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Macroscopic and deterministic 
quantum feature generation 
via phase basis quantization 
in a cascaded interferometric 
system
Byoung S. Ham

Quantum entanglement is the quintessence of quantum information science governed by quantum 
superposition mostly limited to a microscopic regime. For practical applications, however, 
macroscopic entanglement has an essential benefit for quantum sensing and metrology to beat 
its classical counterpart. Recently, a coherence approach for entanglement generation has been 
proposed and demonstrated in a coupled interferometric system using classical laser light, where 
the quantum feature of entanglement has been achieved via phase basis superposition between 
identical interferometric systems. Such a coherence method is based on the wave nature of a photon 
without violating quantum mechanics under the complementarity theory. Here, a method of phase 
basis quantization via phase basis superposition is presented for macroscopic entanglement in an 
interferometric system, which is corresponding to the energy quantization of a photon.

Quantum  entanglement1 has been understood as a mysterious entity in quantum mechanics over the last century 
limited to a microscopic regime governed by quantum superposition between two or more particles. Quantum 
entanglement has been implemented for various potential applications of quantum information science such as 
quantum  computation2–5, quantum  cryptography6–8, and quantum  sensing9–12. In quantum sensing and quan-
tum metrology, higher-order entangled states gives a great benefit due to correlated photon (atom) number-
proportional sensitivity and imaging resolution. Although the higher-order entangled states, i.e., a N00N state, 
has been demonstrated for the photonic de Broglie waves (PBWs)13–15, its potential applications for quantum 
sensing have still been limited by the lower N  number15. The inevitable limitation for the N number is due to 
probabilistic post-measurement process for coincidence detections confined by Poisson statistics or χ(2) nonlinear 
processes, where the N-photon detection probability in Poisson statistics is proportional to e−N . The higher-order 
entangled photon generation by χ(2) is even worse.

Complementarity theory or wave-particle duality is the core concept of quantum mechanics resulting from 
Copenhagen interpretation for a single  particle16. Thus, energy quantization of the particle nature of a photon 
is incompatible with phase quantization of the wave nature. The energy quantization-based interpretation of 
quantum mechanics results in a phase information-independent measurement technique in a coupled system for 
such as anticorrelation, the co-called Hong-Ou-Mandel (HOM)  dip17, and Bell inequality  violation18 for nonlo-
cal correlation between the paired particles. In an interferometric system of a Young’s double-slit system or a 
Mach–Zehnder interferometer (MZI), a single photon-based interference fringe is explained by self-interference 
satisfying the wave nature of Copenhagen interpretation. Such a wave property of a single photon is related with 
self-interference of a single photon under the Born’s  rule19, and a related quantum test tool has been suggested 
by Sorkin in  1970s20. As claimed by  Dirac21 and  Feynman22, a photon never interferes or interacts with others 
but  itself23. The concept of self-interference has expanded into a multi-photon-multi-slit system, where bipartite 
correlation is a part of  it24.

Recently, wave nature-based quantum mechanical interpretations have been presented to understand funda-
mental physics of deterministic quantum feature generation for such as anticorrelation (a HOM dip)25 and PBW 
in the name of coherence de Broglie waves (CBWs)26. For both cases, experimental demonstrations have also been 
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followed by using coherent photons of an attenuated laser  light27 and a typical laser itself without  attenuation28, 
respectively. The wave nature approach for quantum features leads to an intrinsic property of determinacy in 
quantum feature generation, where phase-dependent anticorrelation has been analyzed for a typical spontaneous 
parametric down conversion-based HOM dip  result29. According to the particle nature-based quantum interpre-
tations, all measured HOM dips so far have no phase information between the paired photons. Regarding CBW, 
tensor product-based phase bases of bipartite photons in a coupled MZIs have been investigated for the origin 
of quantum feature, whose image resolution is enhanced by the number of MZIs. In CBWs, thus, the resulting 
phase bases can be interpreted as phase quantization, which corresponds to energy quantization of a N00N state 
in PBWs. Here, a fundamental physics of CBWs in an n-coupled MZIs is investigated for a general understand-
ing as to what caused such a nonclassical feature and how to generate it. This understanding on CBWs paves a 
road to macroscopic quantum sensing based on phase quantization in a coupled interferometric system. In this 
case, the phase control of each MZI for CBWs is compatible with coincident photon number detection in PBWs.

