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A B S T R A C T

A surrogate-based design optimization with an adaptive sampling technique based on the innovative infill
sampling criteria (ISC) is developed, where key issues are mathematically formulated on where in the design
space and how many sample points are infilled to guarantee desirable accuracy at minimal computational
cost. The ISC developed in the study involve multi-objective optimization (MOO) to determine infilling sample
points separately for exploitation and exploration of the design space, which represent the global and the local
accuracy of the surrogate model, respectively. The infill samples are found by the MOO on the Pareto front in
terms of variance of estimation uncertainty and a predicted function value. To dynamically control the location
and the count of the infilling points per iteration for the sample infilling, two criteria of the balancing and
the dynamic switching approach are developed.

The balancing approach selects infill sample points equally from the two far ends of the Pareto front as
well as on the middle of it. The dynamic switching approach uses cut-off variance of uncertainty estimation
to dynamically switch the ISC exclusively from the exploration to the exploitation, or vice versa adaptively to
the accuracy of the model. Solution optimality and computation efficiency of the present method for the EGO,
are compared for two analytic functions with those of the EGO with a conventional, multi-point Expected
Improvement (q-EI) ISC and a Latin Hypercube Sampling (LHS) method. The gradient-based optimization
without using the surrogate model was also carried out independently for the comparison purpose on the
solution accuracy and efficiency. The proposed method shows the greatest efficiency, requiring the smallest
number sample points in the training set and becomes even compatible with the gradient-based optimization
method. For the practical design problem, high-life multi-element airfoil is chosen to maximize a lift coefficient
with non-increasing drag constraints. The proposed method showed about 18% increase of lift force.
. Introduction

Design optimization problems in aerospace engineering are becom-
ng more complicated as they demand higher precision modeling and
imulation (M&S) to solve underlying physics which involves a large
umber of design parameters and coupled with other physics. High-
idelity analysis of computational fluid dynamics (CFD), for example,
akes several hours to solve RANS (Reynolds-Averaged Navier–Stokes)
quations even with the massively parallel computations and efficient
umerical algorithms. The direct use of the high-fidelity analyses alone
n a gradient-free design optimization framework is practically impossi-
le due to high cost in computation time and memory. A gradient-based
ptimization (GBO) algorithm can be effective for large-scale design
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problems using the state-of-the-art adjoint sensitivity analysis. How-
ever, the solution optimality is highly sensitive to initial guesses and
the adjoint solver is function-specific, i.e., a new development is needed
to solve different physics. The GBO is also easily trapped in the local
optima.

An efficient global optimization (EGO) method for design is ad-
vantageous for the following reasons: a gradient-free search algorithm
is better in finding global optima, a surrogate model replaces highly
expensive physics simulation, and an effective adaptive sampling strat-
egy further improves the efficiency by reducing computational cost.
The adaptive sampling strategy becomes a key to the successful EGO
as it directly determines the accuracy of the surrogate model and the
efficiency of a design process, and it decides the locations and the
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counts of sample points of the training set. Since Jones et al. suggested
infill sampling criteria (ISC) to add more sample points in search of the
global optimum efficiently and accurately, several ISC methods includ-
ing expected improvement (EI) [1], Kushner’s predicted improvement
(PI) [2] and lower confidence bounding (LCB) [3] have been developed.
Those conventional ISC methods add only a single sample point per
design iteration to update the surrogate model, which continues until
the design termination criteria are satisfied. In an effort to reduce the
number of iterations for the adaptive sampling, the concept of selecting
multiple sample points has been proposed parallel computation of those
sample points. Haftka et al. [4] suggested the selection of multiple
sample points where high estimation uncertainty is predicted by the
Kriging surrogate model. Ginsbourger et al. [5] derived the analytic
formulation of the multi-point EI as an extension of a single EI concept
to a higher dimension. They pointed out that the highly expensive
computational method such as Monte-Carlo simulation is needed to
calculate the analytic form of the multi-point EI. However, due to high
computational cost associated with the MCS runs, as an alternative to
the analytic form of the multi-point EI, they proposed a concept of
approximated multi-point EI (q-EI) with various heuristics to reduce
the computation burden.

