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ABSTRACT The error-correction code proof-of-work (ECCPoW) algorithm is based on a low-density
parity-check (LDPC) code. ECCPoW can impede the advent of mining application-specific integrated
circuits (ASICs) with its time-varying puzzle generation capability. Previous research studies on ECCPoW
algorithm have presented its theory and implementation on Bitcoin. In this study, we have not only designed
ECCPoW for Ethereum, called ETH-ECC, but have also implemented, simulated, and validated it. In the
implementation, we have explained how ECCPoW algorithm has been integrated into Ethereum 1.0 as a
new consensus algorithm. Furthermore, we have devised and implemented a new method for controlling
the difficulty level in ETH-ECC. In the simulation, we have tested the performance of ETH-ECC using
a large number of node tests and demonstrated that the ECCPoW Ethereum works well with automatic
difficulty-level change capability in real-world experimental settings. In addition, we discuss how stable the
block generation time (BGT) of ETH-ECC is. Specifically, one key issue we intend to investigate is the
finiteness of the mean of ETH-ECC BGT. Owing to a time-varying cryptographic puzzle generation system
in ECCPoW algorithm, BGT in the algorithm may lead to a long-tailed distribution. Thus, simulation tests
have been performed to determine whether BGT distribution is not heavy-tailed and has a finite mean. If the
distribution is heavy-tailed, stable transaction confirmation cannot be guaranteed. In the validation, we have
presented statistical analysis results based on the two-sample Anderson–Darling test and discussed how
the BGT distribution follows an exponential distribution which has a finite mean. Our implementation is
available for download at https://github.com/cryptoecc/ETH-ECC.

INDEX TERMS Anderson–Darling test, ASIC-resistant, blockchain, error-correction codes, Ethereum,
hypothesis test, LDPC, proof-of-work, simulation, statistical analysis.

I. INTRODUCTION
Blockchain is a peer-to-peer (P2P) network that consists of
trustless nodes. In a reliable P2P network, no peers (nodes)
would intentionally send wrong information to others. In con-
trast, in an unreliable P2P network (e.g., a group of trustless
nodes), the possibility that some peers may send false infor-
mation to others should be considered. For example, a node
may spread wrong or fake information to others. To address
these issues in an unreliable P2P network, Nakamoto pro-
posed using blocks and chaining these blocks with a novel
consensus algorithm [1].
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In a blockchain, a peer sends a new block containing
transactions to other peers. These peers validate the received
block and link it to the previous block when there is no
problem in the received block, i.e., when the authenticity
of the block has been verified. A consensus algorithm is
used to accomplish this verification task. If a peer has sent
false information to others, such information is detected by
the consensus algorithm as there is no collusion among the
peers. A generated block contains information about previous
blocks, i.e., all blocks are chained; thus, if someone wants to
change one block in a chain, all previous blocks of the block
to be changed must also be changed. Therefore, unless the
network is centralized within a particular group, sending fake
information about previous blocks to new peers is impossible.
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Therefore, to prevent collusion, an unreliable network should
avoid centralization.

Nakamoto proposed a proof-of-work (PoW) system for a
consensus algorithm. In the PoW system, peers repeat a type
of work to solve a cryptographic puzzle using a hash function
(e.g., SHA256 [1] and Keccak [2]). When a peer successfully
solves a cryptographic puzzle, the peer generates a block.
In addition, the peer gets an incentive as a reward for the work
done. In an ideal PoW system, new nodes can join to work
and receive as much reward as they complete work. However,
with an increase in the price of reward, attempts have been
made to centralize the network to monopolize incentives.

Centralization is a phenomenon that occurs in PoW-based
blockchain networks. In blockchains using PoW as a consen-
sus algorithm, an oligarchy of miners with a disproportionate
share of computation resources can monopolize block gen-
eration. Such centralization negatively impacts the credibil-
ity of a blockchain. For example, in a centralized network,
a group of dominant nodes can selectively filter out some
transactions belonging to others for their benefit. New nodes
will find it difficult to earn trust and join the network in the
fear of possible unfair treatment [3], [4].

The emergence of application-specific integrated circuits
(ASICs) has accelerated the centralization of PoW. As more
nodes use ASICs in generating blocks, the computation com-
plexity in block generation increases. Thus, it has become
difficult to generate blocks using general-purpose units, such
as a central processing unit (CPU) and a graphics processing
unit (GPU). As a result, a few groups equipped with powerful
ASICs have surfaced and centralized the blockchain net-
works. To avoid centralization, researchers have proposed the
use of ASIC-resistant PoW (e.g., Ethash of [2], X11 of [12],
and Random X of [24]) and alternative consensus algo-
rithms (e.g., proof-of-stake, delegated proof-of-stake, and
Byzantium fault tolerance [25]). Networks using alterna-
tive algorithms have presented lesser decentralization effects
than those have using ASIC-resistant PoW [25]. Specifically,
in networks using alternative algorithms, only limited par-
ticipants can generate blocks, but ASIC-resistant PoW has
no limit on the number of participants. Thus, ASIC-resistant
PoW presents a more decentralized network than do alterna-
tive algorithms.

For an ASIC-resistant PoW, an error-correction code
proof-of-work (ECCPoW) algorithm was proposed [6], [7].
In ECCPoW algorithms, a hash value of a previous block
generates a varying parity-check matrix (PCM) for error cor-
rection. This varying PCM works as a cryptographic puzzle
in ECCPoW. These time-varying cryptographic puzzles make
ECCPoW ASIC resistant. It is possible to use an ASIC for
a specific fixed cryptographic puzzle. In ECCPoW, every
newly created puzzle differs from all the previously created
puzzles. As a result, if there was an ASIC for ECCPoW, such
an ASIC must cover a wide range of cryptographic puzzle
generation systems. Such a system, however, would incur
huge chip space and cost [10], [11].

