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Abstract
In the last decade, several advancements have been made in omics technologies and they have been applied extensively in 
diverse research areas. Especially in toxicological research, omics technology can efficiently and accurately generate relevant 
data on the molecular dynamics associated with adverse outcomes. Toxicomics is defined as the combination of toxicology 
and omics technologies and encompasses toxicogenomics, toxicoproteomics, and toxicometabolomics. This paper reviews 
the trend of applying omics technologies to evaluate cadmium (Cd) toxicity in zebrafish (D. rerio). Cd is a toxic heavy metal 
posing several environmental concerns; however, it is being used widely in everyday life. Zebrafish embryos and larvae are 
employed as standard models for many toxicity tests because they share 71.4% genetic homology with humans. This study 
summarizes the toxicity of Cd on the nerves, liver, heart, skeleton, etc. of zebrafish and introduces detailed omics techniques 
to understand the results of the toxicomic studies. Finally, the trend of toxicity evaluation in the zebrafish model of Cd based 
on omics technology is presented.
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Introduction

Cadmium (Cd) is widely used in objects such as batteries 
and in processes such as plating and can also leak around 
factories manufacturing these products. In our daily lives, 
we may be exposed to Cd through food and air, but the 
actual amounts are negligible and have little effect on the 
human body. However, if harmful metals from factory by-
products or household waste pollute the atmosphere, soil, 

and water and accumulate in animals and plants, they may 
be absorbed in large amounts by humans and cause deleteri-
ous health effects. For example, the Itai-Itai disease ranks 
among the four major pollution-related diseases in Japan; 
its symptoms are pain and osteomalacia, and it was caused 
by the consumption of rice contaminated with Cd from a 
factory leakage [1]. In Korea, high concentrations of Cd 
in groundwater and rivers have been reported; the source 
was a smelter located upstream of the Nakdong River [2]. 
Water pollution with Cd leads to soil accumulation, and 
finally affects agricultural and marine products consumed 
by humans. Fine dust, an air pollution source, can also be a 
source of exposure to Cd [3]. In addition to environmental 
problems, exposure to Cd is caused by problems in the pro-
cessing of pharmaceuticals, cosmetics, toys, and household 
goods or because of occupational reasons [4].

Omics technologies produce large-scale datasets with 
information on genes, proteins, metabolites and/or pro-
tein modification by measuring the global, qualitative, and 
quantitative changes at the molecular, cell, tissue, and indi-
vidual levels [5, 6]. In the last decade, omics technologies 
have advanced tremendously and have been applied exten-
sively in research. From a toxicological perspective, omics 
can efficiently and accurately generate relevant data on 
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molecular dynamics associated with adverse outcomes [7]. 
Compared with previous approaches to precisely measure 
toxicant-induced molecular alteration, omics technologies 
have the potential to improve chemical safety assessment 
and reduce animal testing in regulatory toxicology [8].

The term toxicomics is not defined in the existing litera-
ture, but this study proposes it to refer to the omics applied 
to toxicology. Specialized omics terms exist for toxicol-
ogy research fields based on a single omics technology, 
such as toxicogenomics, toxicoproteomics, and toxicome-
tabolomics [7–9]. These three terms can be collectively 
defined as toxicomics, just as omics includes genomics, 
epigenomics, transcriptomics, proteomics, and metabo-
lomics (Fig. 1). Toxicogenomics generally refers to tran-
scriptomics, the techniques used to study genomic-scale 
changes in RNA, which are mainly detected via a known 
set of differentially expressed target genes [5, 10]. Toxi-
coproteomics applies global protein expression technolo-
gies to toxicology testing and clinical research [11]. Toxi-
cometabolomics is the systematic study of endogenous 
metabolites and biochemical processes in the cell, tissue, 
or organism to identify and characterize the end products 
of toxic reactions [12]. Genomics is based on the sequence 
information of genes and proteins, while transcriptomics, 

proteomics, and metabolomics provide information about 
the biological function of genetic information.

Zebrafish (Danio rerio) is a standard model animal for 
omics-based toxicity assessment. Its embryos and larvae 
are used as models in many toxicity tests. Embryos can be 
obtained in large quantities, and the fact that they are huge 
and transparent enables the easy visualization of toxicity-
related changes. Zebrafish is a vertebrate that shares 71.4% 
genetic homology with humans. Besides, the major organs 
such as the heart, liver, and kidneys are comparable between 
both species [10]. This study describes and compares the 
omics- and zebrafish model-based Cd toxicity assessments. 
Based on the research findings from the zebrafish model, 
a new, promising research trend that uses the omics tech-
nology in the identification of the toxicity mechanism is 
emerging.

