
applied  
sciences

Article

Variation in the Polarization Loss Factor in an Unmanned Aerial
Vehicle Jamming Link Due to the Attitude Change

Kiin Kim 1 , Chiho Lee 2, Hojun Kim 3, Kyungtae Park 3 and Kangwook Kim 1,*

����������
�������

Citation: Kim, K.; Lee, C.; Kim, H.;

Park, K.; Kim, K. Variation in the

Polarization Loss Factor in an

Unmanned Aerial Vehicle Jamming

Link Due to the Attitude Change.

Appl. Sci. 2021, 11, 10725. https://

doi.org/10.3390/app112210725

Academic Editor: Seong-Ik Han

Received: 6 October 2021

Accepted: 10 November 2021

Published: 13 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology,
Gwangju 61005, Korea; kiinkim19@gist.ac.kr

2 Radar & EW Technology Center, Daejeon 34186, Korea; ehrtk930@korea.com
3 Electronic Warfare R&D Center, LIG Nex1 Co., Ltd., Seoul 13488, Korea; hojun.kim@lignex1.com (H.K.);

kyungtae.park@lignex1.com (K.P.)
* Correspondence: mkkim@gist.ac.kr; Tel.: +82-62-715-3226

Abstract: A method to analyze the variation of the jamming power received by an unmanned aerial
vehicle (UAV) receiver according to the change in the attitude of the small UAV is presented. The
main interest of the study is in the variation of the polarization loss factor (PLF) in the UAV jamming
link due to attitude change, which may be caused by the wind or intended movement. The attitude
change is modeled by a combination of three successive rotations using roll, pitch, and yaw, which
are defined as UAV rotations. The proposed method is applied to a jamming link, where a small
UAV with an omnidirectional antenna is jammed by a jammer antenna on the ground. The method is
applied to a plane ground and over a simulated terrain. The variation of the PLF according to the
change of UAV attitude may be higher than the generally expected PLF at locations where the height
difference between the UAV and the jammer is large, and near the locations where the jammer is
located close to the vertical plane containing the rotation axis when the attitude change is represented
by one rotation.

Keywords: polarization loss factor; jamming; UAV; attitude change

1. Introduction

Recently, small unmanned aerial vehicles (UAVs) have frequently been used for
military and civilian applications [1–4]. The risks involving small UAVs are problematic in
both areas because the application can monitor private activities, collect data, and even
directly attack [5,6].

In order to neutralize the risk from small UAVs, RF jamming is frequently consid-
ered [7–9]. The jammer-to-signal power ratio (JSR) can be used as an indicator to show
the effectiveness of the jamming [10]. In a UAV jamming link, the JSR can be defined as
the ratio of the received power by the UAV receiver of jamming signal to the signal for
mission performance. Both signals can be estimated by the Friis transmission equation by
providing such parameters as the gain, polarization loss factor (PLF), and positions of the
transmitter antenna and the receiver antenna, transmission power, and frequencies [11].

Unlike many other larger aircraft, small UAVs suffer greatly from unpredictable atti-
tude changes induced by the wind, which then cause changes in the gain and polarization
of the antenna mounted on the UAV as the directions to other antennas are varied. When
considering the effectiveness of jamming, it is frequently assumed that a fixed value of
the polarization loss exists for all configurations [12], or polarization loss is not taken into
account in the jamming link [13–15]. However, polarization loss can have a significant
impact on the jamming link.

In this paper, we propose a method to analyze the variation of the jamming power
received by the UAV receiver in the UAV jamming link due to UAV attitude changes.
The antenna is assumed to be fixed to the UAV body, and thus, the antenna radiation

Appl. Sci. 2021, 11, 10725. https://doi.org/10.3390/app112210725 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2376-9133
https://orcid.org/0000-0002-6838-7171
https://doi.org/10.3390/app112210725
https://doi.org/10.3390/app112210725
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210725
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210725?type=check_update&version=1


Appl. Sci. 2021, 11, 10725 2 of 11

characteristics can be described in reference to the local coordinates of the UAV body. The
attitude change is modeled by three successive rotations using roll, pitch, and yaw which
are defined as UAV rotations.

