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Abstract

The warming ocean is expected to be more phosphorus (P) limited due to increasing stratification. P is a
major limiting nutrient of marine diazotrophs, while the interactive effect of temperature elevation and P limi-
tation on marine unicellular diazotrophs is unknown. Here, we examined the physiology of a major unicellular
diazotroph, Crocosphaera watsonii, grown under P-limited and P-replete conditions at 25°C, 28°C, and 31°C.
Growth, N, and CO, fixation rates of C. watsonii increased with temperature under P limitation, and growth
rates were similar between P-limited and P-replete treatments at 31°C. At high temperature, the P use efficiencies
for N, and CO, fixation under P limitation were more than twice higher than under P-replete conditions.
Expression of genes involved in P acquisition, intracellular recycling, and substitution in C. watsonii was
upregulated at higher temperature under P limitation. These results suggest that P limitation in C. watsonii was
relieved with elevated temperature through various temperature-dependent economic strategies on P metabo-
lism. Through meta-analysis of a field data set using general additive model, we found that C. watsonii abun-
dance was correlated mainly with temperature and phosphate, and predicted to increase significantly with

further warming.

Nitrogen (N)-fixing (diazotrophic) cyanobacteria play a cru-
cial role in marine biogeochemical cycles, particularly in oligo-
trophic waters, where diazotrophic cyanobacteria are the
major new N source of primary productivity and they mediate
catbon (C) and N export of the euphotic zone (Karl
et al. 1997; Mulholland 2007). Trichodesmium is the most well-
studied diazotrophic cyanobacterium, which has long been
regarded as a dominant N, fixer in the ocean (Capone
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et al. 1997; Bergman et al. 2013; Zehr and Capone 2020).
However, diverse unicellular cyanobacteria were later discov-
ered abundant in tropical and subtropical oceans and con-
ducting equal or more N, fixation compared with
Trichodesmium (Moisander et al. 2010; Martinez-Pérez
et al. 2016). Marine unicellular diazotrophic cyanobacteria
consist of three phylogenetically distinct groups, including
UCYN-A, UCYN-B, and UCYN-C (Zehr 2011). So far, UCYN-B
(Crocosphaera watsonii) and UCYN-C (Cyanothece) have been
cultivated (Webb et al. 2009; Taniuchi et al. 2012), but
UCYN-B is more abundant than UCYN-C in the open ocean
(Shiozaki et al. 2017; Chen et al. 2019).

C. watsonii has been frequently used as a major model
organism for understanding the physiology of marine unicel-
lular diazotrophic cyanobacteria (Fu et al. 2014; Masuda
et al. 2018; Yamaguchi et al. 2020). To date, culture-based
experiments have shown that a number of environmental fac-
tors appear to affect the physiology of C. watsonii, such as
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temperature and nutrient availability, especially phosphorus
(P) and iron (Fe) (Fu et al. 2014; Zhu et al. 2020; Yang
et al. 2021). The physiological rates of C. watsonii showed
unimodal thermal response curves, with the optimal tempera-
tures for growth, CO, and N, fixation ranging 28-30°C
(Fu et al. 2014). Growth and N, fixation of C. watsonii can be
limited by either P (Zhu et al. 2020), or Fe (Yang et al. 2021),
as well as the combination of the two (Garcia et al. 2015).

Global warming is projected to lead to about a 3°C increase
in the mean sea surface temperature by the end of this century
due to the high anthropogenic CO, emission (Collins
et al. 2013). In particular, ocean warming for the surface
waters will be the strongest in the tropical and subtropical
regions (Stocker et al. 2013), where the major domains of the
marine diazotrophic cyanobacteria are found (Cheung
et al. 2020; Zehr and Capone 2020). The increase in sea sur-
face temperature will intensify the stratification of surface
ocean and subsequently reduce the replenishment of nutrients
(e.g., nitrate and phosphate) from the subsurface water
(Doney 2006). The decline of N supply is proposed to limit
nondiazotrophic phytoplankton growth but select dia-
zotrophic cyanobacteria that can fix N, (Karl et al. 2001).
Thus, diazotrophic cyanobacteria may experience more
P-impoverished condition in the warming ocean (Hutchins
and Fu 2017), especially in oligotrophic waters, where P is
mainly delivered to the surface water from deeper water via
mixing and advective processes (Karl 2014). P is crucial to the
growth and metabolism of organisms since it is a key element
in nucleic acids, phospholipids and other important biomole-
cules (Karl 2014). Many studies have suggested that P limits
N, fixation by diazotrophs in marine ecosystems (Webb
et al. 2007; Sohm et al. 2008; Turk-Kubo et al. 2012). In con-
trast, atmospheric Fe input into the surface ocean was pro-
posed to increase under the global climate change (Hutchins
and Boyd 2016). Hence, marine diazotrophs are expected to
face both temperature elevation and more severe P limitation
in the projected warming ocean, whereas how they respond
to the interaction of temperature elevation and P limitation
remains obscure. Considering the ecological importance of
the diazotrophic cyanobacteria in supporting the fertility, pro-
ductivity, and C sequestration of the ocean (Zehr and
Capone 2020), it is important to understand the physiological
responses of marine diazotrophic cyanobacteria under the pro-
posed conditions in the future ocean.