In the present study, a new method of the multi-point infill sampling
criteria is developed for the EGO method using the Kriging surrogate
model [6]. The Kriging model approximates relatively well noisy and
multi-modal responses, and provides probabilistic estimation uncer-
tainty associated with a predicted function value. During the design
process, the additional sample points are infilled into the training set
for two major purposes: (1) exploration of design space to improve
the global accuracy of the model and (2) exploitation to improve the
local accuracy of the model around the point of interest. The main
idea is the effective utilization of the trade-off between the exploration
and the exploitation using the multi-point ISC. The variance value of
estimation uncertainty identifies regions less explored in the design
space, while the prediction of output responses can locate the potential
function minimum. The multi-objective optimization (MOO) using a
genetic algorithm (GA) [7,8] is ideal to obtain infill sample points
contributing to the two objectives in the separate sample sets. Two
separate approaches to choose points on the Pareto-front are devel-
oped: a balancing and a dynamic switching approach. The balancing
approach chooses two points on the far ends of the Pareto-front to
balance two competing objectives and one additional point in between
the end points according to the ratio of two coefficients of variable
(COVs) [9] based on the distribution of estimation uncertainty and
predicted function value. On the other hand, the dynamic switching
approach weighs one objective more than the other by bookkeeping the
global accuracy of the model over the iterations, and switch or alternate
the infill criteria between the exploration and the exploitation, and
selects multiple points from only at one end of Pareto front based on a
pre-specified cut-off value. The covariance matrix used in the Kriging
model becomes ill-conditioning if point clustering in the design space
results in highly uneven distribution of the training sample points.
A series of numerical experiments on the parameters in the adaptive
sampling process using the MPMOISC are carried out to investigate the
effects on the numerical stability.

For the validation, two-dimensional analytic functions of six-hump
camel back and Matlab peak functions are used to demonstrate the
accuracy and efficiency in finding the global optimum of the EGO
framework using the MPMO ISC . The total number of sample points are
compared with those from the three approximated q-EI ISC methods:
Kriging believer (KB), minimum constant liar (CLmin), and maximum
constant liar (CLmax). EGO with the Latin hypercube sampling (LHS)
method [10] is also carried out for a comparison purpose. It was
shown that the MPMO ISC method with the balancing and dynamic
switching approaches required the least number of sample points to
achieve solution accuracy, and the efficiency was as good as that of the
gradient-based optimization of the SLSQP algorithm [11] which does

not use the surrogate model for function evaluation.

2

For a practical design application, the shape of high-lift multi-
element NLR 7301 airfoil [12] is optimized for maximal lift with respect
to a flap angle, flap gap, overlap of the flap and angle of attack. The
high-fidelity RANS solutions are obtained by the CFD method for aero-
dynamic analysis. The MPMO ISC method with the balancing approach
shows the best efficiency at given solution accuracy requiring half
the sample points needed for the approximated q-EI methods. These
results are compatible with those of the gradient-based optimization in
efficiency and solution optimality.

The organization of the paper is as follows. In Section 2, the EGO
framework with various ISC methods are explained. A mathematical
formulation of the ordinary Kriging model is briefly summarized. Ex-
isting ISC methods are described including the multi-point EI method
as well as a conventional single point EI method. The MPMO ISC with
the two sampling approaches are also explained. Validations using the
analytic function are shown in Section 3, and the solution optimality
and efficiency of the EGO framework are compared those of the multi-
point EI are used. The practical design results of high-lift, multi-element
NLR 7301 airfoil are discussed in Section 4, followed by the conclusions
and future work in Section 5.

2. Efficient global optimization with infill sampling criteria

The computational efficiency of the global optimization (EGO)
method [13,14] is attributed to the following factors: 1) expensive func-
tion evaluation such as CFD analysis is replaced by a surrogate model,
and 2) the surrogate model is updated adaptively with the additional
sample points such that the size of the training sample set changes
dynamically from the initial set. In this section, a brief overview of the
Kriging is described, followed by the proposed ISC method in detail on
the mathematical formulation and physical meaning. Conventional ISC
methods are also introduced for a comparison purpose: the single point
EI and various multi-point EI methods [5].

2.1. A Kriging surrogate model for the EGO

Unlike surrogate models based on the least square polynomial re-
gression (PR) [14] and support vector regression (SVR) [14,15], the
Kriging model [6] provides a probabilistic measure of estimation uncer-
tainty as well as the prediction of the function value. It is a stochastic
model using the weighted sum of correlations of all sample points
with their weight coefficients determined by the maximum likelihood
estimation (MLE) [16]. The Kriging model is known to be accurate
for responses with nonlinearity, multiple modes, discontinuities and
various noise sources [17,18]. It allows various types of correlation
functions. As a black-box function analysis tool in the design frame-
work, its characteristics of interpolation better suits the Kriging model
rather than polynomial regression types which are more appropriate for
the experimental data containing random errors [18]. Modified Kriging
models with variable-fidelity function analysis can further enhance
the accuracy and efficiency of the EGO [19,20] by including more
high-accuracy data. Gradient values can be included in the training
set as additional information on the slope as well as the ion. [20–
22]. In the recent work of Jo et al. [23], the regression process is
integrated into the gradient-enhanced Kriging model with variable-
fidelity function analysis and mitigates noise influences from function
values and gradient values.