2. Variation in Jamming Power Reception Due to the Attitude Change

Figure 1 shows a UAV jammed by a ground jammer in the line of sight. The radiation
pattern of the UAV antenna is shown to change according to the attitude change. When
the jamming power PJ is applied to the jammer, the jamming power received by the UAV
receiver PA can be expressed by the following equation:

PA= PJ

(
λ

4πr

)2
GJ
(
θJ , φJ

)
GA(θA, φA)

(
1−

∣∣ΓJ
∣∣2)(1− |ΓA|2

) ∣∣ρ̂J
(
θJ , φJ

)
·ρ̂A(θA, φA)

∣∣2
= PJ

(
λ

2η0r

)2∣∣∣E0
J
(
θJ , φJ

)
·E0

A(θA, φA)
∣∣∣2 (1−

∣∣ΓJ
∣∣2)(1− |ΓA|2

)
,

(1)

where λ is the wavelength, r is the distance between the UAV and the jammer; G(θ, φ)
and ρ̂(θ, φ) are, respectively, the antenna gain and polarization in a given direction; θ
and φ are, respectively, the elevation and azimuth representing the angular location of the
other antenna in reference to the local coordinate system of the antenna; Γ is the reflection
coefficient due to the impedance mismatching between the feed line and the antenna; η0 is
the characteristic impedance in free space; E0

(θ, φ) is the electric field component of the
antenna in a given direction in a far field; and the subscripts J and A, respectively, represent
the quantities associated with the jammer antenna and the UAV antenna. The antenna gain
G(θ, φ) can be determined by the following equation:

G(θ, φ) =

r2

2η0

∣∣E(r, θ, φ)
∣∣2

Paccepted/4π
= 4π

∣∣∣E0
(θ, φ)

∣∣∣2
2η0

, (2)

where Paccepted is the power accepted by the antenna
(
= P

(
1− |Γ|2

))
, P is the applied

power to the feed line connected to the antenna, and E(r, θ, φ) is the electric field intensity
of the antenna in the far-field. The electric field intensity E(r, θ, φ) can be defined by the
following equation:

E(r, θ, φ) =

√
P
(

1− |Γ|2
)

E0
(θ, φ)

e−jkr

r
. (3)

The electric field component E0
(θ, φ) can be expressed by the following equation:

E0
(θ, φ) = E0

θ(θ, φ)θ̂+ E0
φ(θ, φ)φ̂

= E0
x(θ, φ)x̂ + E0

y(θ, φ)ŷ + E0
z(θ, φ)ẑ,

(4)

where E0
θ(θ, φ) and E0

φ(θ, φ) are, respectively, the E-field component of θ and φ components
based on the antenna local coordinate system, whose data can be obtained through a
simulation or a measurement of the electric field pattern of the antenna when the antenna
operates in the Tx mode; θ̂ and φ̂ are the unit vectors expressed in the spherical coordinates
in reference to the local coordinate system of the antenna; and E0

x(θ, φ), E0
y(θ, φ), and

E0
z(θ, φ) are, respectively, the electric field components of the antenna for the x, y, and

z components, which can be obtained through coordinate system transformation. x̂, ŷ,
and ẑ are, respectively, the unit vectors along the x−, y−, and z− axis representing
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the global coordinate system. The unit vectors (i.e., r̂, θ̂, and φ̂) are calculated by the
following equation: r̂

θ̂
φ̂

 =

 sin θ cos φ sin θ sin φ cos θ
cos θ cos φ cos θ sin φ − sin θ
− sin φ cos φ 0

 û
v̂
ŵ

, (5)

where û, v̂, and ŵ are, respectively, the unit vectors along the u−, v−, and w− axis
representing the local-coordinate system of the antenna. The unit vectors (i.e., û, v̂, and ŵ)
are expressed as:  û

v̂
ŵ

 =

 û·x̂ û·ŷ û·ẑ
v̂·x̂ v̂·ŷ v̂·ẑ
ŵ·x̂ ŵ·ŷ ŵ·ẑ

 x̂
ŷ
ẑ

. (6)

The electric field components of the antenna for the x, y, and z components in the far
field, E0

x(θ, φ), E0
y(θ, φ), and E0

z(θ, φ), can be calculated by the following equation:[
E0

x(θ, φ) E0
y(θ, φ) E0

z (θ, φ)
]

=
[

0 E0
θ (θ, φ) E0

φ(θ, φ)
] sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0


 û·x̂ û·ŷ û·ẑ

v̂·x̂ v̂·ŷ v̂·ẑ
ŵ·x̂ ŵ·ŷ ŵ·ẑ

.
(7)
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Figure 1. Geometry of the UAV jammed by ground jammers considering the effect of the change in UAV attitude on the
UAV jamming link.