FIGURE 1. Flowchart of ECCPoW Ethereum. Every miner who generates
blocks can construct a parity check matrix using a previous hash value.
A generated nonce becomes an input of a hash function. A hash vector
used for decoding can be generated using the output of a hash function.
If decoding is successful, the block is generated; otherwise, a miner
generates a new nonce to make a new hash vector for decoding.

In [7], the authors have reported that the time-varying
puzzle system may generate large block generation time
(BGT), i.e., outliers, for ECCPoW implemented on Bitcoin.
If outliers occur frequently, it is of our interest to see whether
or not the distribution of BGT is heavy-tailed with an infinite
mean [15], [26]. As a result, the proposition made in [6]
that BGT has a finite mean needs to be challenged. Previous
works on ECCPoW [6], [7] did not include sufficient real-
world experiments to conclude that BGT has a finite mean.
If BGT does not have a finite mean, ECCPoW cannot be used
as a consensus algorithm. In this paper, we aim to study the
distribution of BGT of ECCPoW implemented on Ethereum
(ETH-ECC). Our experimental results show that the BGT
distribution is not heavy-tailed and has a finite mean.

The contributions of our work are as follows:

• We show how ECCPoW is implemented on Ethereum.
• We present a method for controlling the difficulty level
in ETH-ECC and report the results of automatic dif-
ficulty level change with real-world experiments of
ETH-ECC.

• We present a goodness-of-fit result using the Anderson–
Darling (AD) test for distribution validation and discuss
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the BGT distribution follows the exponential distribu-
tion which has a finite mean.

The remainder of this paper is organized as follows.
Section II provides a background of the requirements of an
ASIC-resistant PoW. Section III demonstrates the implemen-
tation of ETH-ECC. Section IV discusses the formulation of
the problem. SectionV provides the experimental result of the
implementated ETH-ECC. Finally, Section VI summarizes
our work and concludes the paper.

II. BACKGROUND
We introduce three approaches that can be used to avoid
centralization problems in PoW. The first is an intentional
bottleneck between an arithmetic logic unit (ALU) and mem-
ory, which is used by Ethash of Ethereum [2], [5]. It is also
termed a memory-hard technique. The second is the high
complexity of ASIC design used by Dash [12], Raven [13],
and ourmethod, ECCPoW. The third is hybridmethods of two
methods; Random X of Monero uses hybrid methods [24].

A. INTENTIONAL BOTTLENECK
The most known PoW of the intentional bottleneck is Ethash
of Ethereum [2], [5]. This method uses the difference between
the throughput of ALU and the bandwidth of the memory.
If there is a bottleneck between the ALU and memory, it is
impossible to use the entire throughput of ALU. Specifically,
if a miner needs to obtain data from memory to generate a
block, the number of block generation attempts is determined
by memory bandwidth. Ethash uses a directed acyclic graph
(DAG), which is a set of randomly generated data for the
bottleneck. The DAG is a huge dataset that cannot be stored
in a cache memory; therefore, the DAG is stored in memory.
To generate a block using Ethash, a miner must mix a part
of the DAG that is stored in the memory. Owing to this
procedure, the miner cannot avoid the bottleneck because
of limited memory bandwidth. This method has been ASIC
resistant for a long time; however, Bitmain released ASIC for
Ethash in 2018.

B. HIGH COMPLEXITY OF ASIC DESIGN
Because of the high complexity of ASIC design, ASICs
are less efficient. For example, if ASICs are less efficient
than a general-purpose unit such as CPU or GPU, there is
no reason to design ASIC. X11 of Dash [12] and X16R
of Raven [13] use this method. Unlike PoW of Bitcoin,
which uses only one hash function (SHA-256), X11 uses
11 hash functions consecutively: BLAKE, BMW, Grosetl,
JH, Keccak, Skein, Luffa, Cubehash, SHAvite-3, SIMD, and
ECHO. The BLAKE, which is the first hash function of X11,
uses a block header with nonce as inputs; its output becomes
the input of the next hash function. Similarly, the next hash
function uses the output of the previous hash function. This
procedure is repeated until a result is obtained for the last hash
function. Miners determine whether they have found a valid
nonce using the output of the final hash function.

Designing an ASIC for X11 was expensive; therefore,
X11 was ASIC resistant. However, Bitmain released an ASIC
for X11 in 2016. There are a few PoW algorithms that extend
X11 (e.g., X13, X14, and X15); however, the ASICs for these
have been released. X16R of Raven is an extended version
of X11 of Dash. In X16R, unlike the previous extension of
X11, the sequence of 16 hash functions is randomly changed.
Therefore, it is costly to design an ASIC for X16R. However,
T. Black, who designed X16R, mentioned that there is some
evidence that ASICs for X16R exist [23]. Our ECCPoW
employs a time-varying puzzle generation system to make
ASCI design difficult. ECCPoW can make ASIC powerless
as the puzzle generation system changes from block to block.
We explain this further in Section III.