As the mathematical formulation of the Kriging model is well de-
scribed in the literature [6,16–23], only a brief summary is shown.
A low-order, polynomial-based trend term 𝑓 (𝐱) in Eq. (1) is used in
the Kriging model, where 𝑓𝑗 (𝑥) is a basis function and the likelihood
estimation coefficient of the trend term 𝛽 is defined as 𝛽 by the
generalized least square (GLS) method [17].

�̂�(𝐱) = 𝑓 (𝐱) +𝑍(𝐱) =
𝑚
∑

𝛽𝑗𝑓𝑗 (𝑥) +𝑍(𝑥) (1)

𝑗=1
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To improve the numerical stability of the method, a distribution
arameter, 𝜃𝑗 , which directly controls the covariance of any given
wo sample points in a correlation matrix, 𝐑, is determined by pe-
alized maximum likelihood estimation (PMLE), first suggested by Li
t al. [24]. The PMLE utilized in the current study was recently pro-
osed by Kwon et al. [25] and uses a data-driven and cross-validation
ethod for the parameter estimation. The final Kriging prediction

alue and the mean squared error (MSE) representative of prediction
ncertainty at an arbitrary location, 𝐱, are defined in Eq. (2) and (3),

respectively.

�̂�(𝐱) = 𝑓 (𝐱) +𝑍(𝐱) =
𝑚
∑

𝑗=1
𝛽𝑗𝑓𝑗 (𝑥) +𝑍(𝑥) = 𝐟𝑇𝑥 �̂� + 𝐫𝑇𝑥 𝐑

−1 (𝐲 − 𝐅�̂�
)

𝑤ℎ𝑒𝑟𝑒 �̂� =
(

𝐅𝑇𝐑−1𝐅
)𝑇 𝐑−1𝐲

(2)

𝑀𝑆𝐸(𝐱) = �̂�2(𝐱) = 𝜎2𝑧

[

1 −
[

𝐟𝑇𝑥 𝐫𝑥
]

[

𝟎 𝐅𝑇

𝐅 𝐑

]−1 [𝐟𝑥
𝐫𝑥

]

]

, (3)

Relatively short distance between sample locations makes the cor-
relation matrix, 𝑹, ill-conditioned and causes numerical instability and
inaccurate function prediction. To improve the numerical stability, a
small non-zero constant term, which is called a nugget, is added along
the diagonal elements of correlation matrix. This reduces the condition
number of the matrix 𝑹 and the numerical stability is enhanced and
improves the accuracy of the Kriging prediction. From the parametric
study, the nugget value is set as 1.0E−11.

2.2. Existing methods of infill sampling criteria

As the accuracy and computational efficiency of the EGO method
greatly depends on the performance of the infill sampling criteria (ISC),
various types of ISC have been proposed and a couple of them are
introduced in this section: conventional, single point ISC with the
exact expected improvement (EI) value, multiple point ISC using the
exact EI, and multiple point ISC using approximated EI (q-EI). For
the consistency, the optimization problem is set as the minimization
problem hereinafter.

2.2.1. Single point ISC
One of the most used ISC is the EI [1] which literally represents

an expected value of improvement, where the improvement is defined
as difference between a predicted minimum and the true minimum
found so far, and is considered as a random variable following a normal
distribution of 𝑁

(

�̂�, �̂�2
)

. The mathematical formulation of the EI is
represented in closed form in Eq. (4). The first term of the RHS of
Eq. (4) denoted as A represents the exploitation with the probability
to find the smaller function value than the current minimum Y𝑚𝑖𝑛,
and the second term of 𝐵 indicates exploration with the probability
to find the high estimation uncertainty [26,27]. To find a point with
the maximum EI is a single objective optimization problem where two
objectives of exploitation and exploration are summed with weights
represented by cumulative density function and probability density
functions, respectively. The mathematical form is shown in Eq. (4).
Throughout the adaptive sampling process of the EGO method, the ratio
of the terms of 𝐴 and 𝐵 varies. The term 𝐵 is larger than 𝐴 at the
beginning of the design iterations and the term 𝐴 grows larger towards
the later design stage when the ISC focus on searching the minimum.

