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Discrete-Time Matrix-Weighted Consensus
Quoc Van Tran , Minh Hoang Trinh , and Hyo-Sung Ahn

Abstract—This article investigates discrete-time consen-
sus of multiagent networks over undirected and connected
graphs, whose edges are weighted by nonnegative definite
matrices, under various scenarios. In particular, we first
present consensus protocols for the agents in common
networks of symmetric matrix weights with possibly dif-
ferent step sizes and switching network topologies. A spe-
cial type of matrix-weighted consensus with nonsymmetric
matrix weights that can render several consensus control
scenarios, such as ones with scaled/rotated updates and
affine motion constraints, is also considered. We employ
Lyapunov stability theory for discrete-time systems and oc-
casionally utilize convex optimization theory for Lyapunov
functions with Lipschitz continuous gradients to show con-
vergence to a consensus of the agents. Finally, simulation
results are provided to illustrate the theoretical results.

Index Terms—Discrete-time systems, matrix-weighted
consensus, multiagent systems, switching graphs.

I. INTRODUCTION

R EACHING a consensus on some local decision states is
a crucial task in many problems in networked systems,

such as distributed control and estimation [1]–[3], distributed
optimization, and machine learning [4], [5]. In this context, each
agent in the system holds a local (decision) state, obtains the
states of other agents via interagent measurements or commu-
nication, and updates its state along the direction of a weighted
sum of the relative states to neighboring agents.

Although consensus algorithms with scalar weights have been
studied extensively, matrix-weighted consensus has been of
particular interest recently. Matrix weights can capture interde-
pendencies or impose cross-coupling constraints on the relative
vectors of the agents, which is not achievable if only scalar
weights were used. Therefore, systems with matrix weights
arise naturally in various disciplines of science and engineering
including matrix-weighted consensus/synchronization [6]–[9];
opinion dynamics [10], [11]; and distributed control and esti-
mation [12]–[14]. As opposed to consensus with scalar weights,
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where a condition on the network connectivity is often sufficient
for reaching a consensus, in matrix-weighted cases, a consensus
is jointly determined by the network connectivity and the matrix
weights [7] (or, equivalently, the matrix-weighted Laplacian).
Indeed, the authors in [7] reveal that consensus and clustering
phenomena exist naturally in a matrix-weighted consensus pro-
tocol, and a sufficient condition for reaching consensus is the
existence of a positive spanning tree in the (undirected) graph of
the system. Bipartite consensus can be achieved if the matrix-
weighted graph is structurally balanced and contains a positive–
negative spanning tree, whose edge weights are either positive
or negative definite [8]. Recently, the authors in [15] study
continuous-time matrix-weighted consensus with time-varying
network topologies using the notion of the matrix-weighted inte-
gral network. The work provides a necessary and sufficient null
space condition on the matrix-weighted Laplacian of the integral
network for the multiagent system to achieve average consensus.
This null space condition returns to that in [7] for the case of
time-invariant graphs. Although for a directed graph (digraph)
with scalar weights, a bound1. on the spectrum of the associated
Laplacian, which is diagonally dominant, can be effectively
characterized by using the Geršhgorin disk theorem [2], [16],
and the extension to the case of matrix-weighted Laplacian is
not straightforwardly applicable. As a result, existing results on
(continuous-time) matrix-weighted consensus for digraphs are
limited to only special graph topologies such as leader–follower
networks with directed acyclic graphs [17] and weight-balanced
digraphs [18]. Matrix-weighted consensus on more general di-
graphs is thus still an open problem.

However, the aforementioned works in matrix-weighted con-
sensus have been investigated in continuous-time scenarios.
In this work, we attempt to investigate discrete-time matrix-
weighted consensus of multiagent systems over undirected
graphs under several scenarios. Practical motivations for study-
ing discrete-time matrix-weighted consensus are as follows.
Discrete-time algorithms are needed in discrete-time cyber-
physical systems in which control and learning algorithms are
implemented in digital computers or microcontrollers. From
a communication-efficiency perspective, discrete-time algo-
rithms are also more favorable for practical implementations
as continuous-time algorithms require an infinite information
transmission rate. For this reason, most of the existing dis-
tributed optimization and machine learning algorithms, and
particularly, those based on (scalar-weighted) consensus, are in a
discrete-time setting [4]. Apart from these practical aspects, we

1All the eigenvalues (except the simple zero eigenvalue) of the Laplacian
are contained in the open right half plane if and only if there exists a directed
spanning tree in the corresponding digraph [16, Thm. 2]
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explained further the motivations by elaborating the intuitions
and applications of our proposed consensus schemes in the main
text of the article. To analyze the convergence of the proposed
consensus algorithms, we employ Lyapunov stability theory for
discrete-time systems and occasionally utilize convex optimiza-
tion theory for Lyapunov functions with Lipschitz continuous
gradients.

The contribution of this article is three-fold.
1) We first study the discrete-time matrix-weighted con-

sensus of multiagent systems with connected graphs,
in which the agents can use the same or different step
sizes. Furthermore, asymptotic convergence to the av-
erage consensus of the system with time-varying graph
topologies is also established, provided that the union of
the switching graphs over each successive time interval
of the same length contains a positive spanning tree.
The use of switching (matrix-weighted) graphs poses a
mild assumption as it allows the network topology to
be disconnected at any time instant. Unlike [15], the
proposed discrete-time consensus scheme with switching
graphs requires only a finite information transmission rate
and reduces further the amount of exchanged data by a
suitable design of the matrix weights (Remark 2).

2) Second, consensus of the agents is examined when
each agent i in the system employs the same matrix
weight Aij = Ai for every relative state to its neighbor
j. This setting is different from those in [7], [8], and [15]
which commonly require symmetric matrix weights, i.e.,
Aij = Aji, where Aij and Aji are the matrix weights
associated with two neighboring agents i and j, respec-
tively. Suppose that the interaction graph of the system
is connected, the agents’ step sizes are sufficiently small,
and the matrix weights Ai are (possibly nonsymmetric)
positive definite. Then, by utilizing convex optimization
theory for Lyapunov functions with Lipschitz continuous
gradients, we show that the agents achieve a consensus.
Compared with the (continuous-time) consensus scheme
with rotation matrix weights in [9], the proposed consen-
sus protocol uses more general (positive definite) matrix
weights and is applicable for arbitrary dimensions.

3) Third, as an extension to the preceding case, we consider
the case that the matrix weight Ai associated with an
agent i can be positive semidefinite. We show that the state
vector of agent i is constrained in a linear manifold, whose
tangent space spans the column space of Ai. Then, it is
proven that if the intersection of the agents’ subspaces is
nonempty and the step sizes of the agents are sufficiently
small, the agents still achieve a consensus.

The rest of this article is as follows. Preliminaries and problem
formulation are provided in Section II. Section III presents con-
sensus protocols for systems with symmetric matrix weights and
possibly time-varying network topologies. Consensus schemes
over undirected networks with asymmetric matrix weights are
investigated in Sections IV, and V. Simulation results are pro-
vided in Section VI and Section VII concludes this article.