C. HYBRID METHODS
Random X of Monero combines the above two methods.
Random X uses memory-hard techniques for the bottleneck
with random code execution; Random X is optimized for
CPU mining [24]. In [24], they mentioned that mining can be
performed using a field-programmable gate array; however,
it will be much less efficient than CPUmining. It implies that
efficient mining hardware can be developed when the cost
of developing chipsets is low in comparison to the mining
reward. With the proposed ECCPoW, attempts in developing
efficient mining hardware can be made when the reward-
to-cost ratio increases. However, such attempts can be eas-
ily evaded since the parameters of ECCPoW can be easily
changed, such as increasing the length of code and the code
rate. The next section illustrates further the ASCI-resistance
characteristic of ECCPoW.

III. ECCPoW IMPLEMENTED ON ETHEREUM
In this section, we briefly introduce ECCPoW and present
how ECCPoW has been implemented on Ethereum using
Fig. 1. Furthermore, we present how the difficulty level of
ETH-ECC is automatically controlled.

A. OVERVIEW OF ECCPoW
In a blockchain employing the PoW consensus algorithm,
a node solves cryptographic puzzles to publish a block. For
a given puzzle, the node who solves the puzzle first obtains
the authority to publish a block. For example, in the PoW
of Bitcoin, the first node that finds a specific output of the
secure hash algorithm (SHA) obtains the authority to pub-
lish a block. The PoW of Ethereum uses Keccak instead of
SHA. The ECCPoW algorithm proposed in [6] is a PoW
consensus algorithm that uses error-correction code, which
comprises the low-density parity-check (LDPC) code [8],
as a cryptographic puzzle. The ECCPoW algorithm con-
sists of a pseudo-random puzzle generator (PRPG) and an
ECC puzzle solver. Fig. 1 presents the flowchart of the
ECCPoW algorithm. For every block, the PRPG generates
a new pseudo-random LDPC matrix. A new LDPC matrix is
distinct from the other previously generated matrices. Such
a pseudo-random LDPC matrix takes the role of issuing an
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independently announced cryptographic puzzle. The ECC
puzzle solver uses the LDPC decoder to solve the given
announced puzzle. Specifically, to publish a block, a node
is required to run through an input header until the LDPC
decoder hits a satisfying result; for instance, the output of
the decoder is an LDPC codeword (with a certain Hamming
weight). In the next subsection, we will discuss ECCPoW
implementation on Ethereum with the flowchart presented in
Fig. 1.

B. COMPARISON OF ETHASH AND ECCPoW
Ethereum uses Ethash for ASIC resistance, and ETH-ECC
uses ECCPoW for ASIC resistance. In this subsec-
tion, we present how Ethash and ETH-ECC apply
ASIC-resistance property to PoW with pseudo-codes.
Ethash uses a DAG for ASIC resistance. The DAG is a

large size of data and is typically stored in a random access
memory (RAM), not in cache memory. It implies that a
miner must access the RAM to get the DAG data. Although
the miner could be equipped with a high-throughput ALU,
the bandwidth access from the RAM to the ALU is limited.
That is, the bottleneck is the limited bandwidth of reading
DAG information from the RAM; thus, any fast ALU, e.g.,
an ASIC implementation of keccak512, exceeding this
bottleneck is of no use. This makes Ethash ASIC resistant.

When a miner reads DAG data from the RAM, the location
where the data are read varies. The location of data reading
is selected by the ‘‘mix’’; the mix is a 128-byte hash value
generated by the block header and a nonce. The mix is
updated using the Fowler-Noll-Vo (FNV) hash function. The
miner repeats this process 64 times. After updating the mix,
the miner compresses the mix; for compression, the FNV
hash is used again. Theminer returns a hash value of the result
of concatenating the compressed mix and the seed.

If this hash value is less than the desired target, the nonce
is validated, and a new block is linked to the previous block.
Algorithm 1 denotes the pseudo-code of Ethash.

Algorithm 1 Ethash
Require: block header (BH), nonce, DAG
1: Initialize seed: seed = keccak512(BH, nonce)
2: Initialize 128 bytes mix:

mix = concatenate(seed, seed)
3: for i = 0, 1, 2, . . . ,63:
4: Get data from DAG using mix:

data = DAG_lookup(DAG, mix, i)
5: update mix: mix = FNV_hash(mix, data)
6: end for
7: for i = 0, 4, 8, . . . ,length(mix):
8: Compress mix: cmix = compress_mix

(mix, i)
9: end for
10: return keccak256(concatenate(seed, cmix))

Ethash uses the intentional bottleneck for ASIC resis-
tance, but ETH-ECC aims to use a time-varying puzzle

generation system for ASIC resistance. In ETH-ECC, two
factors make the design of ASICs very difficult. One is
flexible code lengths and randomly generated PCMs. The
ECC_puzzle_solver generates a hash vector of length-
n (subsection C) using a nonce; this n determines the code
length. The development of an ASIC for a PCM with length
n cannot be realized, as the ETH-ECC network changes n and
the PCM from one block to another block. The PRPG creates
a PCM H. A PCM uses a BH as a seed; thus, it is randomly
generated. All miners that work to extend the same previous
block use the same PCM to solve the ECCPoW puzzle. Thus,
it is highly expensive, if not impossible, to implement an
ASIC that can handle a time-varying PCM [10], [11]. After
generating a hash vector and a PCM, a miner works out
how to generate an output word. If this output word satisfies
a specific condition, the miner is successful at completing
ECCPoW; e.g., the output word can be a codeword, and then,
a new block is linked to the previous block. Algorithm 2
denotes the pseudo-code of ETH-ECC. In our implementa-
tion, we have replaced Ethash and all its relevant peripheral
systems with ECCPoW; thus, it has the same requirement as
Ethash except for the DAG. We present more details about
ETH-ECC in the following subsections.