G(θ, φ), ρ̂(θ, φ), and E0
(θ, φ) are varied as the attitude of the antenna changes in a

given direction in reference to the global coordinate system. To determine the parameters,
the angular locations θ and φ need to be determined first.

For the local coordinate system of the UAV antenna (ûA, v̂A, ŵA) and the vector from
the UAV to the jammer rA in Figure 2, the angular location for the jammer θA and φA is
determined as follows:

θA = cos−1
(

rA·ŵA

|rA||ŵA|

)
(8)
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φA =


+ cos−1

(
rA,uv ·ûA

|rA,uv||ûA |

)
if rA·v̂A ≥ 0

− cos−1
(

rA,uv ·ûA

|rA,uv||ûA |

)
if rA·v̂A < 0

, (9)

where rA,uv(= rA − (rA·ŵA)ŵA) is the projection of rA on the plane containing ûA and v̂A.
The angular location θJ and φJ for the UAV in reference to the local coordinate system of
the jammer antenna

(
ûJ , v̂J , ŵJ

)
can be determined in a similar manner. However, if a

UAV attitude change occurs, the radiation pattern of the UAV antenna changes in reference
to the global coordinate system. The attitude change can be described as three successive
rotations [16,17]. The attitude change is modeled by the following equation: û′A

v̂′A
ŵ′A

 = R(n̂Y, θY)R(n̂P, θP)R(n̂R, θR)

 ûA
v̂A
ŵA

, (10)

where û′A, v̂′A, and ŵ′A are the unit vectors representing the local coordinate system of the
UAV antenna affected by the attitude change; R(n̂R, θR), R(n̂P, θP), and R(n̂Y, θY) are,
respectively, the rotation transformation matrix of roll, pitch, and yaw; n̂R, n̂P, and n̂Y
are, respectively, the rotation axes of roll, pitch, and yaw; θR, θP, and θY are, respectively,
the rotation angles of roll, pitch, and yaw. Equation (8) is for the case where the antenna
attitude change is in the order of roll, pitch, and yaw. If the rotation order changes, the
equation can be changed. The rotation transformation matrix R(n̂R, θR), for example, is
defined as:

R(n̂R, θR) =

 nR,x
2(1− cos θR) + cos θR nR,xnR,y(1− cos θR)− nR,z sin θR nR,xnR,z(1− cos θR) + nR,y sin θR

nR,xnR,y(1− cos θR) + nR,z sin θR nR,y
2(1− cos θR) + cos θR nR,ynR,z(1− cos θR)− nR,x sin θR

nR,xnR,z(1− cos θR)− nR,y sin θR nR,ynR,z(1− cos θR) + nR,x sin θR nR,z
2(1− cos θR) + cos θR

, (11)

where n̂R = nR,xx̂ + nR,yŷ + nR,zẑ. The angular location θ′A and φ′A for the jammer in
reference to (û′A, v̂′A, ŵ′A) can be determined by the following equation:

θ′A = cos−1
(

rA·ŵ′A
|rA||ŵ′A|

)
(12)

φ′A =


+ cos−1

(
r′A,uv ·û

′
A

|r′A,uv||û′A|

)
if rA·v̂′A ≥ 0

− cos−1
(

r′A,uv ·û
′
A

|r′A,uv||û′A|

)
if rA·v̂′A < 0

, (13)

where r′A,uv
(
= RA −

(
RA·ŵ′A

)
ŵ′A
)

is the projection of rA on the plane containing û′A and
v̂′A. The jamming power received by the UAV receiver affected by the attitude change P′A
can be calculated by following equation:

P′A = PJ
λ2GJ(θJ , φJ)GA(θ

′
A , φ′A)