Notation: Let Rd and Cd be the real and complex
d-dimensional spaces, respectively. The set of nonnegative

integers is Z+. The notation || · || denotes the Euclidean norm.
Let diag(A1, . . . ,An) ∈ RN×N , ˜N :=

∑n
i=1 di, be a block-

diagonal matrix constructed from A1 ∈ Rd1×d1 , . . . ,An ∈
Rdn×dn . The Cartesian product of {Xi}ni=1 ⊆ Rd is denoted by∏n

i=1 Xi. The relation A > 0 (A ≥ 0) implies that the matrix
A is positive definite (positive semidefinite).

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Matrix Weighted Graph

A matrix-weighted graph of a multiagent network is denoted
by G = (V, E ,A), where V = {1, . . . , n} denotes the vertex set,
and E ⊆ V × V denotes the set of edges of G, and A = {Aij ∈
Rd×d : (i, j) ∈ E ,Aij ≥ 0}. An edge is defined by the ordered
pair ek = (i, j), i �= j, k = 1, . . . ,m,m = |E|. The graph G is
said to be undirected if (i, j) ∈ E implies (j, i) ∈ E , i.e., if j
is a neighbor of i, then i is also a neighbor of j. If the graph
G is directed, (i, j) ∈ E does not necessarily imply (j, i) ∈ E .
The set of neighboring agents of i is denoted by Ni = {j ∈
V : (i, j) ∈ E}. Associate each edge (i, j) ∈ E with the matrix
weight Aij ≥ 0, and Aij = 0 when (i, j) �∈ E . An edge (i, j)
is positive definite (positive semidefinite) if Aij > 0 (Aij ≥ 0
and Aij �= 0). The matrix-weighted adjacency matrix of G is
given as A = [Aij ] ∈ Rnd×nd.

We define Di :=
∑

j∈Ni
Aij and let D =

diag(D1, . . . ,Dn) be the degree matrix of the graph
G. Then, the matrix-weighted Laplacian is given as
L = D −A ∈ Rnd×nd. Denote Lo as the identity-matrix
weighted Laplacian of G with Aij = Id ∀(i, j) ∈ E , and
Aij = 0 otherwise.

When the matrix weights in the graph are symmetric, i.e.,
Aij = Aji ≥ 0∀(i, j) ∈ E , the following established lemma
can be obtained [7].

Lemma 1: The matrix-weighted Laplacian L is symmetric
and positive semidefinite, and its null space is given as
null(L) = span{range(1n ⊗ Id), {v = [v�

1 , . . . ,v
�
n ]

� ∈
Rnd : (vj − vi) ∈ null(Aij)∀(i, j) ∈ E}}.

A path is positive (nonnegative) if all the edges in the path
are positive definite (positive semidefinite). The graph G is
connected if there exists a nonnegative path between any two
vertices in G. A positive tree is a graph in which any two vertices
are connected by exactly one path which is positive. A positive
spanning tree T of G is a positive tree containing all vertices in
V . WhenAij andAji are not necessarily equal, i.e.,Aij �= Aji,
the graph G is said to have asymmetric matrix weights2.

B. Problem Formulation

Consider a system ofn agents in Rd, d ≥ 2, whose interaction
graphG is undirected and connected. Each agent i ∈ V maintains
a local vectorxi ∈ Rd. Let each agent i compute the relative vec-
tors (xi − xj) to its neighbors j ∈ Ni, by assuming measure-
ment capacity or by exchanging information with its neighbors.
Intuitively, in order to reach a consensus, each agent i in the

2The symmetry/asymmetry of the matrix weights of a graph G, which is
specified by whether Aij = Aji∀(i, j) ∈ E , or not, should be distinguished
from the symmetry of the positive semidefinite matrices Aij .
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network iteratively updates its local vector xi(k + 1), at every
iteration k + 1 ≥ 1, by adding to it a matrix-weighted sum of the
relative vectors, i.e., di(k) := −

∑
j∈Ni

Aij(xi(k)− xj(k)).
Here, Aij ∈ Rd×d is a matrix weight associated with each edge
(i, j) ∈ E .

In particular, each agent i ∈ V updates xi(k + 1) via

xi(k + 1) = xi(k)− αi

∑
j∈Ni

Aij(xi(k)− xj(k)) (1)

∀k ∈ Z+. Here, αi > 0 is a sufficiently small step size, which
is used to adjust the step length of the displacement of xi(k)
along the update direction di(k) to ensure the convergence of
(1) [3], [4]. In this work, we consider consensus protocols with
two possible types of matrix weights Aij .

1) Positive semidefinite and symmetric weights Aij =
Aji ≥ 0∀(i, j) ∈ E (Section III).

2) For every i ∈ V , Aij = Ai ∈ Rd×d∀ j ∈ Ni. That is,
each agent i employs the same matrix weight Ai for ev-
ery relative vector (xi(k)− xj(k))∀j ∈ Ni. In addition,
the matrix Ai is either positive definite (Section IV) or
positive semidefinite (Section V) ∀i ∈ V , and it is also
not required that Ai = Aj for i, j ∈ V, i �= j.

III. CONSENSUS UNDER SYMMETRIC MATRIX WEIGHTS

This section considers the consensus control for the system
under the matrix-weighted consensus protocol (1) under the
condition (A.1). Provided that the matrix-weighted graphG con-
tains a positive spanning tree and the step sizes are sufficiently
small, we show that the agents achieve a consensus. Further,
asymptotic convergence to the average consensus of the system
under undirected switching graphs is also ensured.

A. Matrix-Weighted Consensus Law

At an iteration k ∈ Z+, each agent i updates its state vec-
tor xi(k) ∈ Rd via (1). Let x(k) := [x�

1 (k), . . . ,x
�
n(k)]

� and
G := diag{α−1

i Id}ni=1. Then, (1) can be written in a more
compact form

x(k + 1) = (Idn −G−1L)x(k). (2)

Select αi = (||Di||+ βi)
−1, with βi > 0 being an arbitrary

small constant, for all i ∈ V . Since the matrix G−1L is non-
symmetric, in order to study the stability of the system (2), we
characterize the spectral property of the matrix Idn −G−1L in
what follows.

Lemma 2: The matrix (Idn −G−1L) satisfies the following
properties.

1) Its eigenvalues are real and its spectral radius is ρ(Idn −
G−1L) = 1 with the corresponding eigenvectors that are
v ∈ null(L).

2) The unity eigenvalue 1 of (Idn −G−1L) is semisimple.3

As a result, (Idn −G−1L) is semiconvergent or, equiva-
lently, limk→∞(Idn −G−1L)k = (Idn −G−1L)∞ ex-
ists.

3An eigenvalue is semisimple if its algebraic multiplicity and geometric
multiplicity are equal.