Algorithm 2 ETH-ECC
Require: block header (BH), nonce
1: Generate hash vector:

hash_vector = ECC_puzzle_solver(nonce)
2: Generate parity checkmatrix: PCM=PRPG (header)
3: output_word = decoder(PCM, hash_vector)
4: return output_word

C. ECCPoW ON ETHEREUM
In this subsection, we present how the error-correction pro-
cess is applied to ETH-ECC using Fig. 1.

C := {c|Hc = 0 ∩ c ∈ {0, 1}n×1} (1)

when a PCM H is given, a code c, satisfying (1), is referred
to as an LDPC code. The goal of the ECCPoW algorithm is
to find an LDPC code c using the PCM H, which is derived
by PRPG, and a hash vector r, which is obtained using the
ECC puzzle solver. For the PRPG, we employ the previous
hash value; the previous hash value, known as the parent hash
in the Ethereum block header, randomly generates a PCM.
Specifically, we use Gallagher’s method to create random
PCM [9]; we use the previous hash value as a seed of ran-
domness. Thus, PCMs are changed for every block; because
every node has the same seed, they use the same PCM until a
block is generated [6].

1) ECC PUZZLE SOLVER ON ECCPoW ETHEREUM
Here, we introduce the ECC puzzle solver process in
ETH-ECC. Our definitions are based on [6]. The equations
below follow the right-hand side of Fig. 1.
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Definition 1 (ECC Puzzle Solver): Hash vector r in which
the size of n can be obtained as follows:

s1 := Keccak(nonce) ∈ {0, 1}256 (2)

where Keccak denotes the hash function used in Ethash of
Ethereum [5]. We generate a nonce in the same way that
Ethereum does. Furthermore, for a longer length of a hash
vector, we use su := Keccak(s1) ∈ {0, 1}256 with u =
2, 3, . . . , l + 1. We slice or concatenate the result of Keccak
to generate a flexible length hash vector r:

r :=

{
s1[1 : n] if n ≤ 256
[s1 · · · slsl+1[1 : j]] if n > 256

(3)

where l = bn/256c and j = n−256× l. For example, when n
is less than 256, r obtains the same length as n, whereas when
n is not less than 256, r concatenates the results of Keccak.
This flexible length hash vector is used for ASIC resistance.

2) PoW OF THE LDPC DECODER
The goal of the LDPC decoder is to find a hash vector c that
satisfies Hc= 0. The definition below explains the decoding
presented in Fig. 1.
Definition 2 (Decoder): Given a PCM H, which is the size

of m× n, and hash vector r, which is the size of n, are given,
the LDPC decoder uses H and r as inputs and obtains output
c using the message-passing algorithm [6], [14]. When c
satisfies (1), c becomes an LDPC code, and aminer completes
LDPC decoding.

Dnp : {r,H} 7→ c ∈ {0, 1}n×1 (4)

A PCM H is randomly generated; however, all miners use
the same previous hash value, which is derived from the
previous block. Therefore, predicting the next PCM to mine
a block in advance is impossible. In the PoW of Ethereum,
miners change a nonce when they obtain a wrong output.
We follow the same procedure as Ethereum to obtain a hash
value from Keccak with a nonce, but ETH-ECC uses one
more step (3) to generate a hash vector for decoding. When
the code derived by (4) does not satisfy (1), the miner gener-
ates a new nonce and repeats all steps.
Our method is based on the high complexity of ASIC design

in Section II for an ASIC-resistant PoW. However, unlike the
mentioned method in Section II, ECCPoW generates vary-
ing cryptographic puzzles of high complexity. Specifically,
ECCPoW uses two factors to achieve high complexity: flex-
ible length LDPC code c and randomly generated PCM H.
ASICs can be released for the n length of code. However,
extending the length of code (e.g., n + 1) makes ASICs
powerless. Furthermore, in [10], [11], it has been proven that
implementing an ASIC that can handle variable PCMs is
expensive and occupies a lot of space. If developing an ASIC
costs more than buying a CPU or GPU, there is no incentive
to develop an ASIC. In other words, the ECCPoW algorithm
is ASIC resistant as implementing an ASIC that can handle
various lengths of changing codes and randomly generated
PCMs is inefficient.

D. DIFFICULTY-LEVEL CONTROL OF ETH-ECC
In this subsection, we demonstrate the implementation
of ETH-ECC’s difficulty-level control. Bitcoin [1] and
Ethereum [2] have different difficulty-level control meth-
ods. Furthermore, we present one way to add fine difficulty
control.

In Bitcoin, the Bitcoin network changes the difficulty
level every 2016 block; the desired BGT is 10 min for a
block. If miners generate a block every 10 min, generating
2016 blocks takes precisely 2 weeks. Thus, if generating
2016 blocks takes more than 2 weeks, the difficulty level
decreases; otherwise, the difficulty level increases. Unlike
Bitcoin, the Ethereum network changes the difficulty level
every block. Ethereum network allows for a block to be
generated between 9 and 18 s. If a block is generated within 9
s, then the difficulty level increases. If it exceeds 18 s, then the
difficulty level decreases. Because of this difference between
Bitcoin and Ethereum, ECCPoW-based Bitcoin (BIT-ECC)
and ETH-ECC also have different difficulty-level control
methods. Thus, ETH-ECC cannot use BIT-ECC’s method.
Because of the need for a new method, we demonstrate the
implementation of ETH-ECC’s difficulty level control with a
difference from Ethereum’s method.