Cadmium toxicity in zebrafish

The toxicity results of Cd in zebrafish, which were identified 
without using omics technology, are summarized in Table 1. 
Cd mainly causes developmental abnormalities in zebrafish 
embryos and damages the nervous system. In particular, 
Cd inhibits the expression of glial fibrillary acidic protein; 
induces the expression of mpz, a specific myelin gene, which 

Fig. 1  Overview of harmo-
nized toxicomics. Molecules 
that change according to the 
exposure to toxic substances 
are collected based on each 
omics technology and the toxic 
mechanism is identified through 
integrative omics analysis
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changes the glial cells; inhibits the expression of neurexin 
protein; and inhibits neuronal development [12, 13]. In 
the differentiation process, proneural gene transcription is 
reduced, thereby inhibiting neuron differentiation, which 
affects the activity of specific enzymes such as ATPase in the 
brain, and inhibits the estrogen signaling pathway [14–16].

Besides provoking neurological disorders, Cd delays 
hatching and damages the other organs [17]. The heavy 
metal inhibits the development of neural functions in pig-
ment cells, causing abnormalities in the eyes. Furthermore, 
it leads to an abnormal expression of the genes necessary 
for the formation of the musculoskeletal system, causing 
larvae morphology [17–19]. It also induces apoptosis in the 
olfactory organs and damages the olfactory epithelium. In 
the liver, it alters the structure and function of HDL3, which 
is required for lipid metabolism [20].

Cd also inhibits metabolism and may damage the car-
diovascular system [17]. In larvae, Cd affects the olfactory 
organs (in the same way it affects those of the embryo) and 
also causes an immune response which alters the circa-
dian rhythm [21, 22]. In adults, the site of toxic reactions 
is similar to that of embryos, and the liver shows similar 
abnormalities in lipid metabolism [23]. The typical toxicity 
seen in adults is oxidative damage, which occurs in the liver, 

nerves, and ovaries [24–26], and exposure to Cd lowers the 
spawning success rate of female zebrafish and decreases 
the fertility of the born larvae [27]. It also causes struc-
tural abnormalities of the musculoskeletal system and retina 
[28, 29]. Reviewing the literature, we found that Cd exerts 
various toxic effects, including developmental disorders in 
several organs of zebrafish, and is involved in areas from 
transcription to enzyme activity. We then attempted to relate 
the omics result to the traditional Cd toxicity mechanisms.

Research technologies in omics

Omics research is subdivided into various fields such as 
genomics, transcriptomics, proteomics, and metabolomics 
(Fig. 1). Omics research emerged as a new tool in environ-
mental toxicity assessment to identify the adverse outcome 
pathways, point of departure (PoD), etc. [6, 30]. Omics 
analysis is an effective technical tool for the qualitative and 
quantitative analysis of biological molecules which require 
sensitive analytical techniques [31]. When compared with 
conventional toxicity assessment, the advantage of omics 
technology is the ability to understand changes at the molec-
ular level based on the abundance of useful information.

Table 1  Summary of toxic 
effects of cadmium in zebrafish

Toxicity Ref.

Embryos
Liver Hepatic lipid accumulation [20]
Nerve Neuroglia alterations [12]

Increased ATPase activity in brain [15]
Reduction of neuronal differentiation and axonogenesis [14]
Interference of neural development [13]
Anti-estrogen in brain [16]
Abnormal somite patterning [19]

Myoskeletal retina Eye hypoplasia and hypopigmentation [18]
Cardiovascular organ Heart edema and increased pericardial area [17]

Activation of cell death pathway in olfactory epithelium [40]
Olfactory organ Delay in hatching time [17]
Others Tail and axis malformation [17]
Larvae
Nerve Circadian rhythms disruption [22]
Others Cell death and structural alterations in olfactory epithelium [21]
Adults
Liver Carcinogenesis [45]

Hepatic lipid accumulation [23]
Oxidative damage [24, 25]

Nerve Oxidative damage [25, 26]
Myoskeletal Structural disorganization, disassembly of muscular myofibrils [28]
Reproductive organ Pair spawning reduction and teratogenicity [27]

Ovary: oxidative damage [25]
Retina Nerve fiber thickening and vacuolating [29]
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Genomics has provided fundamental information by iden-
tifying the nucleotide sequence, structure, and function of 
the genome [32]. Especially, the research applications of 
genomics in zebrafish are broad, and functional genomics 
plays a central role. At the DNA level, studies on mutagen-
esis typically modify zebrafish genes to produce specific dis-
eases, such as Parkinson’s disease and cancer, or to utilize 
them in toxicity assessment models [33–35]. Epigenomics, 
(emerging toxicological indicator), investigates the inher-
itance phenomenon by altering the expression pattern of 
genes without changing the nucleotide sequence after birth 
[36]. It confirmed that DNA alterations (methylation, histone 
modifications, and miRNA expression) could be induced by 
external stimuli such as toxic chemical exposure [37].