Proof: See Appendix A. �
We next provide an explicit expression for the limit

limk→∞(Idn −G−1L)k. Consider the Jordan normal form of

(Idn −G−1L) = V JV −1

where the matrices V = [v1, . . . ,vdn] and V −1 =
[u1, . . . ,udn]

� contain the right and left eigenvectors of
(Idn −G−1L), respectively, in which the eigenvectors
corresponding to the unity eigenvalues appear earlier. Let
J = diag(1, . . . , 1,J l2 , . . . ,J lp) ∈ Rnd×nd with the Jordan
block J li ∈ Rli×li , i = 2, . . . , p,

∑p
i=1 li = dn, corresponding

to eigenvalues, whose magnitudes are less than 1. Now, we have

(Idn −G−1L)∞ = V J∞V −1

= V diag(1, . . . , 1,J∞
l2
, . . . ,J∞

lp
)V −1

= V diag(1, . . . , 1, 0, . . . , 0)V −1

=

l1∑
i=1

viu
�
i (3)

where l1, d ≤ l1 < dn, is the number of unity eigenvalues
of (Idn −G−1L), which is equal to the number of zero
eigenvalues of L according to Lemma 2 1). In addition, the
first d right eigenvectors are given as [v1, . . . ,vd] = 1n ⊗ Id

(Lemma 1). Moreover, from (3), we have limk→∞ x(k) ∈
span(v1, . . . ,vl1). Thus, the following theorem is obtained
whose proof is given in Appendix B.

Theorem 1: The sequence {x(k)} generated by (2), for an
arbitrary initial vector x(0) ∈ Rdn, converges geometrically to
x∗ = 1n ⊗ x̂ with x̂ = [u1, . . . ,ud]

�x(0) ∈ Rd if and only if
null(L) = range(1n ⊗ Id).

Remark 1: Note that though in (1) the matrix weights are
symmetric Aij = Aji, the agents employ different step sizes
αi. Thus, the agents are shown to achieve a consensus, but
not necessarily the average consensus x̄ := 1

n (1
�
n ⊗ Id)x(0).

In addition, the existence of a positive spanning tree in G is
sufficient for the Laplacian matrix L to satisfy the condition
in Theorem 1 [7]. However, achieving the average consensus
is crucial in various problems including distributed computing
and distributed data fusion in wireless sensor networks. We thus
present matrix-weighted average consensus as follows.

B. Matrix-Weighted Average Consensus

Suppose that the agents use a common step size αi = α =
1/(maxi∈V(||Di||) + β) with β > 0 being an arbitrary con-
stant, for all i ∈ V . Such a step size can be computed in a
distributed manner using the max-consensus algorithm [2]. As
a result, the iteration (2) is rewritten as

x(k + 1) = (Idn − αL)x(k). (4)

It can be shown similarly as in Lemma 2 that (Idn − αL)
has the spectral radius of one and is semiconvergent. In ad-
dition, the columns of (1�

n ⊗ Id) are the left eigenvectors
corresponding to the unity eigenvalues of (Idn − αL), i.e.,
(1�

n ⊗ Id)(Idn − αL) = (1�
n ⊗ Id). Therefore, we can obtain
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the following theorem which can be proved by following similar
lines as in the Proof of Theorem 1.

Theorem 2: The sequence {x(k)} generated by (4), for an
arbitrary initial vector x(0) ∈ Rdn, converges geometrically to
the average consensus x∗ = 1n ⊗ x̄ if and only if null(L) =
range(1n ⊗ Id).

C. Matrix-Weighted Average Consensus Under
Switching Network Topology

The assumption on fixed interaction graphs can be relaxed by
instead considering undirected switching graphs [2], [19], [20],
which impose a mild assumption on the interaction graphs and
can reduce communication data significantly in each iteration
(see Remark 2 below). Let σ : Z+ → P := {1, 2, . . . , ρ} be a
piecewise constant switching signal. That is, there exists a sub-
sequence kl, l ∈ Z+, of {k}k∈Z+ , such that σ(k) is a constant
for kl ≤ k < kl+1, ∀kl.

Given a switching signal σ(k), we define an undi-
rected switching graph Gσ(k) = {V, Eσ(k),Aσ(k)}, where V =
{1, . . . , n} andEσ(k) := {(i, j) ∈ V × V : Aij(k) = Aji(k) ≥
0}. Note importantly that the condition Aij(k) = Aji(k)∀k ∈
Z+, indicates that Gσ(k) remains undirected for every time
instant k, but not necessarily connected. Let Lσ(k) ∈ Rdn×dn

be the corresponding matrix-weighted Laplacian of the graph
Gσ(k). The union of such graphs (Gσ(γ),Gσ(γ+1), . . . ,Gσ(η))
over a time interval [γ, η] ⊆ [0,∞), denoted as Gσ(γ:η) :=
∪η
k=γGσ(k), is defined by the triplet {V, Eσ(γ:η),Aσ(γ:η)}. Here,

the edge set Eσ(γ:η) := ∪η
k=γEσ(k) and

Aσ(γ:η) :=

⎧⎨
⎩Aij(γ : η) =

η∑
k=γ

Aij(k) : (i, j) ∈ Eσ(γ:η)

⎫⎬
⎭ .

It is noted that Aij(γ : η) can be positive definite even if none
of the weights {Aij(k)}k∈[γ,η] are positive definite. The graph
Gσ(k) is assumed to satisfy the following joint connectedness
assumption for matrix-weighted graphs [19].

Assumption 1 (Joint Connectedness): There exists a
subsequence {kt : t ∈ Z+}, such that limt→∞ kt = ∞ and
kt+1 − kt is uniformly bounded for all t ≥ 0, and the graph
∪kt+1−1
k=kt

Gσ(k) contains a positive spanning tree.
Joint connectedness of switching matrix-weighted graphs

implies that the union of the switching graphs over each succes-
sive finite time span [kt, kt+1 − 1] contains a positive spanning
tree. Thus, the matrix-weighted Laplacian

∑kt+1−1
k=kt

Lσ(k) of

the graph ∪kt+1−1
k=kt

Gσ(k) is positive semidefinite, has d zero
eigenvalues, and its null space is range (1n ⊗ Id).

Consensus Law: The consensus law for each agent i ∈ V
under the switching graph Gσ(k) is given as

xi(k + 1) = xi(k)− α

n∑
j=1

Aij(k)(xi(k)− xj(k)) (5)

where α is a constant step size to be defined, which is common
to the agents. The preceding consensus protocol can be written

in a compact form

x(k + 1) = x(k)− αLσ(k)x(k). (6)

Let μ := maxσ(k) ||Lσ(k)||. Then, we obtain the following the-
orem, whose proof is given in Appendix A7-C.

Theorem 3: Suppose that Assumption 1 holds and the step
size α satisfies 0 < α < 1/μ. Then, the sequence {x(k)} gen-
erated by (6), for an arbitrary initial vector x(0) ∈ Rdn, asymp-
totically converges to the average consensus x∗ = 1n ⊗ x̄ as
k → ∞.