Ethereum uses the number of attempts to generate a block
per second, termed hash rate, and a probability of block gen-
eration. Similarly, ETH-ECC uses the hash rate but considers
a probability of decoding success. In [5], the difficulty of
Ethereum is defined by the probability of block generation.
The difficulty is as follows:

n ≤
2256

Diff
(5)

It indicates that

Diff ≤
2256

n
(6)

where n denotes the result of PoW and Diff denotes the
difficulty of Ethereum. Thus, (6) means that when the dif-
ficulty level increases, the number of n that satisfies (6)
decreases. Furthermore, we can consider that the reciprocal of
difficulty is a probability of block generation. Ethereum uses
this probability and hash rate to control BGT. For example,
without replacement, when the probability of block gener-
ation is 1/150 and hash rate is 10 hash per second, brute
force takes 15 s. If the hash rate increases, such as 20 hash
per second, Ethereum’s method adjusts the probability of
BGT to 1/300. Thus, brute force takes 15 s even though the
hash rate increases.

For ECCPoW, if we can calculate a probability of decoding
success, it is possible to control the difficulty level similar
to the process in Ethereum. Thus, it is important to know
the probability of a successful LDPC decoding according
to the LDPC parameter. We use the pseudo-probability of
a successful LDCP decoding according to the parameters
to test the difficulty level change using the BGT [7]. That
is, ETH-ECC uses the probability of decoding success and
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FIGURE 2. This figure shows the simulation results of ECCPoW Ethereum on Amazon Web Services AWS). Twelv nodes are used in the simulation. The tw
nodes are bootnodes that help connect th nodes, and the other 10 nodes are sealnodes that participate i block generation. We use the m5.xlarge of AWS
EC2 for the simulation. In the charts, BLOCK TIME shows the block generation times for the last 40 blocks, and DIFFICULTY shows the difficulty levels of
the last 40 blocks. BLOCK PROPAGATION shows th percentage of the block propagation time corresponding to time.

hash rate to control the difficulty level. For example, without
replacement, when the probability of decoding success is
1/150 and the hash rate is 10 hash per second, it takes 15 s,
as in the above example of Ethereum’s method. However,
unlike Ethereum, when the hash rate increase, ETH-ECC
tunes parameters of LDPC to adjust the probability of decod-
ing success. By tuning parameters, ECCPoW achieves both
difficulty-level control and ASIC resistance. These param-
eters can be found at https://github.com/cryptoecc/ETH-
ECC/blob/master/consensus/eccpow/LDPCDifficulty_utils.
go#L65. In Fig. 2, the difficulty of ETH-ECC is 32.49 KH,
indicating that the probability of block generation is 1 of
32,490 hash.

One Way to Add Fine Difficulty Control. ECCPoW
controls difficulty using integer and discrete variable n. Thus,
it may look inappropriate to manage difficulty precisely.
However, as the number of blocks increase, block genera-
tion time (BGT) converges to the ideal BGT time, which is
suitable for a network. For example, when there exist two
difficulties: n and n+1, we can define average BGT of each
difficulty as tn and tn+1. Thus, we can define the average
BGT:

averageBGT =
αtn + βtn+1

k
(7)

where α denotes the number of generated blocks with dif-
ficulty tn, β denotes the number of generated blocks with
difficulty tn+1, and k denotes the total number of generated
blocks (TNGB). Thus, α can be replaced as α = k − β. As a
result, equation (7) is:

averageBGT =
(k − β)tn + βtn+1

k
(8)

When TNGB k is kept constant, the average BGT is deter-
mined by the number of generated blocks β in Eq. (8). Thus,
the ideal average BGT, which is suitable for the number of
nodes in a network, depends on β. In other words, when
TNGB kis low, the average BGT cannot meet the ideal

average BGT because there are not enough blocks of each
difficulty. However, as TNGB k increases, the number of
blocks corresponding to the difficulty, such as β, getting
closer to the proportion that fits the probability of block
generation. As a result, average BGT converges to the ideal
average BGT; this convergence confirms our proposition that
the network can control difficulty precisely.

IV. PROBLEM FORMULATION
In PoW, there is a case that nodes generate blocks at the
same time. Bitcoin allows only one block to be generated at
a time; Ethereum allows three blocks to generate at the same
time. However, in Ethereum, only one block can be canonical;
the other blocks cannot. Blocks that cannot be canonical are
called uncle blocks. In Ethereum, nodes rollback transactions
of uncle blocks [5]. Therefore, the transaction’s participants
must wait for block confirmation to prevent a rollback. That
is, in the blockchain using PoW, the BGT must have a finite
mean for the block confirmation time. For example, if the
BGT has an infinite mean, the waiting time for the confirma-
tion of transactions cannot be determined. Therefore, to apply
the ECCPoW algorithm in a real network, the BGTmust have
a finite mean.

In [6], the authors presented the definition of the block
generation of the ECCPoW algorithm using a hash rate with
a geometric distribution. That is, they assumed that nodes
generate a block with specific block generation attempts.
However, if the BGT has an infinite mean, there is no guar-
antee that nodes generate a block with specific attempts.
In [7], the authors presented a practical experiment using the
ECCPoW algorithm. However, they only mentioned that the
BGT of ECCPoW is ‘‘unstable.’’ That is, they mentioned
that the BGT of ECCPoW has outliers; however, they did
not present a discussion on the BGT. Thus, in this study,
we present a discussion on the BGT. Specifically, our experi-
mental result presents evidence that the exponential distribu-
tion describes the distribution of the BGT of ECCPoW.