Results
Figure 1 shows a schematic diagram of an n-coupled MZIs for the macroscopic quantum feature of CBWs based 
on the on-demand phase control of ϕ and ψ . For this, the basic building block is denoted by n = 1, where the 
paired MZIs having a common phase ϕ are coupled via a dummy MZI with the phase ψ (see the colored MZIs). 
In Fig. 1, both phase and intensity fluctuations of the coherent field E0 do not affect the final outputs, resulting 
in a robust quantum system. This is due to the BS matrix, where the split fields “1” and “2” in Fig. 1 are equal in 
measurements due to the Born’s rule of probability  amplitudes19, where the BS always results in the fixed phase 
difference of π

2
 and the same intensity ratio between the split  fields25. According to MZI physics, the output fields 

of the first ϕ− MZI via the dummy MZI (red) in Fig. 1 are given by:

where the outputs are deterministic according to the phase basis of ϕ ∈ {0,π} . The input field is coherent 
light from a typical laser: E0(r, t) = |E0|e

i(k0r−2π f0t) . From Eq. (1), the corresponding intensities represent a 
classical bound governed by the Rayleigh criterion or a diffraction limit, whose maximum image resolution is 
�/2 , in which the � is the wavelength of the input field E0 (see the upper panels of Fig. 2):

where I0 = E0E
∗
0 . Unlike previous analysis with asymmetric coupling between ϕ− MZIs with an opposite 

position of �L1 between n = 1 and n = 2  MZIs26, Fig. 1 is set for the same �L1 representing identically paired ϕ
-MZIs, while an asymmetric ψ is applied for the path superposition between them. In both cases, the asymme-
try between neighboring MZIs is the essential condition of CBWs, where the ψ positions results the identical 
output relation for ψ = ±π due to cos(π) = cos(−π) (see Fig. 2 and Sections A and B in the Supplementary 
Information). The diffraction limit as a classical bound in a typical MZI is clearly shown by the phase resolution 
of �

2
(or π) in the upper right panel in Fig. 2.
For the doubly coupled MZIs via the asymmetric ψ in Fig. 1, the output fields are represented as:
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Figure 1.  Schematic of macroscopic entanglement generation via path superposition of coupled 
interferometers. ϕ = 2π
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�L1 ; ψ = 2π

�
�L2.
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where the corresponding output intensities of Eq. (4) are as follows (see the Supplementary Information):

From Eqs. (5) and (6), the following analyses are conducted for the ψ− basis control (see the lower right 
panel in Fig. 2):

 (i) For ψ = 0,
   The output intensities of IA and IB are ϕ independent, resulting in a fixed intensity as shown by the 

black dotted and solid lines for IA = I0 and IB = 0 , respectively (see the third column of Fig. 2). This 
identity relation results from double unitary transformations of CBWs for n = 2, and has been applied 
for a new type of quantum cryptography in the name of ‘unconditionally secured classical key distribu-
tion (USCKD)’30. Each ϕ-MZI plays a role of unitary transformation, where the dummy ψ-MZI reverses 
its time evolution of the wave function, resulting in identity relation in the final outputs through the 
followed ϕ-MZI (see Sect. 1 of the Supplementary Information of ref. 30). The USCKD can be explained 
as follows: The orthogonal phase basis choice of ϕ ∈ {0,π} assigned to Bob and Alice in the first and 
second ϕ-MZIs, respectively, in Fig. 1 results in the identity relation between the input and output fields 
for ψ = 0 , as shown in Fig. 2. This is the deterministic randomness of USCKD, where the randomness 
results in the unconditional security via MZI  superposition30.

 (ii) For ψ = ±π,
   The output intensities are ϕ dependent, resulting in a swing property between the classical and quan-

tum bounds: IA = I0(1+ cos 2ϕ)/2 and IB = I0(1− cos 2ϕ)/2 . In this case, the modulation term of 
cos 2ϕ cannot be obtained by classical physics limited by the Rayleigh criterion, which corresponds to 
a doubly increased frequency of E0. With a proper basis choice of ψ ∈ {0,π} , thus, the phase resolution 
of output intensities is doubled due to the cos 2ϕ term as shown in the third column of Fig. 2. This MZI 
superposition-based nonclassical feature is called  CBW26,28, where CBW is a wave version of quantum 
mechanics, corresponding to the particle version of PBW (discussed in Fig. 3)14. The interference fringe 
in the bottom row of Fig. 2 is completely different from multi-wave interference, e.g., Fabry–Perot, in 
classical physics. Thus, each fringe either IA or IB behaves such as frequency doubled laser light, i.e., �o/2 
or 2f0 . Unlike the particle nature-based PBWs, the wave nature-based CBWs result from the path super-
position between identical ϕ-MZIs via the dummy ψ-MZI. The role of ψ-MZI for the nonclassical feature 
generation in Eqs. (5) and (6) is discussed below. Due to the wave nature, macroscopic entanglement 
of CBWs is also an inherent property, where the photon number does not affect the quantum feature. 
The direct proof of entanglement between bipartite entities has been done by either a HOM dip or Bell 
inequality measurements. The nonclassicality of CBW between “3” and “4” in Fig. 1 is demonstrated in 
Fig. 2 for ψ = ±π (see Fig. 3).