Theorem 3 indicates that joint connectedness condition on
the switching graphs Gσ(k) is sufficient for the agents to achieve
the average consensus, provided that the step size is sufficiently
small. Further, the proof of Theorem 3 suggests that an alterna-
tive algebraic condition is rank(

∑kt+1−1
k=kt

Lσ(k)) = dn− d.
Remark 2: Consider the consensus of multiagent systems,

whose state vectors are embedded in a high dimension. In-
teragent communications are then expensive if each agent i
sends the whole coordinates of xi(k) to its neighbors at ev-
ery iteration. We interpret here as to how the matrix-weighted
consensus law (5) would reduce the amount of exchanged data
by a suitable selection of the edge weights. Although the matrix
weight Aij(kt : kt+1 − 1) =

∑kt+1−1
k=kt

Aij(k) associated with
an edge (i, j) ∈ Eσ(kt:kt+1−1) over a time interval [kt, kt+1 − 1]
needs to be positive definite (Assumption 1), Aij(k) can be
simply a (relatively) low-rank positive semidefinite matrix ∀k ∈
Z+. For example, when Aij(k) = diag(0,Bk,0) ∈ Rd×d, for
a matrix Bk ∈ Rr×r,Bk > 0, r < d, only r components of
Aij(k)xi(k) need to be transmitted to agent j since the other
components are zeros. As a result, for each k ∈ Z+, only a small
portion of the coordinates of xi(k) is sent to j, and vice versa.
Assume that Aij(kt : kt+1 − 1) > 0, then all the coordinates
of xi evolve through interagent communications within each
successive finite time span k ∈ [kt, kt+1 − 1], t ∈ Z+. Thus, the
low-rank block-diagonal matrix weight Aij(k) acts as a com-
pression operator that compresses a high-dimensional vector
xi(k) before sending it at every iteration k.

IV. CONSENSUS UNDER ASYMMETRIC MATRIX WEIGHTS

This section assumes that each agent i employs the same
matrix-weightAi for every relative vector (xi(k)− xj(k))∀j ∈
Ni [see condition (A.2)]. The matrix weight Ai is assumed to
satisfy Assumption 2 below, for all i ∈ V . Under the connected-
ness condition on the graph G and sufficiently small step sizes,
we show that the system admits a consensus.

A. Consensus Law

Each agent i ∈ V updates its state vector via

xi(k + 1) = xi(k)− αi

∑
j∈Ni

Ai(xi(k)− xj(k)) (7)

where αi > 0 is a step size associated with agent i, which is
chosen sufficiently small to guarantee the convergence of (7).
The matrix-weight Ai ∈ Rd×d associated with agent i∀i ∈ V is
an invertible matrix and satisfies the following condition.
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Fig. 1. Positive spanning tree T (in red) of G (– positive edges; –
positive semidefinite edges).

Fig. 2. Interpretation of the matrix-weighted consensus scheme
(7). The desired displacement of consensus update ui(k) and the
scaled/rotated update Aiui(k) of agent i.

Assumption 2: There exists a positive constant γi > 0, such
that for any nonzero vector y ∈ Rd, the following inequality
holds:

y�A−1
i y ≥ γi||y||2. (8)

Two possible classes of matrix weights that satisfy Assump-
tion 2 are given as follows.

1) Positive definite matrix-weight Ai > 0. Then, (8) is sat-
isfied with γi = λ−1

max(Ai).
2) Rotation matrices Ai = Ri ∈ SO(d) that are (nonsym-

metric) positive definite, whereSO(d)denotes the special
orthogonal group. In the axis-angle representation of a
positive definite rotation matrix, the rotation angle is in
(−π/2, π/2) rad. Indeed, using the relation R−1

i = R�
i ,

for every nonzero vector y ∈ Rd, we have

y�R−1
i y = y�R�

i y = y�Riy > 0.

In addition, it follows from y�(Riy) = cos(θi)||y||2 >
0 ⇔ cos(θi) ≥ γi > 0, where θi is the angle between
Riy and y, for a constant γi ∈ (0, 1). Consequently,
y�R−1

i y ≥ γi||y||2, which shows (8).
Remark 3: The intuition of the consensus law (7) is as fol-

lows. Let ui(k) := −
∑

j∈Ni
(xi(k)− xj(k)) be the steepest

descent update direction of each agent i that minimizes the
objective function V (x) = (1/2)x�Lox = 1/2

∑
(i,j)∈E(xi −

xj)
2. Then,Aiui(k) is the matrix-weighted consensus update of

agent i in (7) due to the scaled matrix/rotation Ai, as illustrated
in Fig. 2. Furthermore, the condition

(Aiui)
�ui =

α−2
i (xi(k + 1)− xi(k))

�A−1
i (xi(k + 1)− xi(k))

(8)

≥ α−2
i γi||xi(k + 1)− xi(k)||2 ≥ 0 (9)

indicates that (Aiui) is indeed a descent direction. Conse-
quently, we show in Lemma 3 below that V (x) is nonincreasing
with respect to (7).

Remark 4: The second case 2) above also corresponds to the
consensus of multiple agents in Rd in which the agent orientation
matrices are measured with bias errors, if each agent is thought
to maintain a body-fixed coordinate frame, whose origin is at its
centroid, with regard to which agent measures relative vectors.
Futhermore, in the case 2), the consensus law (7) is a discrete-
time counterpart of the continuous-time consensus law in [9].
As a development of [9], the matrix-weighted consensus law
(7) uses more general matrix weights and is applicable for an
arbitrary d-dimensional space.

B. Convergence Analysis

Let G = diag(α1A1, . . . , αnAn), x(k) = [x�
1 (k), . . . ,

x�
n(k)]

�. Then, (7) can be written as

x(k + 1) = x(k)−GLox(k). (10)

Consider the Lyapunov function V (x(k)) =
(1/2)x�(k)Lox(k), which is positive definite w.r.t. the
consensus space span(1n ⊗ Id). It is noted that the gradient
∇V (x) is Lipschitz continuous with Lipschitz constant
LV := ||Lo||, i.e., ∀x,y ∈ Rd

||∇V (x)−∇V (y)|| = ||Lo(x− y)|| ≤ ||Lo||||x− y||.

An estimate of the upper-bound of the Laplacian spectral radius
can be found in [21]. Let γmin := mini=1,...n γi and αmax :=
maxi=1,...n αi. Then, we have that the Lyapunov function
V (x(k)) is nonincreasing according to the following lemma.

Lemma 3: Suppose that the graph G is connected and
Assumption 2 holds. Let the step size 0 < αmax < 2γmin/LV .
Then, the Lyapunov function V (x(k)) is nonincreasing w.r.t.
(10), i.e.,

V (x(k + 1))− V (x(k)) ≤ − γmin

αmax
||x(k + 1)− x(k)||2.

(11)

Proof: See Appendix D. �
From Lemma 3, convergence to a consensus of the system is

shown in the following result.
Theorem 4: Suppose that the graph G is connected and

Assumption 2 holds. If 0 < αmax < 2γmin/LV , the sequence
{x(k)} generated by (10), for an arbitrary vectorx(0) ∈ Rdn, is
bounded and converges geometrically to a consensus (1n ⊗ x∗)
with

x∗ =

(
n∑

i=1

1

αi
A−1

i

)−1 n∑
i=1

1

αi
A−1

i xi(0).