So far, studies of interactive effects of temperature and P
availability on marine diazotrophic cyanobacteria were only
limited to Trichodesmium, in which different Trichodesmium
strains showed inconsistent responses to warming under
P-limited conditions (Hutchins et al. 2007; Qu et al. 2019). It
should be noted that C. watsonii and Trichodesmium have dif-
ferent growth thermal limits and optimum growth tempera-
tures (Fu et al. 2014). These two N, fixers also differ in P
metabolism. In contrast to Trichodesmium, C. watsonii is
unable to utilize phosphonates, which roughly account for
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25% of the dissolved organic P in the ocean (Clark et al. 1998;
Pereira et al. 2019). In addition, due to its smaller cell size,
C. watsonii has larger cell surface area to volume ratio for the
uptake of P compared to Trichodesmium (Finkel et al. 2009).
Therefore, investigating the physiological responses of unicel-
lular diazotrophic cyanobacteria to temperature elevation and
P limitation is in critical need. In addition, none of the previ-
ous relevant studies has studied the underlying molecular
mechanisms (Hutchins et al. 2007; Qu et al. 2019). Various
strategies for overcoming P limitation have been proposed in
cyanobacteria (Pereira et al. 2019), including high-affinity
scavenging for extracellular inorganic phosphate, utilizing
organic P compounds, and lowering cellular P requirement by
element substitution (Dyhrman and Haley 2006; Van Mooy
et al. 2006; Pereira et al. 2019). It has also been reported that
C. watsonii has versatile genetic potential of P acquisitions
(Pereira et al. 2019). However, it is uncertain whether/how
temperature would affect the processes of P metabolism and
hence mediate the physiological responses of C. watsonii to P
limitation in a warming ocean.

In order to better predict the fate of unicellular dia-
zotrophic cyanobacteria as well as N, fixation in the future cli-
mate scenario, the response of C. watsonii to the interactive
effects of temperature elevation and P limitation was resolved
with both laboratorial experiments and a meta-analysis of a
field observational data set in the current study. We examined
the physiological responses including growth and N, and CO,
fixation rates, as well as the molecular responses (i.e., the
expression of P metabolism related genes) of C. watsonii under
P-limited (200 nmol L™!) and P-replete (45 ymol L™!) condi-
tions at three temperatures (25°C, 28°C, and 31°C). Besides, a
meta-analysis on a global data set of C. watsonii abundance
was also conducted to provide additional evidence of the
effects of temperature and P availability on C. watsonii in the
real ocean.

Materials

Cell culturing and experimental design

C. watsonii WH8501 cultures were maintained in N-free
Scripps Oceanographic medium (Tuit et al. 2004), prepared
with 0.2 um filtered artificial seawater and 36 ymol L™!
Na,HPO,. Cultures were grown in polycarbonate bottles at the
light intensity of 80 umol photons m * s~! with a 12 : 12-h
light : dark cycle. Cells were acclimated at three temperatures
(25°C, 28°C, and 31°C) and diluted with fresh medium every
2 weeks for at least 6 months. To acclimate the cultures to P-
limited conditions, we transferred half volume of cultures to
the equal volume of fresh P-limited (200 nmol L~! phosphate)
medium every 3 d. After repeating that for a number of times
and the culture reached the targeted phosphate concentration,
each bottle of culture was diluted every 3—4 d to the initial cell
density of around 5 x 10* cells mL~' with fresh P-limited
medium. The cell abundance was checked using a Becton-
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Dickinson FACSCalibur flow cytometer. Acclimation was con-
firmed by steady-state growth for at least three generations
(no significant difference in growth rates). The acclimation of
P-replete (45 ymol L' phosphate) cultures was conducted in
the same as P-limited cultures.

After acclimation, the cultures were grown in triplicates of
500-mL polycarbonate bottles under six treatments that con-
sisted of factorial combinations of two phosphate concentra-
tions (P-limited, 200 nmol L™' phosphate; and P-replete,
45 ymol L~! phosphate) and three temperatures (25°C, 28°C,
and 31°C). Growth rates were determined during a 3-d growth
cycle, while N, and CO, fixation rates, particulate C, N and P,
and cell size were measured at the end of a 3-d growth cycle.