In the translation process, mRNA is involved as a tran-
script, and the abundance of the transcriptome can be 
confirmed by analyzing the nucleotide sequence of the 
expressed mRNA through transcriptomics [38]. Microar-
ray or new generation sequencing (NGS), such as RNA-
sequencing technology, can provide information about the 
transcriptome [39].

NGS determined the mRNA expression of over 20,000 
genes related to embryonic development in zebrafish much 
faster than any other methods [40]. Ontological validation 
methods, such as quantitative polymerase chain reaction, are 
commonly used to reinforce the reliability of volumonous 
data [41–44]. The function of genes corresponding to the 
expressed mRNAs or the relationship between genes can 
be associated with variations in metabolic pathways using 
databases such as the Kyoto Encyclopedia of Genes and 
Genomes pathways and Gene Ontology (GO) [45]. Mean-
while, progressive research is going on to derive PoD from 
the reduced zebrafish transcriptome approach and apply it 
to regulatory toxicology [46].

An example is an experiment that evaluated the toxicity in 
a zebrafish model through transcriptomics. Dibenzazepine, 
one of the representative polyhalogenated carbazoles that are 
structurally similar to dioxin, disrupted the aryl hydrocarbon 
receptor activation genes, such as AhR1 and CYP1A [47]. As 
a result, the metabolic pathway related to protein processing 
in the endoplasmic reticulum (ER) and taste transduction 
was disrupted. Bisphenol A, a well-known environmen-
tal hormone, was identified for the adverse effects of reti-
nol and glutathione metabolism and lipid transport by the 
upregulation of steroid hormone biosynthesis genes (such 
as cyp19a1b) and lipid transport protein genes (apoa1a, 
apobb1, and apoa4a) [48].

The proteome encompasses all the products of gene 
translation, which have a plethora of structures and func-
tions [49]. The goal of proteomics is to identify the struc-
ture and function of proteins and their modifications [50, 
51]. Toxicoproteomics applies global protein expression 
analysis technologies to toxicological and clinical research 

[11]. Especially, mass spectrometry (MS)-based toxicopro-
teomics has measured the quantitative changes in proteins, 
which are the adverse effects of toxicants, by identifying 
the protein through MS [52]. To apply MS, the samples 
must be digested to denature the protein and label the spe-
cific peptide site. Three labeling methods are available: 
(1) stable isotope labeling with amino acids in cell culture 
(SILAC), (2) isobaric tags for relative and absolute quanti-
tation (iTRAQ), and (3) tandem mass tag (TMT) [53–55]. 
MS-based methods can identify thousands of proteins 
within hours using a single analysis by overcoming the 
limitations of the classical methods such as Western blot 
assay [56, 57]. These techniques can help identify differ-
entially expressed proteins, and the quantitative results can 
be analyzed using bioinformatics tools to obtain informa-
tion on the motif and protein–protein interaction networks 
[58].

There are previous reports in which the mechanism of 
toxicity has been elucidated through proteomic studies in 
a zebrafish model. In 3,4-dichloroaniline toxicity, non-
detachment of the tail, lack of somite formation, absence 
of heartbeat, pericardial edema, abnormal curvature of the 
spine, and yolk sac edema were observed. These effects were 
presumed to be due to the disruption of hormone-related 
pathways and lipid metabolism [59]. Following proteomic 
analysis, β-methyl-amino-l-alanine showed increased pro-
tein biosynthesis and RNA processing proteins, such as 
eIF3a/c and CPSF5, and decreased 40S ribosomal protein 
S21 and phenylalanine-tRNA ligase α, which are linked to 
the disruption of pathways for glutamate receptor activity/
recycling, ER stress, protein biosynthesis, and neural cell 
death [60].