Proof: See Appendix E. �
Remark 5: The result of Theorem 4 further elaborates robust-

ness to the biased measurements of the body-fixed coordinate
frames of the agents and flexibility of the consensus protocol (7)
in modifying both the direction and magnitude of the displace-
ment xi(k + 1)− xi(k) of each agent i at each iteration k (see
Fig. 2). Therefore, such flexible displacements can be utilized to
design an obstacle avoidance scheme. For example, consider a
stationary obstacle (the yellow circle), to which agent imeasures
the collision cone (the pink area), as described in Fig. 2. Then,
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if the rotation matrix Ai is adjustable (or otherwise, agent i
can control a rotation matrix Qi, such that the angle between
ui and QiAiui(k) is in (−π/2, π/2) rad), one can steer the
agent i’s displacement to the edges of the collision cone to avoid
possible collision with the obstacle. The matrix weights Ai may
also be useful for modeling the biased views in the reasoning
processes of networked individuals in an opinion dynamics on
multiple interdependent topics [10], [11]. In this case, due to
the differences in the individuals’ mindsets, religions, beliefs,
etc., they update their opinions with their own biased directions
represented by Ai. And, Theorem 4 gives a sufficient condition
so that they can reach a consensus on their opinions.

V. CONSENSUS UNDER ASYMMETRIC AND

POSITIVE-SEMIDEFINITE MATRIX WEIGHTS

In this part, we consider the consensus scheme (7) under the
scenario that the matrix weightAi associated with agent i can be
positive semidefinite ∀i ∈ V . Therefore,Ai is not necessarily in-
vertible and consequently the convergence analysis in Section IV
is not straightforwardly applicable for this case.

A. Consensus Law

We reuse the consensus law (7) below. In particular, each
agent i updates xi(k), for an initial vector xi(0) ∈ Rd, via

xi(k + 1) = xi(k)− αi

∑
j∈Ni

Ai(xi(k)− xj(k))∀i ∈ V

(12)
where αi > 0 is a step size and Ai ≥ 0 is a matrix weight,
∀i ∈ V . We again use x(k) = [x�

1 (k), . . . ,x
�
n(k)]

� ∈ Rdn to
denote the stacked vector of all state vectors. Let vi(k) :=
−
∑

j∈Ni
(xi(k)− xj(k)) ∈ Rd and hence (12) can be written

as

αiAivi(k) = xi(k + 1)− xi(k). (13)

In the sequel, we show that the state vector of agent i, xi(k), is
constrained in an affine space whose tangent space is spanned
by the column space of Ai.

B. Geometric Interpretation

Since the matrix weight Ai is positive semidefinite,
we can decompose Ai as Ai = V iΣiV

�
i , where Σi :=

diag(λi,1, . . . , λi,ri , 0, . . . , 0) ∈ Rd×d with ri (1 ≤ ri ≤ d) is
being the rank of Ai and λi,l > 0, l = 1, . . . , ri, being the
positive eigenvalues of Ai, and V i ∈ Rd×d is an orthogonal
matrix. In addition, the first ri columns of V i, i.e., V i,1:ri :=
[vi,1, . . . ,vi,ri ] ∈ Rd×ri form an orthonormal basis of the range
space of Ai.

For each i ∈ V and an initial vector xi(0) ∈ Rd, we construct
a linear manifold (or an affine subspace) Xi ⊆ Rd, such that
xi(0) ∈ Xi and the tangent space of Xi, denoted as T X i,
satisfies span(T X i) = span{vi,1, . . . ,vi,ri}. It is noted that,
given xi(0) ∈ Rd, such a subspaceXi is unique for every i ∈ V .
Furthermore, since range(Ai) = span(T X i), it can be shown
that xi(k) ∈ Xi for all time k ∈ Z+ ∀i ∈ V . As a result, if the
sequence {x(k)} generated by (12) converges to 1⊗ x∗ for a

Fig. 3. Geometric illustration of Proof of Lemma 5. The tangent com-
ponent vt

i(k) = P T X i
vi(k) and the normal component vn

i (k) = (Id −
A†

iAi)vi(k). The normal vector satisfies vn
i (k) ⊥ Δxi(k).

point x∗ ∈ Rd as k → ∞, then the condition in the following
lemma holds.

Lemma 4: A necessary condition for the agents to achieve a
consensus under the iterative update (12) is the intersection of
all manifolds Xi is nonempty X := ∩n

i=1Xi �= ∅.
Obviously, such a point x∗ ∈ X . In addition, the intersection

set X is either a singleton or an affine subspace.
Remark 6: The condition in Lemma 4 requires a selection

of the matrix weights Ai so that ∩n
i=1Xi �= ∅. Geometrically, it

is required that the intersection of the degenerate subspaces Xi

(e.g., hyperplanes and hyperlines) in the d-dimensional space is
nonempty.

Define A†
i := V iΣ

†
iV

�
i ∈ Rd×d, where Σ†

i :=
diag(λ−1

i,1, . . . , λ
−1
i,ri

, 0, . . . , 0) ∈ Rd×d. Then, it can be shown

that A†
i is the Moore–Penrose generalized inverse of Ai, which

satisfies: 1) AiA
†
iAi = Ai, 2) A†

iAiA
†
i = A†

i , and 3) both
AiA

†
i and A†

iAi are symmetric [22]. Moreover, the orthogonal
projection matrix that projects any vector onto the tangent space
T X i can be defined as

P T X i
:= A†

iAi = V i,1:riV
�
i,1:ri

. (14)

Note that P T X i
is positive semidefinite, idempotent P 2

T X i
=

P T X i
, and contains ri unity eigenvalues and the other (d− ri)

eigenvalues are zeros.

C. Convergence Analysis

The following lemma is useful in showing the convergence
of the system (12).

Lemma 5: Let Δxi(k) := xi(k + 1)− xi(k) and vi(k) is
defined above (13). Then, for all i ∈ V , the following inequality
holds:

Δx�
i (k)vi(k) ≥

1

αiλmax
(Ai)||Δxi(k)||2. (15)

Proof: First, by left-multiplying A†
i on both sides of (13), one

has

αiA
†
iAivi(k) = A†

iΔxi(k)

⇔ vt
i(k) =

1

αi
A†

iΔxi(k) (16)

where vt
i(k) := A†

iAivi(k) = P T X i
vi(k) is the orthogonal

projection of vi(k) onto the tangent space T X i, as illustrated
in Fig. 3. Let vn

i (k) := vi(k)− vt
i(k) = (Id −A†

iAi)vi(k),
which is orthogonal to the tangent space T X i (or normal to the
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linear manifold Xi). Then, consider the inner product

Δx�
i (k)vi(k) = Δx�

i (k)(v
t
i(k) + vn

i (k))

= Δx�
i (k)v

t
i(k)

(16)
=

1

αi
Δx�

i (k)A
†
iΔxi(k)

where the second equality follows from the relation vn
i (k) ⊥

Δxi(k) (see also Fig. 3). Moreover, it is noted that A†
i ≥ 0

and from (13), Δxi(k) ⊥ ker(Ai) = ker(A�
i ) = ker(A†

i), for
all k ∈ Z+. As a result, it follows from the preceding equation
that:

Δx�
i (k)vi(k) ≥

1

αi
λmin(A

†
i)||Δxi(k)||2

=
1

αi
λ−1
max(Ai)||Δxi(k)||2

which completes the proof. �
To proceed, we definev(k) := [v�

1 (k), . . . ,v
�
n(k)]

� and con-
sider the Lyapunov function

V (x(k)) := (1/2)x�(k)Lox(k) = −(1/2)x�(k)v(k)

which is Lipschitz differentiable with Lipschitz constant LV :=
||Lo||. Furthermore, letγmin := mini∈V λ−1

max(Ai) andαmax :=
maxi∈V αi. Then, from the inequality (15) and by using a similar
argument as in Proof of Lemma 3, we obtain the following result.