Growth rate measurement

Growth rates of C. watsonii WH8501 were calculated by
determining the changes in cell abundance during a 3-d
growth cycle. Growth rate (4, d~') was calculated as: u = In
(C5/Cy)/(t, — t1), where C, and C; were the cell abundances
(cells mL~') at t, and t;, respectively. The samples (1.8 mL) for
determining the cell abundance were collected from each bot-
tle, fixed with 50 uL 20% paraformaldehyde solution (Guo
et al. 2014), and preserved at —80°C until analysis with a
Becton-Dickinson FACSCalibur flow cytometer.

N, and CO, fixation rates measurement

N, and CO, fixation rates were determined using the >N,
gas tracer and '3C-tracer addition method, respectively
(Hama et al. 1983; Montoya et al. 1996; Mulholland and
Bernhardt 2005). Briefly, 3 h before the onset of the dark
period, each 60-mL serum bottle was filled with culture sam-
ples from a treatment replicate but leaving some headspace
and 64l of 0.2 molL™' NaH'3*CO; (Sigma-Aldrich) was
added to each bottle. Serum bottles were then topped up with
cultures. After closing the bottles with Telfon-coated butyl
rubber septum caps, 0.5 mL of N, gas (Cambridge Isotope
Laboratories) was injected into each serum bottle with a
gas-tight syringe. All the samples were incubated for 24 h
at designated temperatures. After incubations, the samples
were filtered onto precombusted (550°C, 5 h) GF/A filters
(Whatman) and stored at — 80°C before analysis using a con-
tinuous flow isotope ratio mass spectrometer (CF-IRMS;
Isoprime, GV Instruments). N, and CO, fixation rates were
calculated as described in Montoya et al. (1996) and then
normalized to total biomass of each sample given that the cell
size of C. watsonii changed with temperature and phosphate
concentration.

Elemental analysis

Cellular particulate organic C and N were determined
together with their isotopic compositions using a continuous
flow isotope ratio mass spectrometer coupled with an elemen-
tal analyzer (Eurovector 3000 Series). For the measurement of
particulate organic P, 50/100 mL subsamples from each
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treatment replicate were filtered onto precombusted (550°C,
5 h) GF/A filters (Whatman) and stored at — 80°C before anal-
ysis using wet oxidation method (Pujo-Pay and
Raimbault 1994).

Phosphorus use efficiency

The phosphorus use efficiencies (PUEs) for N, and CO, fix-
ation were defined as the quantity of N, or CO, fixed per unit
time per unit cellular P, respectively (Qu et al. 2019). In the
calculation of N-specific and C-specific PUEs, N, and CO, fixa-
tion rates were normalized to cellular particulate organic P,
respectively.

Cell size measurement

The cell size of C. watsonii WH8501 at each treatment was
measured by the microscopic observation. To avoid the effects
of diel variation in cell size of C. watsonii (Mohr et al. 2010),
samples from different treatments were collected simulta-
neously. Samples (1 mL) collected from each treatment were
fixed with glutaraldehyde (0.5% final concentration) and then
filtered onto 0.8-um pore size mixed cellulose esters mem-
brane (Sangon Biotech) dyed with Sudan Black B. The filters
were mounted on glass slides and stored at — 20°C. Cell diam-
eters were determined using an Olympus BXS51 microscope
(Olympus) equipped with a camera at x1000 magnification.
Images were analyzed with SPOT Advance software (Diagnostic
Instruments). The cell diameters of more than 15 cells were
observed and measured.

Quantifying expression levels of the genes involved in P
metabolism

Given that the expression of the genes involved in P
metabolism in C. watsonii exhibited a diel pattern (Shi
et al. 2010), RNA samples were collected from each treatment
replicate in the middle of light and dark period, respectively.
The samples (50 mL) were filtered onto 1-um pore size polycar-
bonate filter membranes under low vacuum pressure. Each
membrane sample was then placed in a sterilized centrifuge
tube and immediately stored at — 80°C after adding 1 mL TRI-
zol Reagent (Ambion, Life Technologies). RNA was extracted
using the TRIzol Reagent and PureLink RNA Mini Kit
(Ambion, Life Technologies) and subsequently reverse-
transcribed into cDNA using HiScript® III RT SuperMix for
quantitative polymerase chain reaction (qPCR) with gDNA
wiper (Vazyme) according to the manufacturers’ protocols.