(4πR)2

(
1−

∣∣ΓJ
∣∣2)(1− |ΓA|2

) ∣∣ρ̂J
(
θJ , φJ

)
·ρ̂A

(
θ′A, φ′A

)∣∣2
= PJ

λ2

(2η0R)2

∣∣∣E0
J
(
θJ , φJ

)
·E0

A
(
θ′A, φ′A

)∣∣∣2(1−
∣∣ΓJ
∣∣2)(1− |ΓA|2

)
,

(14)

where GA
(
θ′A, φ′A

)
, ρ̂A

(
θ′A, φ′A

)
, and E0

A
(
θ′A, φ′A

)
are, respectively, the gain, the polariza-

tion, and the electric field component of the UAV antenna for the jammer in reference to
(û′A, v̂′A, ŵ′A). The amount of change in jamming power received by the UAV receiver due
to the attitude change can be calculated by the following equation:

P′A
PA

=
GA
(
θ′A, φ′A

)
GA(θA, φA)

∣∣ρ̂J
(
θJ , φJ

)
·ρ̂A
(
θ′A, φ′A

)∣∣2∣∣ρ̂J
(
θJ , φJ

)
·ρ̂A(θA, φA)

∣∣2 =
GA
(
θ′A, φ′A

)
GA(θA, φA)

∆PLF. (15)
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It includes both the gain variation and the PLF variation. The PLF variation is fre-
quently ignored [12–15]. However, the PLF variation can have a significant impact on the
jamming link. The variation of the PLF due to the attitude change is represented by the
following equation:

∆PLF =

∣∣ρ̂J
(
θJ , φJ

)
·ρ̂A
(
θ′A, φ′A

)∣∣2∣∣ρ̂J
(
θJ , φJ

)
·ρ̂A(θA, φA)

∣∣2 =

∣∣EJ
(
θJ , φJ

)
·EA
(
θ′A, φ′A

)∣∣2∣∣EJ
(
θJ , φJ

)
·EA(θA, φA)

∣∣2
∣∣EA(θA, φA)

∣∣2∣∣EA
(
θ′A, φ′A

)∣∣2 . (16)

In the next section, as an example of the attitude change, we analyze the received
jamming power in the UAV jamming link if the UAV antenna has a roll rotation.

3. Analysis of the Received Jamming Power in the UAV Jamming Link Due to the
Attitude Change

Figure 3 shows the configuration of a small hovering UAV jammed by a jammer on
the ground. The positions of the UAV and jammers are defined in the global coordinate
system. The UAV is at height h from the origin of the global coordinate system and the
jammer is at (x, y, z) on the ground. In Figure 3, RA is the vector from the UAV position
to the jammer position and EL is the elevation angle, which is the included angle between
the vector RA and the horizontal plane at the jammer position.

If both the jammer antenna and the UAV antenna use an omnidirectional vertically
polarized antenna, there is no polarization loss in the UAV jamming link, regardless of the
height of the UAV and the position of the jammer. However, if the UAV attitude changes,
polarization loss may occur.

As an example of UAV attitude change, we considered UAV roll rotation. The UAV
roll rotation has a roll axis n̂R of x̂ and a roll angle θR of 20◦. When the UAV has a constant
height and the jammer is on a plane ground, the variation in the received jamming power
due to the UAV roll according to the (x, y) position of the jammer is shown as a contour
and shadow map in Figure 4. The area where the UAV antenna gain in the initial attitude is
less than 10 dB compared to the maximum gain is indicated by a dotted line and is called a
blind zone.
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Figure 4a shows the case when the height of the UAV and the jammer are the same.
The line with x = 0 m is perpendicular to the axis of rotation. Thus, there is no PLF
variation. On the other hand, on the line with y = 0 m, there is no gain variation. Thus,
the power variation shown in −0.76 dB and −0.54 dB in x = 0 m and y = 0 m are due
only to gain and PLF variations, respectively. In other locations, the power variations are
contributed both from the gain and PLF variations.

Figure 4b–d shows the cases when the height of the UAV and the jammer are different.
As in Figure 4a, the power variations in x = 0 m are due only to gain variation. In other
locations, the power variations are contributed both from the gain and PLF variations.
The variation is overall increased as the height difference increases because the jammer
location is closer to the null direction of the omnidirectional antenna, where the gain and
polarization variation is large.