Lemma 6: Suppose that the graph G is connected. Let the step
size 0 < αi < 2γmin/LV , ∀i = 1, . . . , n. Then, the Lyapunov
function V (x(k)) is nonincreasing w.r.t. (12), i.e.,

0 ≤ V (x(k + 1)) ≤

V (x(k))− αmax

γmin
||x(k + 1)− x(k)||2. (17)

Theorem 5: Suppose that the graph G is connected and
for x(0) ∈ Rdn, the constructed linear manifolds have a
nonempty intersection,X := ∩n

i=1Xi �= ∅. Then, if0 < αmax <
2γmin/LV , the sequence {x(k)} generated by (12) is bounded
and converges geometrically to a consensus point in X .

Proof: See Appendix F. �

VI. SIMULATION

A. Matrix-Weighted Consensus Under Switching Graphs

Consider a system of four agents whose state vectors are
defined in R3. The graphs of the system Gσ, σ = 1, 2, 3, 4 are
illustrated in Fig. 4(a), whose switching signal σ(k), k ∈ Z+ is
given as follows:

σ(kt) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if k = 8t or 8t+ 1

2 if k = 8t+ 2 or 8t+ 3

3 if k = 8t+ 4 or 8t+ 5

4 if k = 8t+ 6 or 8(t+ 1)− 1

. (18)

Note that Gσ(k) is jointly connected in every time interval
[kt, kt+1 − 1] = [8t, 8t+ 7], t ∈ Z+, while there is only one
positive definite/semidefinite edge in each graph Gσ(k), σ(k) ∈

Fig. 4. Consensus of four agents under (5). (a) Switching graphs
Gσ(k) of the network with P = {1, 2, 3, 4} (– positive edges; – positive
semidefinite edges). (b) Evolutions of the components of the agents’
state vectors.

{1, 2, 3, 4}. The matrix-weights of the system are given as

A12(G1) =

⎡
⎢⎣1 0 0

0 1.2 0.2

0 0.2 1

⎤
⎥⎦ ,A14(G2) =

⎡
⎢⎣ 1 0.5 0

0.5 1 0

0 0 1.3

⎤
⎥⎦

A23(G3) =

⎡
⎢⎣ 1 0.2 0

0.2 1.2 0

0 0 0

⎤
⎥⎦ ,A23(G4) =

⎡
⎢⎣0 0 0

0 1 0.2

0 0.2 1.2

⎤
⎥⎦

and are zero matrices otherwise. It is noted that A23(G3) and
A23(G4) are positive semidefinite, while it can be verified that
A23(G3) +A23(G4) > 0.

The initial vectors of the agents are given as: x1(0) =
[−1, 2, 1]�,x2(0) = [1, 3, 2]�,x3(0) = [0, 6, 3]�, andx4(0) =
[0.5, 5, 4]�. The common step size of the agents is chosen
as α = 1/3. It can be observed in Fig. 4(b) that the agents
achieve a consensus as the coordinates of xi, say xi, yi and
zi, i = 1, 2, 3, 4, converge to the same values, respectively.

B. Consensus of Multiagent Systems With Asymmetric
and Positive-Semidefinite Matrix Weights

Consider a system of five agents whose state vectors are
defined in 3D and interaction graph is connected. We associate
each agent i with a state vector xi ∈ R3. In addition, agent
i can measure the relative vectors (xi − xj) to neighboring
agents j. The initial vectors of the agents are given as x1(0) =
[−2,−2, 4]�,x2(0) = [1,−3, 2]�, x3(0) = [0, 7, 0]�,x4(0) =
[5, 1, 0]�, and x5(0) = [−1, 5, 0]�. We select the step sizes of
the agents as α1 = 1/3, α2 = 2/5, α3 = 2/7, and α4 = α5 =
2/5. In addition, the matrix weights of the agents are given as
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Fig. 5. Consensus control of five agents in R3 under consensus law
(12). State vectors of agents {1, 2} and {3, 4, 5} lie in two distinct planes.
(a) Evolutions of the agents’ state vectors (solid lines). (b) Evolutions of
the coordinates of the agents’ state vectors.

follows:

A1 = A2 =

⎡
⎢⎣ 0.6518 −0.2604 −0.3914

−0.2604 0.3086 −0.0482

−0.3914 −0.0482 0.4396

⎤
⎥⎦

A3 = A4 = A5 =

⎡
⎢⎣0.4 0 0

0 1 0

0 0 0

⎤
⎥⎦ .

Such (positive semidefinite) matrix weights are chosen, such
that x1 and x2 lie in the plane X1 : x+ y + z = 0, while the
evolutions of x3,x4, and x5 are constrained in the plane X2 :
z = 0, as illustrated in Fig. 5.

The evolutions of the agents’ state vectors generated by (12)
are depicted in Fig. 5. It is observed that the state vectors
converge to a consensus in the set X1 ∩ X2.

VII. CONCLUSION

In this article, we investigated discrete-time matrix-weighted
consensus schemes for multiagent systems over undirected and
connected graphs under various scenarios. When the network
has symmetric matrix weights, we showed that a consensus
is achieved if the agents’ step sizes are sufficiently small and
the interaction graph has a positive spanning tree. When the
network graph is time-varying, joint connectedness condition
of the network graph is sufficient for the agents to reach a
consensus. In a special case of consensus with nonsymmetric

matrix weights, under certain conditions, the agents are shown
to a achieve a consensus.

An application of the discrete-time matrix-weighted consen-
sus to distributed optimization and machine learning is left as
future work. It will be also interesting to study discrete-time
matrix-weighted consensus with asynchronous updates and over
directed graphs.

APPENDIX

A. Proof of Lemma 2

1) We first show that 2G−L > 0. Indeed, for an arbitrary
nonzero vector y = [y�

1 , . . . ,y
�
n ]

� ∈ Rnd, we have

y�(2G−L)y = y�(D +A)y

+ 2y�diag ({(||Di||+ βi)Id −Di}ni=1)y

=
∑

(i,j)∈E
(yi + yj)

�Aij(yi + yj)

+ 2y�diag ({(||Di||+ βi)Id −Di}ni=1)y > 0.

Since G is diagonal and positive definite we can write G =

G
1
2G

1
2 with G

1
2 is also a positive definite matrix. Multiplying

G− 1
2 on both sides of 2G−L > 0 yields

2Idn −G− 1
2LG− 1

2 > 0.