Relative transcript abundances of the genes involved in P
metabolism were quantified using qPCR assays with the
primers designed in a previous study (Pereira et al. 2016). We
examined the transcription of 10 P metabolism related genes
that involved in gene regulation (phoB, phoU, and phoH), P
scavenging (pstS, sphX, and phoA), substitution (sqdB), and
recycling (ppX, ppK, and ppA) in response to P limitation at
different temperatures. Each qPCR reaction was run with SYBR
Green SuperMix (Roche Diagnostics GmbH), containing 5 uL
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SYBR Green SuperMix, 1 ul. forward and reverse primers
(10 pmol/ul), 3.5 uL ultrapure distilled water (Invitrogen,
Thermo Fisher Scientific Corp.), and 0.5 uL cDNA. The reac-
tions were run with triplicates in 384-well plates on a Light
Cycler 480 (Roche Diagnostics GmbH) with the following
conditions: 50°C for 2 min, 95°C for 10 min, followed by
45 cycles of 95°C for 15 s and 60°C for 1 min. No-template
controls were run in triplicates during each gqPCR. The
2724C method was used to normalize the expression level of
each gene (Livak and Schmittgen 2001). The threshold cycle
(Ct) value of each gene was normalized to a housekeeping
gene (rmpB, encoding the RNA component of RNase P), whose
transcript abundance was found not to vary under different
nutrient and temperature conditions in marine cyanobacteria
(Gomez-Baena et al. 2009; Chappell and Webb 2010). A previ-
ous study also showed that the transcription of mpA gene
(encoding the protein component of RNase P) in C. watsonii
WHS8501 does not show a diel variation (Shi et al. 2010).

Analyzing the nifH gene abundance of C. watsonii in field
using general additive model

We used general additive model (GAM) to analyze the rela-
tionship between the nifH gene abundance of C. watsonii and
environmental factors in the global ocean using a data set
compiled by Tang and Cassar (2019). This data set contains
nifH gene abundance of C. watsonii estimated by qPCR using
the DNA samples collected from the Pacific Ocean, Atlantic
Ocean, Indian Ocean, and their marginal seas, together with
the corresponding environmental factors (i.e., temperature,
phosphate, nitrate, and nitrate to phosphate ratio) (Tang and
Cassar 2019). The environmental factors that showed signifi-
cant relationships (p < 0.05) with the nifH gene abundance of
C. watsonii were selected as the predictors for further con-
structing a GAM to predict the nifH gene abundance of
C. watsonii. The data set of C. watsonii nifH gene abundance
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was partitioned randomly into training (90%) and testing
(10%) data sets using package caTools in R (Tuszynski 2012).
The training data set was used to construct the model. The
environmental factors in the testing data set were input into
the model to predict the corresponding C. watsonii nifH gene
abundance. The observed and predicted values of the
C. watsonii nifH gene abundance of the testing data set were
compared to evaluate the predictive accuracy of the model. To
estimate the changes of C. watsonii nifH gene abundance
under warming and P limitation, we predicted C. watsonii nifH
gene abundance with altered environmental predictors using
this model, in which the temperature and phosphate concen-
tration were increased by 4°C and reduced by five times,
respectively. The GAM analysis was conducted using the pack-
age “mgcv” in R (Wood and Wood 2015).

Statistical analysis

Two-way ANOVA was used to test the significance of the
differences in the interactive effects of temperature and phos-
phate concentration on C. watsonii, and one-way ANOVA was
applied to test the significance of the differences for both P
levels among different temperatures. The Tukey multiple com-
parison test was used to determine the significance of the dif-
ferences between individual treatments. All statistical analyses
were performed with a SPSS 26.0 software. The significance
level of 0.05 was set.

Results

Growth rates and cell size of C. watsonii

Growth rates of C. watsonii WH8501 under P-limited condi-
tions were significantly lower than under P-replete conditions
regardless of the temperature (two-way ANOVA, p < 0.001),
indicating that the low phosphate concentration inhibited the
growth of C. watsonii (Fig. 1A). Under P-replete conditions,
growth rates of C. watsonii at 31°C were significantly lower

B

I

Cell diameter (um)
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|

25°C 28°C 31°C
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25°C 28°C 31°C

P-replete

Fig. 1. (A) Growth rates (d~") and (B) cell size (um) of Crocosphaera watsonii WH8501 under P-limited and P-replete conditions (200 nmol L~ and
45 umol L") at three temperatures (25°C, 28°C, and 31°C). Given morphological data (e.g., cell size) were generally more variable than the physiologi-
cal data (e.g., growth rates), cell diameters of C. watsonii were shown as a box plot. Values denote mean + standard deviation of biological replicates

under each treatment (n = 3 for growth rates, n > 15 for cell size).
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than at 25°C and 28°C (p <0.05), with the highest growth
rates at 28°C (Fig. 1A). In contrast, the growth rates of
C. watsonii increased with rising temperature (i.e., from 25°C
to 31°C) under P-limited conditions (Fig. 1A). Meanwhile, the
differences among the growth rates under P-limited and
P-replete treatments decreased with increasing temperature.
Specifically, P limitation lowered the growth rates of C.
watsonii by 35% at 25°C, 21% at 28°C and 6% at 31°C, which
suggested that elevated temperature lessened the effects of P
limitation and almost relieved P limitation on the growth of
C. watsonii at 31°C (Fig. 1A).