 (iii) For ψ = ±π/2,
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Figure 2.  Numerical calculations for Fig. 1. Upper panels: n = 1. Lower panels: n = 2. (third column) Blue dotted 
and red curves: ψ = ±π . Black dotted (solid) line: IA (IB) for ψ = 0.
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The output intensities are ϕ dependent but do not reach the nonclassical bound, where the phase reso-
lution fluctuates across the diffraction limit (details are analyzed in Fig.  3): IA = I0

(

1+ cosϕ2
)

/2 and 
IA = I0(1− cosϕ)/4 . Neither a single MZI nor a coupled MZI reaches the quantum state without proper path 
 superposition31.

In a short summary, the cos 2ϕ modulation term in case (ii) for ψ = ±π shows a definite quantum feature 
beating the classical limit of Rayleigh criterion in image resolution, where the MZI coupling method in Fig. 1 is 
via path (phase) superposition rather than conventional photon superposition in PBWs. Thus, the function of 
ψ-controlled superposition between two identical ϕ-MZIs decides whether the coupled system works for a clas-
sical one or a quantum one. The anticorrelation or entanglement condition is satisfied with a proper phase-basis 
 choice31,32. To function as a quantum system, the phase-basis choice must be ϕAB ∈

{

0, π
2
,π , 3π

2

}

 for a coupled 
MZI as shown in the lower right corner of Fig. 2 32. Here, the π

2
 and 3π

2
 phase bases are newly created via double 

MZI coupling process in Fig. 1, where the phase basis quantization is ϕn = π/n (discussed in Figs. 4 and 5).
Figure 2 shows numerical calculations for Fig. 1, where the upper panels are for a single MZI (n = 1) as a 

classical reference, while the lower panels are for a coupled ϕ-MZI via a dummy ψ-MZI (n = 2) for CBW. For the 
single MZI, the phase resolution is limited by the Rayleigh criterion at �0/2 . In the doubly coupled MZI, however, 
the phase resolution strongly depends on the choice of phase basis of ψ ∈ {0,π} . If ψ = 0 , the coupled system 

Figure 3.  Numerical calculations for normalized intensity product Rij for Fig. 2. (a) Rαβ . (b) Rαβ . (c) Rαβ for 
ψ = ±π . (d) RAB for ψ = ±π(red) , ψ = 0(dotted) , ψ = ±π/2(black).

Figure 4.  Numerical calculations for the output field intensity I(n)α  for different n in Fig. 1.
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behaves as a perfect correlation system as shown by the dotted (solid) line in the lower right panel. If ψ = ±π , 
the coupled system swings between the quantum and classical bounds depending on ϕ-basis (discussed in Fig. 3).

Figure 3 shows normalized intensity product Rij
(

= 4IiIj
)

 for Fig. 2. Figure 3a and b show the product Rij as 
functions of ϕ and ψ . Figure 3c and d are the details of Fig. 3a and b, respectively, where Fig. 3c represents the 
Rayleigh criterion as the conventional coherence limit in a single MZI comparable to N = 2 in the  PBW12,14. The 
modulation frequency of RAB in Fig. 3d varies between the classical and quantum bounds depending on ψ values 
as analyzed above in Fig. 2. For ψ = 0 (see the dotted line in Fig. 3d), RAB = 0 demonstrates an extreme bound 
of anticorrelation, representing a reversible process applied for  USCKD30. In other words, the output direction 
in the doubly coupled MZI of Fig. 1 is predetermined depending on the ψ basis via double unitary transforma-
tions. If ψ = ±π , RAB swings between the quantum and classical bounds depending on the ϕ values (see the red 
curve), resulting in a quantum feature with �/8 phase resolution, which is equivalent to the N = 4 in  PBWs14. 
For the quantum sensing of CBWs, however, the output fields IA and IB do not need to be multiplied via an AND 
gate, where this AND gate operation of coincidence measurements is a necessary step for PBWs.