VOLUME 9, 2021 135947



H. Kim et al.: ECCPoW on Ethereum

V. EXPERIMENT ON ETH-ECC
In this section, we conduct experiments using ETH-ECC.
First, we simulate the difficulty level change using multinode
networks. Second, we conduct a goodness-of-fit experiment
using the AD test [16]–[18] to discuss the distribution of the
BGT with a fixed difficulty level.

A. SIMULATION OF THE DIFFICULTY CHANGE
We simulate the difficulty-level change employing Amazon
Web Services (AWS) using 12 nodes. Two nodes are bootn-
odes that help connect the nodes, and the other 10 nodes
are sealnodes that participate in block generation. In the
charts presented in Fig. 2, BLOCK TIME presents the BGT
of the last 40 blocks, and DIFFICULTY shows the diffi-
culty level of the last 40 generated blocks. BLOCK TIME
and DIFFICULTY show that because of the large standard
deviation, a block is gradually generated despite the low
difficulty level, as mentioned in [7]; in the next subsection,
we discuss the BGT. In the charts presented in Fig. 2, LAST
BLOCK shows the BGT of the previous block, and AVG
BLOCK TIME shows the average of the BGT. In addition,
AVG NETWORK HASHRATE shows the average hash rate of
all miners. BLOCK PROPAGATION shows the block prop-
agation time from a miner who generated a block to other
miners. We used two different regions: Seoul and US East for
sealnodes. Specifically, 3 of the 10 sealnodes are in the US
East region, whereas the rest are in the Seoul region. BLOCK
PROPAGATION also shows the percentage of blocks that are
propagated at corresponding times. BLOCK PROPAGATION
indicates that the propagation of approximately all blocks
between Seoul and US East regions takes less than 2 s. The
block propagation is the same method as that of Ethereum.

B. STABILITY OF THE BLOCK GENERATION TIME
Fig. 2 demonstrates the importance of determining whether
varying puzzles may result in outliers. That is, in BLOCK
TIME and DIFFICULTY of Fig. 2, slow block generations
are observed despite the low difficulty level. In other words,
the observation of BGT shows outliers. If the outliers are
uncontrollable, the BGT distribution has an infinite mean
similar to the heavy-tailed distribution. An infinite mean
cannot guarantee transaction confirmation. Thus, to achieve
a stable BGT that can guarantee transaction confirmation,
the BGT must have a finite mean.

We obtain the BGT of ECCPoW Ethereum with a fixed
difficulty level to observe the type of distribution with a
finite mean the BGT follows. Specifically, if BGT follows
an exponential distribution, it has a finite mean. However,
if the BGT follows a heavy-tailed distribution, it has an
infinite mean [15]. Thus, through the goodness-of-fit experi-
ment, we aimed to discuss what type of distribution the BGT
follows. For the goodness-of-fit experiment, we set a null
hypothesis H0 and an alternative hypothesis HA:

H0 : BGT has the exponential distribution

HA : BGT does not have the exponential distribution

FIGURE 3. We did experiments for 100, 200, 300, and 400 blocks to
observe the distribution over the number of blocks. As the number of
blocks increases, the standard error decrease. That is, when the number
of blocks increases, sample distribution reflects an actual distribution of
sample distribution. In these figures, experiment results show the
tendency; the distributions of observed frequency, known as sample
distribution, follow the distribution of expected frequency.

For the goodness-of-fit experiment, we use the AD
test [16]–[18]. Other available tests can be used in the
goodness-of-fit experiment, such as the chi-square test [19],
Kolmogorov–Smirnov test [20], and AD test [16]. The
chi-square test has a restrictive assumption that all expected
frequencies should be greater or equal to 5 [21]. However,
there is no guarantee that our samples will achieve this
assumption. If we collect more samples, the chi-square test
can be used. However, the p-values used to validate the
hypotheses are affected by the number of samples. When
the number of samples increased in the chi-square test, the
p-values tend to decrease. Therefore, the assumption of the
chi-square test is inappropriate for verifying our distributions.
The Kolmogorov–Smirnov test is unaffected by sample sizes;
however, it is more sensitive to the center of the distribution
rather than the tail [22]. Wemust consider verifying the tail of
the distribution to cover all possibilities. Therefore, we have
chosen to use the AD test [16], which gives more weight to
the tail than does the Kolmogorov–Smirnov test.

C. AD TESTS
In this subsection, we discuss the AD test and verify its usage
using test examples. The AD test is used to verify if a sample
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TABLE 1. Example of the Anderson–Darling test results.

follows a specific distribution. We discuss one-sample and
two-sample AD tests. In our work, we use the two-sample AD
test; however, to clearly present our contribution, we briefly
introduce the one-sample AD test first.

1) ONE-SAMPLE AD TEST
The one-sample AD test is suitable to verify a hypothesis
that a sample set comes from a population. The one-sample
AD test is as follows. When the cumulative distribution func-
tion (CDF) of the population distribution isF(x), and the CDF
of the empirical distribution is FM (x), the one-sample AD
test [18] is used as follows:

A2M = M
∫
∞

−∞

(FM (x)− F(x))2 w(x)dF(x) (9)

and

w(x) = [F(x)(1− F(x))]−1 (10)

where M denotes the number of samples and A2M denotes
the results of the one-sample AD test. Intuitively, in (9),
if FM (x)− F(x) is 0 for all x, A2M is 0. This means that when
A2M is small, the empirical distribution FM (x) is close to the
population distribution F(x). As we have noted, we focus on
the tail of the distribution; it can be accomplished using (10).
The one-sample AD test result A2M can be used to verify
if a given sample comes from a population with a specific
distribution.