Both the temperature (two-way ANOVA, p<0.01) and P
availability (two-way ANOVA, p < 0.01) had a significant effect
on cell diameters (pm) of C. watsonii. Increased temperature
resulted in a decrease of cell size in the P-limited cultures, with
the cell diameters decreasing from 25°C to 28°C by 23% and
to 31°C by 33% (Fig. 1B). However, the cell diameters in the
P-replete cultures did not vary significantly among different
temperatures (p > 0.05, Fig. 1B). At 25°C, the cell diameters in
the P-limited cultures were much larger than those in the
P-replete cultures (p < 0.05, Fig. 1B), while there was no signifi-
cant difference between these two P levels at 28°C and 31°C
(p > 0.05, Fig. 1B).
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N, and CO, fixation rates

Both temperature (two-way ANOVA, p <0.01) and P avail-
ability (two-way ANOVA, p < 0.05) significantly affected N,
fixation rates of C. watsonii. Under P-limited and P-replete
conditions, elevated temperature resulted in an increase in N,
fixation rates, but no significant difference was observed
among different temperatures under P-replete conditions
(p > 0.05, Fig. 2A). In contrast, under P-limited conditions, N,
fixation rates did not change significantly from 25°C to 28°C
(p > 0.05) and increased by 246% from 25°C to 31°C (p < 0.05,
Fig. 2A). Thus, as with growth rates, elevated temperature
greatly enhanced the N, fixation capabilities of C. watsonii
under P-limited conditions.

CO, fixation rates were also affected by temperature (two-
way ANOVA, p<0.01) and P availability (two-way ANOVA,
p<0.001). Under P-limited conditions, CO, fixation rates
increased greatly by 495% from 25°C to 31°C (p <0.05),
though the difference between 28°C and 31°C was not signifi-
cant (p > 0.05, Fig. 2B). Under P-replete conditions, CO, fixa-
tion rates reached a maximum at 28°C, significantly higher
than at 25°C and 31°C (p<0.05, Fig. 2B). Hence, elevated
temperature also had a stronger positive effect on the CO, fix-
ation capabilities of C. watsonii under P-limited conditions
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Fig. 2. (A) N, fixation rates (ng N mg~' h™"), (B) CO, fixation rates (ng C mg~' h™"), (€) N-specific PUE (ng N h~' ug P~"), (D) C-specific PUE (ng C
h™! ug P~ of Crocosphaera watsonii WH8501 under P-limited and P-replete conditions (200 nmol L' and 45 ymol L") at three temperatures (25°C,
28°C, and 31°C). Values denote mean =+ standard deviation of biological replicates under each treatment (n = 3).
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than under P-replete conditions. The differences of CO, fixa-
tion rates between P-limited and P-replete cultures were larger
than those of N, fixation rates (Fig. 2A,B).

Phosphorus use efficiency

The PUE for N, fixation (ng Nh™' ug~! P) under P limita-
tion was higher than under P-replete conditions regardless of
the temperature (two-way ANOVA, p < 0.05, Fig. 2C). Under P
limitation, the PUE for N, fixation increased slightly from
25°C to 28°C (p > 0.05) and increased significantly by 144%
from 25°C to 31°C (p < 0.05, Fig. 2C). Under P-replete condi-
tions, the PUE for N, fixation increased slightly with rising
temperature, although no significant difference was observed
among different temperatures (p > 0.05, Fig. 2C). The PUE for
CO, fixation (ng C h™' ug~! P) increased by eightfold from
25°C to 31°C in the P-limited cultures (p <0.05, Fig. 2D).
However, under P-replete conditions, the PUE for CO, fixation
was the highest at 28°C, which was significantly higher than
that at 25°C and 31°C (p <0.05, Fig. 2D). For both N, and
CO, fixation, the PUEs showed thermal response patterns sim-
ilar to the corresponding rates (Fig. 2).