Metabolites (endogenous small-molecule substances) are 
products of physiological processes. Metabolomics aims to 
obtain meaningful information on metabolic processes by 
analyzing changes in organisms at the metabolome level 
[61]. The method for metabolite analysis is either called 
target analysis or non-target analysis depending on whether 
the specific metabolite is targeted [62, 63]. Based on the 
research objectives, the metabolites are extracted by proper 
pretreatment methods, such as liquid–liquid extraction or 
solid-phase extraction, and then identified through MS-
based analysis [64]. Since even very low concentrations 
(< pg ml−1) of metabolites can be detected, changes in the 
molecular level can be understood using a single analysis 
without the need for several detection kits [65]. Changes in 
the identified metabolite levels are visualized by statistical 
methods such as hierarchical clustering analysis, principal 
component analysis, and partial least squares discriminant 
analysis [66]. Similar to the other omics described thus 
far, toxicometabolomics analyzes the metabolic pathways 
and summarizes the results to obtain clear information on 
changes due to toxicity [67].
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In previous studies, the mechanism of toxicity was iden-
tified through metabolomic analysis. Haloperidol, a com-
mon butyrophenone-derived antipsychotic drug, was iden-
tified to have adverse effects on vitamin B12 metabolism, 
neurotransmission, insulin signaling, and mammalian tar-
get of rapamycin pathway, which are linked to pericardial 
edema, curvature of the spinal cord, and heart sac edema 
[68]. Perfluorooctanoic acid, an alternative of perfluorooc-
tane sulfonate, showed similar adverse effects on peroxi-
some proliferator-activated receptor-γ-regulated signaling 
pathways and mitochondrial pathways, and hepatoxicity 
and neurotoxicity were observed in exposed subjects [69].

Since changes in biological substances are closely 
related to biological processes, results derived from each 
omics need to be correlated with those from other omics 
[70, 71]. Hence, the multi-omics approach is gaining atten-
tion; it can satisfy this need and provide more reliable 
biomarkers, thanks to a wide field of view encompassing 
several layers of omics [72]. The overlapping goal of this 
multi-omics approach is to identify the levels of RNA, 
proteins, and metabolites through non-target analysis and 
link them to physiological changes [73]. Besides, a study 
employing multi-omics obtained significant information 
even at low concentrations, a level at which embryos 
do not show lethality [74]. Even at low concentrations, 
substances such as environmental hormones, which have 
similar toxic mechanisms, showed disruptive effects on 
transcriptomic, proteomic, and metabolomic profile in 
zebrafish in similar patterns. Therefore, it is reasonable to 
expect that detecting in vivo changes at the level of omics 

will allow the evaluation and prediction of toxicity in the 
near future [75, 76].

Omics‑based cadmium toxicity

We confirmed the results from previous studies on zebrafish 
exposed to Cd with omics technologies, namely a detoxifica-
tion mechanism in addition to the toxic mechanism of Cd 
(Table 2). The transcription of proteins mainly involved in 
metal homeostasis was increased. Exposition to Cd increases 
the expression of the mt2 gene, which codes for the metal-
lothionein-2. This protein plays a role in homeostasis and 
detoxification of heavy metals and is a molecular marker 
for metal contamination [77]. Besides, hsp70.1 and hsp70l, 
whose expression is increased, induce the synthesis of heat 
shock protein 70, a chaperone [78]. Furthermore, exposure 
to Cd increases the expression or activity of antioxidant 
glutathione-S-transferase (GST), catalase (CAT), and glu-
tathione reductase (GR) [79, 80]. Specifically, concerning 
GST, the expression of gstm3 at 48 hpf, and gstp1and gstp2 
at 96 hpf increased depending on the  CdCl2 concentration 
(at 0.9, 1.8, and 3.3 mg/L) and decreased when exposed to 
4 µM for 5 days. CAT also showed a complex pattern. When 
exposed to 4 µM  CdCl2 for 5 days, the expression decreased 
and the activity was reported to increase, but when exposed 
to 1.78 µM Cd for 7 days, the activity decreased [80, 81]. 
These omics approach results confirmed that additional stud-
ies on GST and CAT are needed.

The omics approach results on the toxic effects of expo-
sure to Cd are as follows: in zebrafish, Cd inhibits the 

Table 2  Toxicity of Cd in zebrafish based on omics analysis

Toxicity Omics Ref.