In addition, it is noted that G− 1
2LG− 1

2 ≥ 0 due to the positive
definiteness of G− 1

2 and the positive semidefiniteness of L.
Since the matrices G− 1

2LG− 1
2 and G−1L are similar, i.e.,

G− 1
2LG− 1

2 = G
1
2 (G−1L)G− 1

2 , they share the same spectrum.
It follows that λ(G−1L) ∈ [0, 2). Consequently,−1 < λ(Idn −
G−1L) ≤ 1 and hence ρ(Idn −G−1L) = 1. The eigenvectors
correspond to the unity eigenvalues of (Idn −G−1L) are v ∈
null(L).

We show 2) as follows. It follows from 1) that the eigenvectors
vi ∈ Rdn, i = 1, . . . l1, d ≤ l1 < dn corresponding to the unity
eigenvalues of (Idn −G−1L) are the eigenvectors of L corre-
sponding to the zero eigenvalues of L. Since the Laplacian L is
real symmetric, its eigenvectors are linearly independent, and so
are {vi}l1i=1. As a result, the unity eigenvalue of (Idn −G−1L)
is semisimple as its geometric and algebraic multiplicities are
equal. This shows 2).

B. Proof of Theorem 1

It follows from (2) and (3) we have that:

lim
k→∞

x(k) = (Idn −G−1L)∞x(0)

= (1n ⊗ Id)[u1, . . . ,ud]
�x(0) +

l1∑
i=d+1

(
u�
i x(0)

)
vi

= (1n ⊗ Id)x̂+

l1∑
i=d+1

(
u�
i x(0)

)
vi
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where x̂ := [u1, . . . ,ud]
�x(0) ∈ Rd. It is noted that vi ⊥

range(1n ⊗ Id)∀i = d+ 1, . . . , l1 due to the linear indepen-
dence of the eigenvectors of L. Moreover, such an initial vector
x(0) ⊥ range{ui}l1d+1 is contained in a zero measure set. It
then follows from the preceding relation that limk→∞ x(k) →
(1n ⊗ Id)x̂, for an arbitrary initial vector x(0) ∈ Rdn, if and
only if null(L) = 1n ⊗ Id.

We show the geometric convergence of x(k) to (1n ⊗ x̂) as
follows:

||x(k)− (1n ⊗ x̂)|| =

= ||
(
(Idn −G−1L)k − (1n ⊗ Id)[u1, . . . ,ud]

)
x(0)||

= ||(V JkV −1 − V J∞V −1)x(0)||

≤ ||diag(0,Jk
l2
, . . . ,Jk

lp
)||||x(0)||

≤ |λd+1|k||x(0)||

where |λd+1| < 1 is the second largest eigenvalue in magnitude
of (Idn −G−1L). This completes the proof.

C. Proof of Theorem 3

It is first noted that (1�
n ⊗ Id)x(k + 1) = (1�

n ⊗ Id)x(0) is
invariant with respect to (6) and so is the network centroid
x̄ = (1�

n/n⊗ Id)x(k). Let x̃i(k) = xi(k)− x̄ and x̃(k) =
[x̃�

1 (k), . . . , x̃
�
n(k)]

�. Then, we can rewrite (6) as

x̃(k + 1) = x̃(k)− αLσ(k)x̃(k). (19)

Consider the Lyapunov function V (x̃(k)) = x̃(k)�x̃(k), which
is positive definite and radially unbounded. Then, with respect
to (6) one has

V (x̃(k + 1))− V (x̃(k))

= x̃(k)�(Idn − αLσ(k))
�(Idn − αLσ(k))x̃(k)− x̃(k)�x̃(k)

= −αx̃(k)�(2Lσ(k) − αL2
σ(k))x̃(k)

≤ −(μ−1 − α)x̃(k)�L2
σ(k)x̃(k)

= −(μ−1 − α)||Lσ(k)x̃(k)||2 ≤ 0 (20)

where the first inequality follows from the fact that Lσ(k) −
(1/μ)L2

σ(k) ≥ 0 with μ = maxσ(k) ||Lσ(k)||, and in the last
inequality we have used the condition α < 1/μ. It follows
that V (x̃(k + 1)) is nonincreasing w.r.t. (6) and hence {x(k)}
is bounded. In addition, limk→∞ V (x̃(k)) =

∑k
i=1(V (x̃(i))−

V (x̃(i− 1))) + V (x̃(0)) exists. This further implies that the
sequence {V (x̃(k + 1))− V (x̃(k))} is summable and conse-
quently, limk→∞ V (x̃(k + 1))− V (x̃(k)) = 0. Thus, by (20),
we have

lim
k→∞

Lσ(k)x̃(k) = 0. (21)

Using the preceding relation, we next show that the following
relation holds for all s ∈ Z+:

lim
k→∞

Lσ(k+s)x̃(k) = 0. (22)

To proceed, using the relation x̃(k) = x̃(k + 1) + αLσ(k)x̃(k)
[due to (19)], one has

Lσ(k+s)x̃(k) = Lσ(k+s)(x̃(k + 1) + αLσ(k)x̃(k))

= Lσ(k+s)(x̃(k + 2) + αLσ(k+1)x̃(k + 1) + αLσ(k)x̃(k))

= Lσ(k+s)

(
x̃(k + s) + αLσ(k+s−1)x̃(k + s− 1) + · · ·

+αLσ(k+1)x̃(k + 1) + αLσ(k)x̃(k)
)
.

Therefore, (22) follows from the fact that
limk→∞ Lσ(k+s)x̃(k + s) = limk→∞ Lσ(k)x̃(k) = 0 for
all s ∈ Z+. Moreover, it follows from (22) that:

lim
kt→∞

Lσ(kt+s)x̃(kt) = 0 ∀s ∈ Z+.

By summing the preceding relations over s from 0 to (kt+1 −
kt − 1), we have

lim
kt→∞

kt+1−1∑
k=kt

Lσ(k)x̃(kt) = 0. (23)

Since x̃(kt) ⊥ null(
∑kt+1−1

k=kt
Lσ(k)) = range(1n ⊗ Id) due to

the joint connectedness condition in Assumption 1, we have
limkt→∞ x̃(kt) = 0. This completes the proof.

D. Proof of Lemma 3

First, it follows from (10) and (8) we have that

(x(k + 1)− x(k))�Lox(k)

= −(x(k + 1)− x(k))�G−1(x(k + 1)− x(k))

= −
n∑

i=1

1

αi
(xi(k + 1)− xi(k))

�A−1
i (xi(k + 1)− xi(k))

≤ − γmin

αmax
||x(k + 1)− x(k)||2.

Then, since ∇V is Lipschitz continuous with constant LV , we
have [23]

V (x(k + 1))− V (x(k)) ≤ (x(k + 1)− x(k))�∇V (x(k))

+
LV

2
||x(k + 1)− x(k)||2

= (x(k + 1)− x(k))�Lox(k) +
LV

2
||x(k + 1)− x(k)||2

≤ −
(
γmin

αmax
− LV

2

)
||x(k + 1)− x(k)||2

≤ 0

if 0 < αmax < 2γmin/LV .