Expression levels of P metabolism genes

Comparing with the P-replete cultures, the genes related to
P scavenging (pstS) and the associated regulator (phoU) were
significantly upregulated in the P-limited cultures at all tested
temperatures (p < 0.05, Fig. 3A). Specifically, the expression of
pstS gene increased 3- to 13-fold under P-limited conditions,
while the expression levels of phoU gene in the P-limited
cultures were about 4-fold higher than in the P-replete
cultures (Fig. 3A). The expression of another P scavenging
gene (sphX) increased significantly in the P-limited cultures
compared to the P-replete cultures at high temperature
(i.e., threefold at 28°C and eightfold at 31°C) (p<0.05,
Fig. 3A). The genes involved in degradation of polyphosphate
(polyP) (ppX) and regulation of phosphate transport (phoB)
were only upregulated in the P-limited cultures at 31°C
(p <0.05, Fig. 3A).

To explore at the molecular level how C. watsonii responds
to ocean warming under P limitation, we compared the
expression levels of the genes involved in P metabolism with
rising temperature under P-limited and P-replete conditions
(Figs. 3B,C). With increasing temperature, P-limited
C. watsonii significantly upregulated several genes involved in
P scavenging (pstS and sphX) and substitution (sqdB), gene reg-
ulation (phoB and phoH), and intracellular P recycling (ppA
and ppK) (p <0.05, Fig. 3B). The expression levels of these
genes were twofold to fourfold higher at 28°C and 31°C than
at 25°C under P limitation (Fig. 3B). The expression of the
genes involved in regulating the phosphate transport (phoU)
and hydrolyzing dissolved organic P (phoA) did not change
significantly with increasing temperature under P limitation
(p >0.05, Fig. 3B). Under P-replete conditions, ppA gene was
significantly upregulated with increasing temperature
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(p <0.05, Fig. 3C), while the genes involved in P scavenging
(pstS and sphX), polyP regeneration (ppX and ppK) and tran-
scriptional regulation (phoB) were downregulated with increas-
ing temperature (p < 0.05, Fig. 3C).

Environmental determinants and prediction of the nifH
gene abundance of C. watsonii in field

Among all the tested physicochemical factors, temperature
and phosphate showed significant relationships with the nifH
gene abundance of C. watsonii as revealed by the GAM, in
which these two factors explained 73.2% variation of the nifH
gene abundance of C. watsonii. Temperature showed a positive
and strong relationship with the nifH gene abundance of
C. watsonii (p value < 2 x 107'®), while phosphate showed a
slightly negative correlation with the nifH gene abundance of
C. watsonii (p value = 0.0086) (Figs. 4A,B). These two factors
were further used for constructing a GAM (C. watsonii nifH
gene abundance ~ s [temperature] + s [phosphate]) that was
used to predict the nifH gene abundance of C. watsonii under
the ambient, high temperature (temperature + 4°C; phosphate
concentration unchanged) and high temperature and low
phosphate (temperature + 4°C; phosphate concentration
reduced by five times) conditions. The predicted nifH gene
abundance of C. watsonii with the ambient temperature and
phosphate concentration was similar to the observed nifH
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gene abundance in both training (* = 0.72) and testing
(* = 0.66) data sets. When the temperature was increased by
4°C, the average nifH gene abundance of C. watsonii was
predicted to increase from 107 to 10® nifH gene copies m 3
(Fig. 4C). Under the high temperature conditions (+ 4°C), P
limitation was predicted to slightly increase the nifH gene
abundance of C. watsonii (Fig. 4C).

Discussion

Interactive effects of warming and P limitation on the
physiological rates of C. watsonii

As revealed by the incubation experiments, P limitation
had a negative impact on growth, N, and CO, fixation rates
of C. watsonii in general (Figs. 1, 2), which agreed with previ-
ous studies (Garcia et al. 2013b; Zhu et al. 2020). However, we
found that these physiological rates of C. watsonii increased
with temperature under P limitation. As such, the growth rates
of C. watsonii under P-limited and P-replete conditions became
similar at 31°C (Fig. 1A). Moreover, the PUEs for N, and CO,
fixation in C. watsonii increased with temperature under P lim-
itation (Fig. 2C,D). These results suggested that the impact of
P limitation on C. watsonii is temperature dependent and high
temperature (31°C) can relieve the P limitation of C. watsonii.
Similarly, warming was also found to promote growth, CO,
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Fig. 4. Partial effects of (A) temperature and (B) phosphate concentration on the abundance of Crocosphaera watsonii (nifH gene abundances) as rev-
ealed by a GAM (C. watsonii nifH gene abundance ~ s (temperature) + s (phosphate); * = 0.72; deviance explained = 73.2%). (C) Predicted abundances
of C. watsonii at current (ambient temperature and phosphate concentration), high temperature (temperature + 4°C; phosphate concentration
unchanged), and high temperature and low phosphate conditions (temperature + 4°C; phosphate concentration reduced by five times). The prediction

was conducted using the GAM.
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and N, fixation rates of Trichodesmium erythraeum
GBRTRLI101 under P limitation (Qu et al. 2019), despite many
physiological differences between Trichodesmium and