2) TWO-SAMPLE AD TEST
In our work, we want to verify that two-sample sets come
from the same unknown population. The two-sample AD
test is appropriate for such verification. The two-sample AD
test [17], [18] is as follows. There are two-sample empirical
distributions FM (x) and GN (x). The FM (x) is an empirical
distribution derived from the set F with a cardinality of the
sample set M = |F |. The GN (x) is also an empirical distri-
bution derived from the set G with a cardinality of the sample
set N = |G|. FM (x) and GN (x) are the respective sample sets

TABLE 2. The observed frequency is calculated using the histogram
in Fig. 4, and the expected frequency is calculated using the CDF of the
exponential distribution derived from the mean in Fig. 4.

FIGURE 4. This figure presents block generation time of 300 blocks when
n is 32. The mean block generation time of 300 blocks is 10.75 s, and it is
presented as a horizontal line. Such a result is converted to a histogram.
The observed frequency of Table 2 denotes the histogram of Fig. 4. The
legend at the top right shows the mean, variance, and standard deviation
of the BGT.

independently obtained from two different testing locations.
The two-sample AD test can be used to determine whether
both sample distributions come from the same distribution.
In [17], [18], the two-sample

version is defined as follows:

A2MN =
MN
K
∫
∞
−∞

(FM (x)− GN (x))2

HK (x)(1− HK (x))
dHK (x) (11)

where HK (x) = (MFM (x) + NGN (x))/K with K = M +
N . A2MN is standardized to remove the dependencies derived
by the number of samples. This standardized form is used to
calculate the p-value [17], [18]. The p-value evidences the
hypothesis test.

The two-sample AD test is suitable to verify a hypothesis
that two-sample sets come from the same population. As a
null hypothesis H0 for the two-sample AD test, we set FM (x)
to have the same population as GN (x). In addition, we set
GN (x) as an exponential distribution. Thus, if FM (x) and
GN (x) comes from same the population, that is, H0 is true,
we may consider that FM (x) is the exponential distribution.
If the p-value of the AD test is sufficiently large, it proves
that H0 is true.
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The p-value is the false positive probability under the
assumption that the null hypothesis is true. A low p-value
indicates that a test result provides evidence against the null
hypothesis; a large p-value does not. That is, a large p-value
denotes the probability of a true negative is low. The p-value
is determined from the observation of the sample data. Thus,
before observing the data, we first set the threshold signif-
icance level (TSL), TSL ∈ [0, 1]. The TSL can be used to
determine the critical value. Given a TSL and the number of
samples that are used in the AD test, the TSL table in [18]
is used to read off a value corresponding to the TSL and the
number of samples. This read-off value is called the critical
value. If the standardized A2MN is smaller than the critical
value, this result indicates that the p-value is larger than the
predefined TSL. In the TSL table of [18], the maximum TSL
is 0.25. Thus, when standardized A2MN is less than the critical
value corresponding to the 0.25 TSL, the p-value is capped
at 0.25.

3) VERIFICATION OF THE AD TEST
In this subsection, we verify the two-sample AD test method.
Verification is performed under the assumption that the input
distributions are a priori known. This will clearly illustrate
how we will use the AD test and interpret its test results.

In Table 1, we present three examples to give an insight into
the p-value of the AD test; in this example, we use true dis-
tributions for FM (x) and GN (x). In Table 1, Exp(θ ) indicates
the exponential distribution with mean θ and Normal(µ, σ )
indicates the normal distribution with mean µ and standard
deviation σ . That is, F ∼ Exp(θ ) denotes the sample set F
of FM (x); samples are derived from the exponential distri-
bution with mean θ . In Table 1 (a), we use the exponential
distribution for FM (x) and the normal distribution for GN (x);
these distributions have the same mean. This example shows
that as the number of samples increases, the p-value tends
to decrease if samples are drawn from different distribu-
tions. In Table 1 (b), we set both FM (x) and GN (x) as the
exponential distribution, but each with different mean values.
This example shows that as the number of samples increases
even though samples are drawn from the same exponential
distribution, the p-value tends to decrease if the means of
distributions are different. In Table 1 (c), we set both FM (x)
and GN (x) to be exactly the same exponential distribution.
That is, the two-sample sets F ∼ FM (x) and G ∼ GN (x)
come from the same population. This example shows that,
as the number of samples increases, the p-value tends to
increase when two-sample sets are drawn from the same
population. From these examples in Table 1, we note that
the closer the two distributions FM (x) and GN (x) are to each
other, the larger p-value is obtained.

We determine whether the AD test result of our exper-
iments indicates that FM (x) is sufficiently close to GN (x).
That is, given there are two-sample sets, one of FM (x) and
the other of the exponential GN (x), we want to determine
whether we can make a quality statement about how close the
two-sample sets are to each other according to the AD test.

TABLE 3. Anderson-Darling test result. The test result presents a large
p-value. It means that if we reject the null hypothesis, the probability of a
true negative is low.

The AD test result presents a significant p-value, i.e., p ≥
0.25; it is a necessary condition but not a sufficient one for
the case that the two distributions are the same. In other
words, if a decision is made to reject the null hypothesis,
that is, the distribution FM (x) is not close to the exponential
distributionGN (x), such a decision will result in an error with
a probability greater than 0.25.

