as Acc@1 and Acc@5, respectively.

F-score: We assessed our model in the gene and plant
name normalization based on the following performance
measures: precision (p), recall (r), and F-score (f). Precisely,
the prediction is recognized in the following manner: (i) True
positives (TP) if the identifiers match the answer; (ii) false
positives (FP) if the identifiers do not match the answer; and
(iii) false negatives (FN) if the gold standard identifiers do
not match. The formulas are as follows:

TP TP
“T1P1rrP TTPFEN

f_2>kp>kr @)
£ - p+r

p

V. EXPERIMENTAL RESULTS

A. MAIN RESULTS

In Table 3, we compare the performance of our proposed
model (Task-PT PubMedBERT with CPL) with previous
normalization methods in terms of accuracy and F-score
on a set of benchmark corpora. More precisely, our model
with ‘scoresp’ and ‘scoregp’ shows that our model uses
only the static BERT-scores and the ranking BERT-scores,
respectively. Moreover, our model with ‘score’ represents our
complete model with the default scoring method. It should be
noted that we use the same list of candidates to test different
scoring types of our models. Furthermore, we independently
tested ten times for each corpus from scratch and calculated
the mean accuracy and standard deviations for each evalu-
ation type. We evaluate the effectiveness of our proposed

bl
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scoring algorithm using experiments, and the results show
that our approach is helpful in improving the performance of
the biomedical normalization task.

First of all, we compare the mean accuracy of our mod-
els with that of the existing methods, based on the NCBI,
CDR-DIS, and CDR-CHEM test datasets. As shown in
the top section of Table 3, our proposed model achieves
new SOTA performance on the NCBI and CDR-DIS. Espe-
cially, our experiments evaluated that the ensemble scor-
ing algorithm showed significant improvement over the
scoring methods using scoresp and scoregp separately.
One example of such improvements is that ‘deficiency of
the second component of complement (OMIM:217000)” was
correctly predicted as ‘deficiency of complement protein
c2 (OMIM:217000)’ in the final ensemble scoring algo-
rithm, while ‘deficiency of the fifth component of comple-
ment (OMIM:609536)’ incorrectly had the highest score in
scoresp. As another example, ‘autosomal recessive alport
syndrome (MeSH:C536587)" was correctly mapped into
‘alport syndrome autosomal recessive (MeSH:C536587)’ in
the final ensemble scoring algorithm, while ‘alport syn-
drome (MeSH:D009394)’ incorrectly had the highest score
in SCoregp.

Compared with the current SOTA model on the
CDR-CHEM, our model measured by Acc@1 shows slightly
lower accuracy (approximately 0.5%); however, our system
measured by Acc@5 obtained the same performance as the
SOTA system. In the bottom section of Table 3, the F-score
is used to compare the performance of our model with that
of the existing methods based on the GN and plant test
corpora. From the results, it can also be seen that our model
consistently outperforms previous other models and achieves
new SOTA performance in terms of F-score by 1.2% and
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FIGURE 2. The distribution of output probabilities for our models using the NCBI test dataset. Left (light gray): Vanilla PubMedBERT model. Middle (gray):
Task-PT PubMedBERT with the in-task sentence. Right (red): Task-PT PubMedBERT with CPL.

3.5% on the GN and Plant test datasets, respectively. Note that
we use the BM25 similarity measure [59] provided by Lucene
for gene and plant name retrievals, whereas the performance
of other models was obtained from other studies.

B. TASK-PT EVALUATION

We illustrate the impact of Task-PT using several
in-task data with five types of pre-trained LMs: BERT,
BioBERT, SciBERT, PubMedBERT, and PubMedBERT-
fulltext. It should be noted that we empirically set the
hyperparameters of the training epoch as 3 and the value of
CPL as 0.2 in this experiment. In Table 4, we describe our
experiments in terms of three points: (i) Which model shows
the best performance? (ii) How good is the performance of
Task-PT with in-task data? (iii) Which type of in-task data is
suitable for this approach?

With respect to Acc@1 among the vanilla BERT-based
models on the NCBI development set, we observed that a
significant benefit is achieved by using the PubMedBERT
model, instead of the PubMedBERT-fulltext, as it contains
more pre-training corpora. The surprisingly poor perfor-
mance of the SciBERT model compared to other models is
because SciBERT is an adaptation of BERT for biomedical
and scientific domains, and computer science text is clearly
out-domain from the perspective of biomedical applications.

As in-task data, training, development, and test sets of each
corpus were used to represent sentences in the training set,
in the combination of training and development sets, and the
entire sets as ‘TRAIN’, ‘TRAIN+DEV’, and ‘ALL’, respec-
tively. Although the performance of BioBERT with TRAIN
is slightly lower than expected in terms of Acc@1, all results
of Acc@5 show reasonable differences ranging from 0.2%
to 2.1% when compared to the vanilla models. In the case of
PubMedBERT, PubMedBERT with TRAIN+DEYV and ALL
appear to be approximately equivalent to Acc@1 and Acc@5.
To compare models with the same highest scores, we denote
the additional type of evaluation as Acc@3 (n = 3). Because
the best accuracy is achieved in Acc@3, we demonstrated
the effectiveness of Task-PT PubMedBERT with ‘ALL’ and
utilized it to test other corpora for normalization tasks.
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TABLE 4. Impact of Task-PT pre-trained LMs on in-task data.

We compared several BERT-based models with or without Task-PT using
different in-task data on the NCBI development dataset. The values in
bold denote the best performance of each corpus.