C. watsonii (e.g., optimal growth temperature, thermal range,
P metabolism, and cell size). Besides, although growth rates
were similar between P-limited and P-replete cultures at high
temperature (Fig. 1A), CO, fixation rates were still low in P-
limited cultures relative to the other physiological rates at
high temperature (Fig. 2B). These results suggested that
growth and CO, fixation may not be closely coupled in
C. watsonii in response to P limitation. In other words, C.
watsonii does not require as much C as it fixes under P-replete
conditions for survival. It has been found that C. watsonii
formed carbohydrate granules for storing excessively fixed C
under nutrient sufficient conditions (Dron et al. 2012). In con-
trast, the inhibitory effect of P limitation on N, fixation was
relatively milder compared to CO, fixation (Fig. 2). It has also
been reported that N, and CO, fixation were not tightly
coupled or co-regulated in diazotrophic cyanobacteria (Gallon
et al. 2002).

We compared our findings with another study that investi-
gated the thermal effects on Fe limitation in C. watsonii (Yang
et al. 2021). Higher temperatures enhanced growth, CO, and
N, fixation rates of C. watsonii under both Fe and P limitation.
In addition, warming increased PUEs and Fe use efficiencies
for N, and CO, fixation under P and Fe limitation, respec-
tively, with the peaks corresponded with optimal growth tem-
peratures. Collectively, these findings suggested that warming
may increase the efficiency of P and Fe utilization of C.
watsonii, relieve the limitation of both nutrients, and thus
allow C. watsonii to overcome the oligotrophic conditions in
the future ocean. This also agreed with the result of meta-
analysis that the nifH gene abundance of C. watsonii in field
was positively correlated with temperature (Fig. 4). Neverthe-
less, some differences in the thermal responses of C. watsonii
were also observed between these two studies. For example,
under Fe limitation, the growth, CO, and N, fixation rates of
C. watsonii increased from 22°C to 27°C and then decreased as
temperature further increased from 27°C to 32°C (Yang
et al. 2021). In contrast, these physiological rates increased
continuously from 25°C to 31°C under P limitation (Figs. 1A,
2). In addition, PUEs for N, and CO, fixation were the highest
at 31°C under P limitation, while Fe use efficiencies were the
highest at 27°C under Fe limitation. These differences implied
that the underlying mechanisms that relieve the P and Fe lim-
itation of C. watsonii at elevated temperature might be differ-
ent. Therefore, omics approaches (e.g., metatranscriptomics
and proteomics) are needed to examine and compare the ther-
mal responses of C. watsonii under P and Fe limitation. In
addition, the differences between these two studies could also
be also due to that different strains of C. watsonii were used.
C. watsonii consists of two distinct phenotypic groups differ-
entiated with cell size (Webb et al. 2009). It has been reported
that the large cell group (e.g.,, WHO000S5, used in Yang
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et al. 2021) is equipped with genetic capabilities that are
absent from the small cell group (e.g., WH8501, used in this
study), such as P metabolism and Fe stress response genes
(Bench et al. 2016). Hence, more strains of C. watsonii should
be tested in the future studies to better understand the physio-
logical responses of this important N, fixer to the warmer and
more oligotrophic environment of the future ocean.

In addition to C. watsonii, the P and Fe limitation of
Trichodesmium were also found relieved at high temperature,
which were also attributed to thermally driven increases in
PUEs and Fe use efficiencies (Jiang et al. 2018; Qu et al. 2019).
All these results collectively explained why diazotrophic cya-
nobacteria are thriving in warm and oligotrophic waters
(Sohm et al. 2011) and implied that diazotrophic cyano-
bacteria could be selected and flourishing in a future warmer
ocean. It is projected that Trichodesmium and C. watsonii could
increase their N, fixation rates by ~ 22% and ~ 91%, respec-
tively, from 2010 to 2100 under the IPCC RCP 8.5 warming
scenario, thereby increasing the relative importance of
C. watsonii as new N source in the future warming of Fe-
limited ocean (Jiang et al. 2018; Yang et al. 2021). Additional
research efforts are needed to predict the responses of N, fixa-
tion rates of different diazotrophic cyanobacteria to P-limited
and even Fe and P co-limited conditions in the warming
ocean.