D. APPLICATION OF AD TEST TO BGT DISTRIBUTION
In this subsection, we use the AD test to determine the
distribution of the BGT of ETH-ECC. For this experiment,
90 threads were used to generate a block. We experimented
using a fixed code length to observe the BGT without chang-
ing the difficulty level. In the test, two kinds of code length n
are used: 32 and 36. These are the two lowest types of code
length n in our pseudo-difficulty table used in the simulation.
We divided the BGT into 10 intervals between the minimum
BGT and maximum BGT for a histogram. For example,
when the minimum BGT is 10 and the maximum BGT is
20, there are 10 intervals, i.e., [10,11], [11,12], . . . , [19,20].
Using these intervals, we count the observed frequency of the
BGT data.We setFM (x) using the observed frequency and set
GN (x) using the mean of the BGT data. The mean in Fig. 4 is
used for the expected frequency of GN (x) in Table 2. That
is, the mean in Fig. 4 is used as 1/λ for the CDF of the
exponential distribution GN (x):

GN (x) = 1− e−λx (12)

The expected frequency of Table 1 is calculated using the
integral ofGN (x) corresponding to the interval time. Because
GN (x) is the exponential distribution, if FM (x) is close to
GN (x) we may consider FM (x) is an exponential distribution.
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E. DISCUSSION ON AD TEST RESULTS
Fig. 4 shows the example result of the BGT over differ-
ent blocks. Each block denotes the trial to obtain the BGT.
We converted the test results, such as those in Fig. 4, to a
distribution over time to analyze the BGT. These converted
distributions are presented in Fig. 3. Fig. 3 presents the plots
of the distribution of the observed and expected frequencies.
These frequencies are calculated using the method described
in Section V-D.

When we obtain a distribution using a sample set, there is
a standard error; the standard error is high when the number
of samples in the set is small. The standard error is expressed
as

σ
√
N

where σ denotes the standard deviation of a population and
N denotes the cardinality of the sample set. The standard
error decreases as the number of samples increases. Thus,
the sample distribution becomes closer to the actual distribu-
tion of the observed samples. If the sample distribution, which
reflects the actual distribution, differs from the expected dis-
tribution, we can observe that the sample distribution differs
from the expected distribution. To observe the tendency of
distribution over some blocks, we experimented with 100,
200, 300, and 400 blocks. Fig. 3 shows that the distribution
of the observed frequency tends to follow the distribution of
the expected frequency. In addition, Table 3 shows that the
observed mean and standard deviation tend to converge as the
number of blocks increases.

Furthermore, for the quantitative analysis, we use the AD
test. Table 3 presents the AD test results to discuss hypotheses
H0 and HA. These results show a similar result in Table 1 (c).
In Table 1 (c), we drew samples from the same true dis-
tribution; the results present the largest possible p-value.
All p-values in Table 3 are larger than or equal to 0.25,
regardless of the number of blocks. In other words, if the
null hypothesis is rejected, this decision will cause an error
with a probability greater than 0.25. That is, the decision that
the BGT distribution FM (x) does not follow the exponential
distribution could be made with a high decision error.

VI. DISCUSSION
The purpose of ECCPoW is not to replace the current PoW
of Ethereum. We propose our algorithm to present as one
of the options for the Ethereum network. Ethereum can be
utilized, for example, not only in a large-scale network but
also in local-scale networks. To support a local-scale net-
work, Ethereum provides PoW and PoA(Proof-of-Authority)
as consensus algorithms. These algorithms have limitations
for the local-scale network. For instance, PoW based local
network has a risk of a double-spending attack by ASIC
miners; PoA based network has a limitation of a participant
because the time complexity of a PoA increases exponentially
when the number of participants increases. Our algorithm,
ECCPoW, can be utilized in such cases for the benefit of

offering a novel PoW that allows numerous participants with
deterrence to ASIC-borne attacks. In addition, our novel
ECCPoW may open up for an expected use and thus untrav-
eled future to Ethereum.

Extensive Simulation Set up at AWS. We have recruited
twelve instances on Amazon Web Service (AWS) EC2; each
instance of EC2 instancesworks as a node in a blockchain net-
work. The cost of using AWS EC2 increases rapidly because
PoW utilizes all the resources of instances. We were able to
confirm that this scale of the experiment was good enough to
achieve our main goal, which is aimed at verifying the stabil-
ity of the block generation time of ECCPoW Ethereum. AWS
simulation was done to obtain the trace data of block gener-
ation times. The twelve nodes employed in our simulation
were divided into two different kinds of nodes. One kind is
bootnodes which help the nodes connected. Nodes that want
to join a network are connected to bootnodes first. After con-
nection, bootnodes relay nodes to other nodes. In Ehtereum,
bootnodes addresses are hardcoded on source codes, but it
is possible to set bootnodes addresses manually for private
networks. We have chosen two bootnodes. The other kind of
nodes are sealnodes that participate in block generation as
a miner in the PoW network. We have chosen the number of
sealnodes to be 10.We use them5.xlarge of AWSEC2, which
has conventional node specification: four virtual CPUs and
16 GB memory for the real-world simulation. All nodes are
deployed by Docker according to the guidance of Ethereum.
Thus, all of our simulation results, which are shown in Fig. 2,
are reproducible.

VII. CONCLUSION
In this work, we present the implementation, simulation, and
validation of ETH-ECC. In the implementation, we showed
how Ethereum can be updated with ECCPoW as its new con-
sensus algorithm. In the simulation, we conducted a multin-
ode experiment using AWS EC2. The results showed that
ETH-ECC with its adaptive difficulty-level controllability
is successfully implemented. In the validation, we showed
statistical results in which the necessary condition for a
finite mean BGT is satisfied such that the distribution of the
ECCPoW block generation time is exponential.
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