In order to show the contributions of the gain and PLF variations separately, they are
separately shown in Figures 5 and 6. It can be seen that Figures 4 and 5 are almost the
same because the gain variation is dominant in most locations. However, near the rotation
axis, the two sets of figures are notably different because of the contributions from the
PLF variation. The contribution from the PLF variation is shown in Figure 6. As shown
in Figure 6a, when the height of the UAV and the jammer are the same, the maximum
variation in the PLF of −0.54 dB

(
= 10 log

(
cos(20◦)2

))
occurs in y = 0 m, which is the

axis of rotation. As shown in Figure 6b–d, the larger the height difference between the two
antennas, the greater the variation in the PLF, because the jammer location is closer to the
null direction of the omnidirectional antenna.
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When the UAV has a constant height and the jammer is over a simulated terrain, the
variation in the PLF due to the UAV roll according to the (x, y) position of the jammer is
shown as a contour and a shadow map, as shown in Figure 7. The UAV roll rotation has a
roll axis n̂R of x̂ and a roll angle θR of 20◦. The simulated terrain has a distribution from
0 m to about 700 m and is displayed on the map as thin lines at 50 m height intervals.

As shown in Figure 7a, when the UAV is at a height of 0 m, it can have a higher PLF
when the jammer is located on a high terrain. As shown in Figure 7d, when the UAV is
located at a height of 1000 m, it may have a high PLF when the jammer is located on a
low terrain rather than a high terrain. Our analysis revealed that the greater the height
difference between the UAV and the jammer, the higher the PLF can be for the terrain close
to the vertical plane containing the axis of rotation.

The method was applied to a small hovering UAV jamming application by a ground
jammer. The method was applied to a plane ground and over a simulated terrain. It is
normally expected that there is a PLF of 10 log

(
cos(θR)

2
)

. However, when the UAV is at a
high altitude and the jammer antenna is near the vertical plane containing the rotation axis,
the PLF tends to be larger than expected.
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In practice, the roll axis n̂R and the roll angle θR may be unknown values. When a
hovering UAV remains horizontal, the roll axis of the UAV n̂R is defined in the horizontal
plane and can be modeled as follows:

n̂R = cos φRx̂ + sin φRŷ, (17)

where φR is the azimuthal angle of n̂R. The roll angle θR is a time-varying quantity. If the
roll angle θR has a uniform distribution probability from −θR, max to +θR, max, the expected
value of the PLF in the UAV jamming link can be expressed as the following equation:

PLFexpected(EL, θR,max) =
1

2π

1
2θR,max

∫ 2π

0

∫ +θR,max

−θR,max

PLF(EL, θR, n̂R) dθR dφR, (18)

where EL is the elevation angle from the jammer to the UAV in reference to the global
coordinate system. EL can be calculated as:

EL = sin−1
(

h
d

)
, (19)
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where h is the height difference between the jammer and the UAV, and d is the distance
between the jammer and the UAV. The expected values of PLF according to EL and θR,max
are shown in Figure 8. The larger the maximum roll angle θR,max and the larger the elevation
angle EL, the greater the expected polarization loss PLFexpected.
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4. Conclusions

There is no polarization loss in the UAV jamming link if the UAV receiver and jammer
use omnidirectional vertically polarized antennas. However, if an UAV attitude change
occurs due to the wind or an intended movement, there is polarization loss in the UAV
jamming link.

This paper presented a method to analyze the variation of the jamming power received
by the UAV receiver in the UAV jamming link due to an UAV attitude change. The attitude
change was modeled by the three coordinate rotations in a sequence of roll, pitch, and yaw.

The proposed method was applied to a small hovering UAV jamming application by
a ground jammer. The method was applied to a plane ground and over a simulated terrain.
It is normally expected that there is a PLF of 10 log

(
cos(θR)

2
)

in the UAV jamming link if
the UAV has a roll rotation with a roll angle of θR.

However, as a result of analyzing the polarization loss in the UAV jamming link
through the modeling of attitude change, we demonstrated that the PLF due to the attitude
change is greater than expected in such circumstances as when the UAV is at a high altitude
and the jammer antenna on the ground is near the vertical plane containing the axis of
rotation. Therefore, the PLF in the jamming power received by the UAV due to the attitude
change must be considered for the UAV jamming link.
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