If ψ = ±π/2 , it belongs somewhere between the classical and quantum bounds (see the green curve in 
Fig. 3d), partially violating the classical limit. Unlike the conventional understanding, coherence control by the 
dummy ψ-MZI for the coupled ϕ-MZIs in Fig. 1 functions as a decision maker for either a classical system or 
a quantum system. The major discovery in this manuscript is that entanglement is a deterministic feature for 
CBWs. Thus, the quantum feature of the present CBWs in a classically coupled MZI system can be manipulated 
deterministically and macroscopically via path superposition. This macroscopic and deterministic nonclassical 
property of CBWs do not violate the wave-particle duality in quantum  mechanics33.

For generalized CBWs in a 2n-coupled ϕ−ψ MZI system satisfying the CBW condition with ψ = ±π , the 
following general output fields are obtained using Eq. (4) (see Sections A in the Supplementary Information):

The respective output fields’ intensities of Eq. (7) are as follows (see Figs. 4 and 5):

In Eqs. (8) and (9), the required condition for the quantum feature of  anticorrelation25 is ϕ = ±mπ
n  (m = 0,1,2, 

…, n), as shown in Figs. 4 and 5. Under this condition, the phase resolution of each output field is δϕn = �0/2n . 
Thus, quantum sensing is satisfied for all n ≥ 2 to beat the classical limit of �0/2 . As a result, the principal phase 
bases of the n-coupled MZIs are 0 and π/n , where π/n represents the phase basis quantization. This is the phase 
quantization of CBWs corresponding to energy quantization in the particle nature of a photon for PBWs. This 
relation is bedrock to the enhanced phase resolution in the CBWs represented by �CBW = �0/2n 26,28,32. As is 
well understood, the enhanced phase resolution results from the tensor product between n-bipartite  MZIs32. A 
proper superposition for the tensor product plays a critical role as shown in Figs. 2, 3, 4 and 5.

The normalized intensity product R(n)
αβ  is given by 〈I(n)α I

(n)
β 〉/〈I0〉

2:

Unlike the particle nature of photons heavily depending on measurement  trials9–15, the average value in 
Eq. (10) is for a single shot measurement owing to the collective feature. For single shot measurements, mul-
tipartite entanglement generation has also been performed in a collective atomic  ensemble35,36. For the CBW 
measurements, phase stabilization of the MZI system is a prerequisite, where such MZI stabilization has already 
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Figure 5.  Numerical calculations for the output field intensity I(n)β  for different n in Fig. 1.
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been satisfied even for a km range of MZI  system34. Thus, the phase resolution in the n-coupled MZI system of 
Fig. 1 is enhanced by a factor of n, where n = 1 is for the Rayleigh criterion or diffraction limit in classical physics 
(see Fig. 3c). Considering that the intensity correlation of coherent lights is g (2)(0) = 1 due to Poisson statistics, 
the normalized intensity product in Eq. (10) violates the Poisson statistics-based classical result if ϕ = ±mπ

n  under 
the coupling condition of ψ = ±π . A detailed method for intensity correlation g (2) < 0.5 satisfying quantum 
features has been discussed in refs. 29 and 31, where application of randomness results in uniform output fields in 
average values of each final port, but distinctive fringe of anticorrelation 

(

g (2) < 0.5
)

 in their products.

Conclusion
In conclusion, quantum features of CBWs were analyzed in a coupled interferometric scheme of MZIs via path 
superposition control, where the asymmetric coupling method via a dummy MZI plays an essential role. Most 
of all, the generated quantum features were deterministically and macroscopically controllable for on-demand 
quantum feature generations. In addition, such deterministic and macroscopic entanglement generation tech-
nique was linearly scalable for higher-order quantum features corresponding to N00N states. Unlike the general 
understanding of entangled photon pair-based nonclassical features such as a HOM dip and Bell inequality 
violation, coherent light could generate the same quantum features of CBWs via path superposition among 
asymmetrical coupled identical MZIs. These quantum features of CBWs beating classical limit of Rayleigh 
criterion were originated in the phase basis quantization resulting from coupled MZIs, where the asymmetric 
coupling plays a key role. The enhanced phase resolution for n ≥ 2 is a direct evidence of the quantum feature 
for the CBWs based on the wave nature of photons in a n-coupled MZIs. For potential applications of CBWs, 
a quantum sensor with coherent light can be implemented in a phase controlled Si-based waveguide structure.