Detoxification Metal ion binding gene (mt2, klf11a, klf11b) upregulation Transcriptomics [79, 88]
Matrix metalloproteinases gene (mmp9, mmp13a) upregulation
Detoxication gene (gstm3, gstp1, gstp2) upregulation
Oxidant stress gene (hsp70.1, hsp70l, mt2) upregulation
Metallothionein, glutathione reductase upregulation Proteomics [80]

Nerve uqcrfs1 and rpsa upregulation Proteomics [84]
Related to neuromast gene (cldnb, stat3) upregulation Transcriptomics [88]

Liver: oxidative stress Catalase downregulation Transcriptomics [81]
ATP7A and metallothionein downregulation
Downregulation of gene expression because of GpG methylation of 

HSP70 upregulation
GSH, SOD, catalase downregulation Proteomics [80]
GSH, SOD downregulation

Immune IL-1β, iNOS, TNF-α downregulation Transcriptomics [81]
Metal homeostasis Calcium homeostasis gene (stc1l) downregulation Transcriptomics [79]
Skeletal muscle Pro-apoptotic gene (bax, mt1) upregulation

Cytoglobin gene (cyt) upregulation
Pyruvate carboxylase gene (pyc) upregulation
ABC transporter gene (tap) upregulation

Transcriptomics [87]
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activity and synthesis of antioxidant enzymes and proteins. 
Consequently, reactive oxygen species (ROS) in various 
organs cause several problems. For instance, the liver accu-
mulates excessive fat through lipid peroxidation [82]. Car-
diac toxicity of Cd is associated with the decreased expres-
sion of stanniocalcin 1, which is involved in the regulation 
of calcium and phosphate homeostasis [79]. Since stannio-
calcin 1 protects the cells from ventricular dysfunction and 
ROS hyperplasia, its downregulation by Cd leads to heart 
edema or increased pericardial area [83]. Uqcrfs1, which 
is highly expressed in the Cd-induced zebrafish brain and 
encodes ubiquinol-cytochrome C reductase, Rieske iron-
sulfur polypeptide I, constitutes an electron transport sys-
tem and is involved in ATP synthesis. Abnormal expression 
of uqcrfs1 affects the electron transport system, and it is 
also used as a biomarker because it is related to cancerous 
conditions [52, 84, 85]. In the musculoskeletal system, the 
pro-apoptotic gene bax is upregulated by Cd [66]. Indeed, 
exposure to Cd causes abnormal apoptosis in zebrafish 
embryos [86]. Considering these two results together, the 
abnormal apoptosis caused by Cd may affect the develop-
ment of nerves and muscles in embryos.

More toxicity can be inferred based on what was learned 
through omics research. We believe that additional studies 
can be conducted on immune adverse reactions based on 
the decreased expression of IL-1β, iNOS, and TNF-α and 
on blood coagulation disorders based on the overexpression 
of the cytoglobin gene (cyt) [81, 87].

Perspectives

In this paper, we investigated the toxicity that occurs when 
zebrafish are exposed to Cd and linked it to gene and protein 
expression. Cd mainly causes abnormalities in the develop-
ment of embryos and larvae, and toxicity was also observed 
in the liver and nervous system. Omics research provided 
additional information about the toxicity of Cd. Regarding 
Cd-induced oxidative stress, toxicity was traditionally deter-
mined by evaluating the expression of only designated mark-
ers related to ROS after exposure to Cd [24, 25], whereas 
proteomics-based studies suggested proteins that respond 
to the ‘Response to Stress category’ even with designated 
markers [60]. A detailed mechanism of Cd-derived oxidative 
stress was suggested, providing insights for further research.

Although this study compared the Cd toxicity in the 
zebrafish model, the toxicity assessment in adults, larvae, 
and embryos was subdivided, and due to the difference in 
detailed methods in the omics-based and non-omics-based 
experiments, accurate comparisons could not be made. Since 
the two approaches have their own strengths and weaknesses 
and research goals, it may not be appropriate to consider 
comparative advantage. Overall, the technical basis of 
omics research is a great advantage when exploring detailed 

mechanisms for toxic phenomena. It goes beyond exploring 
a few mechanisms at a time and allows the quantification of 
several unspecified markers simultaneously. Since the accu-
racy and reproducibility of the omics research technology 
has rapidly increased in recent years, its utility in toxicity 
studies will surely receive attention. This study presents the 
results of Cd toxicity evaluation in the zebrafish model and 
the trend of toxicity evaluation research based on Omics 
technology. Although the number of omics-based studies is 
still insufficient, we expect the development of omics tech-
nologies to soon allow further clarification of the Cd toxicity 
mechanisms.
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