Molecular mechanisms for relieving P limitation in
response to warming

As revealed by qPCR analysis, the expression of the genes
involved in P scavenging and metabolism was influenced by
both P availability and temperature (Fig. 3), suggesting the
potential underlying mechanisms that led to the alleviation of
P limitation of C. watsonii under elevated temperature (Fig. 5).
Under P limitation, the expression of high-affinity phosphate
transporters (pstS and sphX) and the associated transcriptional
regulator (phoB) was upregulated as temperature increased
(Figs. 3, 5). The phoB regulates transcription of the genes
encoding high-affinity phosphate transporters in response to
P availability (Wanner 1993; Reistetter et al. 2013). Hence, our
result implied that elevated temperature increases the dis-
solved inorganic P uptake through high-affinity phosphate
transporters (pstS and sphX) and associated transcriptional reg-
ulator (phoB) under P limitation (Fig. 5). Besides, the transcrip-
tion of sqdB gene that encodes sulfolipid biosynthesis protein
was upregulated with temperature under P-limited conditions
(Figs. 3, S5). Sulfolipid was reported to substitute the
P-containing phospholipid in cyanobacteria under P-limited
conditions (Van Mooy et al. 2009). Although our results
showed that P limitation did not upregulate the expression of
sqdB gene in C. watsonii at normal growing temperature,
which was consistent with previous studies (Van Mooy
et al. 2009; Pereira et al. 2016), rising temperature can boost
up the expression of sqdB gene under P limitation (Fig. 3).
C. watsonii could reduce their P requirement by enhancing the
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substitution of sulfolipid for phospholipid under higher tem-
peratures (Fig. 5). Moreover, the transcription of the genes for
intracellular P recycling (ppK and ppA) increased with rising
temperature under P limitation (Figs. 3, 5). In cyanobacteria,
the polyP kinase ppK can hydrolyze ATP into polyP (serves as cel-
lular phosphate pool) as well as form ATP from polyP (Lin
et al. 2016). The ppA gene (encoding inorganic pyrophosphatase)
is responsible for the pyrophosphate hydrolysis (Gémez-Garcia
et al. 2003). The upregulation of ppK and ppA suggested that the
increasing utilization and recycling of intracellular P may be a
key strategy for C. watsonii to cope with P stress at high tempera-
ture (Fig. 5). In contrast, Pscavenging (pstS, sphX, and phoB) and
polyP metabolism genes (ppX and ppK) were downregulated with
increasing temperature under P-replete conditions (Figs. 3, 5). It
could be because that C. watsonii does not need to enhance P
scavenging and metabolism under P-replete conditions.

The growth rate hypothesis proposes that organisms with
higher growth rates require greater P rich ribosomal RNA to
sustain rapid protein synthesis rates (Elser et al. 1996; Sterner
and Elser 2002; Gillooly et al. 2005). According to the growth
rate hypothesis, the P requirement of fast-growing organisms
is expected to be increased. Higher growth rates under high
temperature would lead to stronger P limitation of the organ-
isms. However, a later hypothesis (the temperature-dependent
physiology hypothesis; Toseland et al. 2013; Yvon-Durocher
et al. 2015) proposes that the cellular P requirement and
metabolism are also influenced by temperature. In the current
study, our results suggested that P acquisition, substitution,
and intracellular cycling in C. watsonii were upregulated by
warming under P-limited conditions (Fig. 5), which explained
why PUEs of C. watsonii increased and hence P limitation was
relieved at high temperature.

Implications for C. watsonii in future ocean

Our study found that P limitation on the physiological
rates of C. watsonii is relieved at elevated temperature. We fur-
ther proposed, based on the transcription of genes involved in
P metabolism, that C. watsonii evolved multiple temperature-
dependent strategies to overcome P limitation in the ocean
(Fig. 5). Analysis of existing field data by the GAM revealed
that the nifH gene abundance of C. watsonii in global ocean
was positively correlated with temperature and slightly nega-
tively correlated with phosphate (Figs. 4A,B), indicating that
C. watsonii is more abundant under warm and P-depleted con-
ditions. We then used the GAM to estimate that the nifH gene
abundance of C. watsonii will increase significantly with fur-
ther increasing temperature and P limitation (Fig. 4C). Hence,
both laboratorial experiments and meta-analysis of field obser-
vations implied that C. watsonii will thrive in the projected
warmer and P-limited ocean. Moreover, in the context of
global climate change, other major environmental stressors
like elevated pCO, and increasing light intensities have also
been found to enhance the growth and CO, and N, fixation
of C. watsonii (Garcia et al. 2013a; Gradoville et al. 2014). All
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these findings lead to a reasonable hypothesis that C. watsonii
will be selected and successful in the future ocean. In addition,
under P-limited conditions, elevated temperature resulted in
the decrease of the cell size of C. watsonii, which may alter its
sinking efficiency and hence the C and N export in the future
ocean (Fig. 1B). The interactive effects of multiple environ-
mental factors associated with climate change on C. watsonii,
and the ecological consequences of physiological changes of
C. watsonii to the community structure, trophic interaction
and C and N cycling of the microbial food web in the future
warming ocean should be further explored.
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