Models NCBI

Pre-trained LM In-task data Acc@1 Acc@3  Acc@5
- 903 31 933

TRAIN 90.9 936 93.7

BERT TRAIN+DEV ~ 90.5 93.7 94.3
ALL 90.4 93.5 94.1

- 303 97 32

. TRAIN 89.0 93.7 943
BioBERT 1R AIN+DEV 908 94.3 94.7
ALL 90.6 94.5 94.6

- 895 36 945

. TRAIN 903 942 94.7
SCiBERT 1R AINADEV ~ 90.1 942 94.8
ALL 90.5 942 94.8

- 91,6 04T 041

TRAIN 936 95.4 95.4

PubMedBERT o AIN+DEV ~ 94.0 9.1 96.2
ALL 94.0 96.2 96.2

- o1 41 942

PubMedBERT ~ TRAIN 2.8 952 953
fulltext TRAIN+DEV ~ 92.8 94.9 94.9
ALL 93.2 94.9 94.9

C. CALIBRATION EVALUATION

To evaluate the calibration performance, we compared each
of our approaches with respect to the expected calibra-
tion error (ECE) and over-confidence error (OE) [60], [61].
Owing to the relatively small number of test mentions,
we skipped the grouping interval bins, and then slightly
modified the formula for calculating ECE and OE, which is
described as follows:

ECE = |acc(M) — conf(M))] &)
OE = [conf(M) x max{conf(M) — acc(M), 0}] (10)

where M is a list of test mentions, acc(M) is the num-
ber of correct predictions for given M, and conf(M) is the
summation of the winning softmax scores for M. When
the ECE of a model is close to zero, the model is signif-
icantly well-calibrated because its accuracy and confidence
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TABLE 5. Ablation study for the effect of calibration on the NCBI test
dataset. The values in bold denote the best performance of each column.

Models Confidence(%) ECE OE
PubMedBERT 97.22 0.0561  0.0545
PubMedBERT+Task-PT 99.20 0.0463  0.0459
PubMedBERT+Task-PT+CPL 98.60 0.0341  0.0336

are almost the same. In Table 5, it can be seen that the Pub-
MedBERT model using CPL is better calibrated than vanilla
PubMedBERT. We additionally visualized the distribution of
the output labels for each model. As shown in Fig. 2, the con-
fidence penalty promotes dispersed distributions, which may
lead to better performance.

D. ERROR ANALYSIS

We performed an error analysis of the NCBI corpus by
dividing the four major causes of false positive prediction
produced by our model.

1) MISPREDICTIONS IN THE CANDIDATE CONCEPT
GENERATION STEP

The majority of the errors (26.7%) were attributed to wrong
candidate selections, where a list of candidate names for each
mention did not include any concept name of a gold stan-
dard concept ID. If appropriate candidates are not extracted
from the dictionary in the candidate concept generation step,
it becomes difficult to improve the performance even after
conducting additional post-processing.

2) MISPREDICTIONS BIASED TOWARDS Scoregg

The 21.4% of errors occurred when the scoresg of a can-
didate is significantly higher than other candidate names.
Although we expect scoresp to reflect the linguistic regu-
larity between the pairs of words, the slight spelling differ-
ence or overlap cases between the mention and candidate
pairs can make prediction challenging. For example, although
‘desmoid tumor’ is considered as ‘MeSH:C535944’ for a
gold standard concept ID in the NCBI train set (PubMed
ID:1351034), ‘desmoid tumors’ in ‘““No desmoid tumors were
found in these kindreds. (PubMed ID:9585611)” is annotated
with ‘MeSH:D018222’ in the NCBI test set.

As a special case, the scoregp is 1.0 when the input mention
and the predicted name are the same. In this case, the concept
ID with the identical name is placed in the top rank, because
scoregp is too dominant in the final score to re-order the list
of candidates. This could be due to an annotation error in
the corpus construction or the same mention could have been
interpreted differently depending on the context. These error
cases would be equally represented in other studies using
four corpora (i.e. NCBI, CDR-DIS, CDR-CHEM, and GN)
except the Plant corpus. When we eliminated such annota-
tion concerns from test sets, we can obtain the improved
Acc@1 of up to 93.60% for NCBI, 94.79% for CDR-DIS,
97.34% for CDR-CHEM, and F-score of up to 92.4% for GN.
(see Supplementary Material for more details.)
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3) MISPREDICTIONS BIASED TOWARDS Scoregg

Contrary to the above-mentioned error, there are 21.4% errors
when the scoregp of a candidate is significantly higher than
the others, and it significantly contributes to semantically
unrelated concept name. For example, although ‘heart abnor-
malities (MeSH:D006330)’ is a gold standard concept name
for the input ‘cardiac defects (MeSH:D006330)’, ‘cardiac
abnormalities (MeSH:D018376)’ has a higher scoregp than
‘heart abnormalities’, that is, 0.985 and 0.008, respectively.

4) MISPREDICTIONS IN THE ENTITY DISAMBIGUATION STEP
Although both scoresp and scoregp are not considered to be
significant during the scoring and ranking step, when the sum
of both scores is used as the total score, the final rank of
candidates changes slightly. To solve this problem, instead of
using a simple summation approach, an appropriate weight
parameter can be used to balance the degree of importance
between scoregp and scoregp.

VI. CONCLUSION

In this study, we applied and evaluated pre-trained language
representation models for the biomedical entity normaliza-
tion task as the re-ranking problem, which takes advan-
tage of pre-trained LMs in modeling two different scoring
strategies between entity mentions and candidate concepts.
Among the five biomedical corpora, the results of our
experiment showed that our model achieved SOTA perfor-
mance for four biomedical corpora and obtained promis-
ing performance for the chemical entity normalization task.
We found that PubMedBERT-based models outperformed
other BERT-based models. Moreover, the performance can
be further improved by additional Task-PT with in-task data,
and we found that the calibration approach can significantly
improve the performance of PubMedBERT-based models.
In the future, our approach will be evaluated using more
biomedical NLP tasks of various biological entities.
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