E. Proof of Theorem 4

It follows from the nonincrease of V (x(k)) =∑
(i,j)∈E ||xi(k)− xj(k)||2 that max(i,j)∈E ||xi(k)− xj(k)||
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is bounded. Moreover, from (10), one has

(1n ⊗ Id)G
−1x(k + 1)

= (1n ⊗ Id)G
−1x(k)− (1n ⊗ Id)G

−1GLox(k)

= (1n ⊗ Id)G
−1x(k),

which implies that
∑n

i=1(αiAi)
−1xi(k) is invariant. As a

result, {x(k)} is bounded, and hence there exist a convergent
subsequence {x(kl)}, l ∈ Z+ and a limit point x† ∈ Rdn, such
that liml→∞ x(kl) = x†.

By summing up the inequalities in (11) over k from 0 to ∞,
we have

∞∑
k=0

||x(k + 1)− x(k)||2 ≤ αmax

γmin
(V (x(0))− V (x(∞)))

≤ αmax

γmin
V (x(0)).

It follows that (x(k + 1)− x(k)) is a square-summable se-
quence and hence ||x(k + 1)− x(k)|| → 0 as k → ∞. There-
fore, from (10), ||Lox(k)|| ≤ ||G−1||||x(k + 1)− x(k)|| → 0
as k → ∞. As a result, x† ∈ null(Lo) and hence x† = 1n ⊗ x∗

for a point x∗ ∈ Rd.
Since

∑n
i=1(αiAi)

−1xi(k) is invariant, we have(
n∑

i=1

α−1
i A−1

i

)
x∗ =

n∑
i=1

α−1
i A−1

i xi(0)

⇔ x∗ =

(
n∑

i=1

α−1
i A−1

i

)−1 n∑
i=1

α−1
i A−1

i xi(0),

which is a fixed point. It follows that every sequence {x(k), k ∈
Z+} converges to 1n ⊗ x∗.

F. Proof of Theorem 5

We first show the boundedness of the sequence {x(k)} gen-
erated by (12) and then prove its convergence to a consensus.

1) Boundedness Evolution: It follows from the
nonincrease of V (x(k)) =

∑
(i,j)∈E ||xi(k)− xj(k)||2 that

max(i,j)∈E ||xi(k)− xj(k)|| is bounded. Moreover, for an
arbitrary point x′ ∈ X , we can rewrite (12) as

(xi(k + 1)− x′) = (xi(k)− x′)

− αi

∑
j∈Ni

Ai ((xi(k)− x′)− (xj(k)− x′)) (24)

for all i ∈ V . Left-multiplying by α−1
i A†

i on both sides of the
above equation yields

1

αi
A†

i(xi(k + 1)− x′) =
1

αi
A†

i(xi(k)− x′)

−
∑
j∈Ni

P T X i
((xi(k)− x′)− (xj(k)− x′)) . (25)

Consider any nonzero vector vi = vt
i + vn

i , where vt
i =

P T X i
vi and vn

i = (Id −A†
iAi)vi (see, e.g., Fig. 3). Let

P T X ∈ Rd×d be the projection matrix that projects any vector

onto the tangent space T X . Note that when X is a singleton,
P T X = 0. Then, for every i ∈ V , we have

P T Xvi = P T Xv
t
i

⇔ P T Xvi = P T XP T X i
vi. (26)

Using the preceding relation and by left-multiplying P T X on
both sides of (25), for all i ∈ V we obtain

1

αi
P T XA

†
i(xi(k + 1)− x′) =

1

αi
P T XA

†
i(xi(k)− x′)

− P T X
∑
j∈Ni

((xi(k)− x′)− (xj(k)− x′)) . (27)

By adding the preceding equations over i from 1 to n, one has

P T X

n∑
i=1

α−1
i A†

i(xi(k + 1)− x′)

= P T X

n∑
i=1

α−1
i A†

i(xi(k)− x′)

⇔ P T X

n∑
i=1

α−1
i A†

i(xi(k + 1)− x′)

= P T X

n∑
i=1

α−1
i A†

i(xi(0)− x′),

which is invariant for all k ∈ Z+. Consequently, the sequence
{x(k)} generated by (12) is bounded.

2) Convergence to a Consensus: By summing up the in-
equalities in (17) over k from 0 to ∞, we have

∞∑
k=0

||x(k + 1)− x(k)||2 ≤ γ−1
minαmax(V (x(0))− V (x(∞)))

≤ γ−1
minαmaxV (x(0)).

It follows that ||x(k + 1)− x(k)|| → 0 or equivalently
x(k) → x̂ := [x̂�

1 , . . . , x̂
�
n ]

� ∈ Rdn, as k → ∞. Furthermore,
from (25), for an arbitrary point x′ ∈ X , we have that

P T X i

∑
j∈Ni

((x̂i − x′)− (x̂j − x′)) = 0∀i ∈ V

⇔ |Ni|(x̂i − x′) =
∑
j∈Ni

P T X i
(x̂j − x′)∀i ∈ V (28)

where the last equality follows from P T X i
(x̂i − x′) = (x̂i −

x′)∀i ∈ V .
We define the index set I := {i ∈ V : i = argmaxi∈V||x̂i −

x′||}. Then, consider an agent i ∈ I, we have∥∥ ∑
j∈Ni

P T X i
(x̂j − x′)

∥∥ ≤
∑
j∈Ni

||P T X i
(x̂j − x′)||

≤
∑
j∈Ni

||x̂j − x′|| ≤ |Ni|||x̂i − x′||

where the equality holds only if x̂j ∈ Xi and ||x̂j − x′|| =
||x̂i − x′||, for all j ∈ Ni. This combines with (28) lead to
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x̂j ≡ x̂i∀j ∈ Ni, and consequently, j ∈ I∀j ∈ Ni. By repeat-
ing the above argument for all agents j ∈ I until all the agents
in the system have been visited (due to the connectedness of the
graph G), we obtain x̂i ≡ x∗ ∈ X∀i ∈ V .

The remainder of the proof is amount to computing an
explicit expression for the consensus point x∗. Let Ā :=∑n

i=1 α
−1
i A†

i ≥ 0. For an arbitrary point x′ ∈ X , we have

P T X Ā(x∗ − x′) = P T X

n∑
i=1

1

αi
A†

i(xi(0)− x′)

⇔ P T X ĀP T X (x
∗ − x′) = P T X

n∑
i=1

1

αi
A†

i(xi(0)− x′)

where we use the relation P T X (x
∗ − x′) = (x∗ − x′). It is

noted that range(P T X ) ⊆ range(Ā) and hence (x∗ − x′) ∈
range(P T X ) = range(P T X ĀP T X ). Therefore, the consensus
point x∗ is uniquely defined as

x∗ = x′ + (P T X ĀP T X )
†P T X

n∑
i=1

1

αi
A†

i(xi(0)− x′)

where (P T X ĀP T X )
† is the Moore–Penrose inverse of

P T X ĀP T X .
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