Methods
The numerical calculations in Figs. 2, 3, 4 and 5 were performed by Matlab using the equations in the text. The 
data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 3 June 2021; Accepted: 2 September 2021

References
 1. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).
 2. Knill, E., Laflamme, R. G. & Milburn, J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
 3. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).
 4. Häffner, H., Roos, C. F. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008).
 5. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
 6. Bennett, C. H., Brassard, G. & Ekert, A. K. Quantum cryptography. Sci. Am. 267, 50–57 (1992).
 7. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).
 8. Xu, F., Ma, X., Zhang, Q., Lo, H.-K. & Pan, J. W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 

(2020).
 9. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 

1330–1336 (2004).
 10. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
 11. Pezze, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensem-

ble. Rev. Mod. Phys. 90, 035005 (2018).
 12. D’Angelo, M., Chekhova, M. V. & Shih, Y. Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001).
 13. Jacobson, J., Gjork, G., Chung, I. & Yamamato, Y. Photonic de Broglie waves. Phys. Rev. Lett. 74, 4835–4838 (1995).
 14. Walther, P. et al. Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004).
 15. Wang, X.-L. et al. 18-qubit entanglement with six photons’ three degree of freedom. Phys. Rev. Lett. 120, 260502 (2018).
 16. Bohm, D. Quantum Theory, Ch. 6 (Prentice-Hall, New Jersey, 1979).
 17. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosend time intervals between two photons by interference. Phys. Rev. 

Lett. 59, 2044–2046 (1987).
 18. Bell, J. S. On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964).
 19. Ballentine, L. E. The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42, 358–381 (1970).
 20. Sorkin, R. D. Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9, 3119–3127 (1994).
 21. Dirac, P. A. M. The principles of Quantum mechanics (4th ed., Oxford University Press, London, 1958), Ch. 1, p. 9.
 22. Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics, Volume I, Ch. 37; Volume III, Ch. 1 (Addison Wesley 

Publishing, 1984).
 23. Sinha, U., Couteau, C., Jennewein, T., Laflamme, R. & Weihs, G. Rulling out multi-order interference in quantum mechanics. 

Science 329, 418–420 (2010).
 24. Pleinert, M.-O., Rueda, A., Lutz, E. & von Zanthier, J. Testing higher-order quantum interference with many-particle states. Phys. 

Rev. Lett. 126, 190401 (2021).
 25. Ham, B. S. The origin of anticorrelation for photon bunching on a beam splitter. Sci. Rep. 10, 7309 (2020).
 26. Ham, B. S. Deterministic control of photonic de Broglie waves using coherence optics. Sci. Rep. 10, 12899 (2020).
 27. Kim, S. & Ham, B. S. Observations of near-perfect nonclassical correlation using coherent light. arXiv: 2105. 01862 (2021).
 28. Ham, B. S. Observations of coherence de Broglie waves. arXiv: 2007. 04738.
 29. Ham, B. S. Coherently controlled quantum features in a coupled interferometric scheme. Sci. Rep. 11, 11188 (2021).
 30. Ham, B. S. Unconditionally secured classical cryptography using quantum superposition and unitary transformation. Sci. Rep. 10, 

11687 (2020).
 31. Ham, B. S. Macroscopically entangled light fields. Sci. Rep. 11, 11388 (2021).
 32. Ham, B. S. Analysis of nonclassical features in a coupled macroscopic binary system. New J. Phys. 22, 123043 (2020).
 33. Yoon, T. H. & Cho, M. Quantitative complementarity of wave-particle duality. Sci. Adv. 7, eabi9268 (2021).
 34. Xavier, G. B. & von der Weid, J. P. Stable single-photon interference in a 1 km interferometer with continuous phase adjustment. 

Opt. Lett. 36, 1764–1766 (2011).

http://arxiv.org/abs/2105.01862
http://arxiv.org/abs/2007.04738


7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19058  | https://doi.org/10.1038/s41598-021-98478-8

www.nature.com/scientificreports/

 35. Pan, X. et al. Orbital-angular-momentum multiplexed continuous-variable entanglement from four-wave mixing in hot atomic 
vapor. Phys. Rev. Lett. 123, 070506 (2019).

 36. Zhang, K. et al. Reconfigurable hexapartite entanglement by spatially multiplexed four-wave mixing process. Phys. Rev. Lett. 124, 
090501 (2020).

Acknowledgements
Figures 2, 3, 4 and 5 were performed by Matlab that is licensed (929,576) via EECS, GIST for the version R2014a. 
This work was supported by the “Practical Research and Development support program by GTI (GIST Technol-
ogy Institute)” funded by GIST in 2021.

Author contributions
B.S.H. solely wrote the manuscript.

Competing interests 
The author declares no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 98478-8.

Correspondence and requests for materials should be addressed to B.S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-98478-8
https://doi.org/10.1038/s41598-021-98478-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Macroscopic and deterministic quantum feature generation via phase basis quantization in a cascaded interferometric system
	Results
	Conclusion
	Methods
	References
	Acknowledgements