EI(𝐱) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

Y𝑚𝑖𝑛 − �̂�(𝐱)
)

𝛷
(

Y𝑚𝑖𝑛 − �̂�(𝐱)
�̂�(𝐱)

)

+

𝐵
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

�̂�(𝐱)𝜙
(

Y𝑚𝑖𝑛 − �̂�(𝐱)
�̂�(𝐱)

)

, �̂� > 0

0, �̂� = 0

(4)

A potential problem of the EI-based ISC method is that the addi-
tional point may be trapped in around the local minimum incumbent
3

at each iteration. If the sample points are clustered with proximity
to one other, the method of regression and re-interpolation of the
Kriging model can be used to avoid ill-conditioning of the correlation
matrix [23], as described at the end of previous Section 2.1.

2.2.2. Multiple point ISC
The method of multiple point-based ISC for the EGO framework

is suggested by Haftka et al. [4] and Ginsbourger et al. [5]. It adds
multiple infill points at each design iteration and becomes greatly
efficient with parallel computation which became nearly standard for
high-fidelity physics calculation. Details of the computation of the
multivariate EI values are referred to [5], and the assumption of
the multivariate Gaussian process for the multiple functions and the
resultant mathematical formulations of the multivariate EI value are
shown in Eq. (5) and (6). The definitions of conditional covariance of
𝑺𝑞 is also made in the reference papers and omitted here.

𝐸𝐼
[(

𝒙𝑛+1,… ,𝒙𝑛+𝑞
)]

= 𝐸
[

max
{

𝐼
(

𝒙𝑛+1
)

,… , 𝐼
(

𝒙𝑛+𝑞
)}

∣ Y
]

= 𝐸
[

max
{(

Y𝑚𝑖𝑛 − 𝑌 (𝒙𝑛+1)
)

,… ,
(

Y𝑚𝑖𝑛 − 𝑌 (𝒙𝑛+𝑞)
)}

∣ Y
]

= 𝐸
[

Y𝑚𝑖𝑛 − min
{

𝑌 (𝒙𝑛+1),… , 𝑌 (𝒙𝑛+𝑞)
}

∣ Y
]

𝑤ℎ𝑒𝑟𝑒 Y =
{

𝑌 (𝒙1),… , 𝑌 (𝒙𝑛)
}

(5)

[{

𝑌
(

𝒙𝑛+1
)

,… , 𝑌
(

𝒙𝑛+𝑞
)}]

∼ 𝑁
((

�̂�
(

𝒙𝑛+1
)

,… , �̂�
(

𝒙𝑛+𝑞
))

,𝑺𝑞
)

(6)

where an input 𝒙 is located in the design space with a dimension of
𝑑 𝐷 ∈ R𝑑 and the exact function value at 𝒙 is 𝑌 (𝒙), then a set of
known exact function values for 𝑛 number of sample points are defined
as Y =

{

𝑌
(

𝒙1
)

,… , 𝑌 (𝒙𝑛)
}

.

The algorithms of the approximated q-EI
q-EI algorithm with a
Kriging Believer

q-EI algorithm with a Constant
Liar

Do 𝑖 = 1,… , 𝑞 Do 𝑖 = 1,… , 𝑞
𝒙𝑛+𝑖 = 𝐚𝐫𝐠𝐦𝐚𝐱

𝒙∈𝑫
𝐸𝐼(𝒙) 𝒙𝑛+𝑖 = 𝐚𝐫𝐠𝐦𝐚𝐱

𝒙∈𝑫
𝐸𝐼(𝒙)

X = X ∪
{

𝒙𝑛+𝑖
}

X = X ∪
{

𝒙𝑛+𝑖
}

Y = Y ∪
{

�̂�
(

𝒙𝑛+𝑖
)}

Y = Y ∪ {𝐿}
where, 𝐿 ∈

{

Y𝑚𝑖𝑛,Y𝑚𝑒𝑎𝑛,Y𝑚𝑎𝑥
}

END END

However, due to prohibitive computational cost related to the
Monte Carlo simulation (MCS) [28] to calculate the exact value of
multivariate EI, Ginsbourger et al. suggested an alternative ISC method
based on an approximate EI value. It finds the 𝑞 number of sample
points in a sequential manner using the same procedure of the single
point EI, and a function response of a new point is assumed as an
arbitrary value rather than the value from computation or simulation.
Until a total of 𝑞 points are selected, the distribution parameters, 𝜃𝑗 ,
of the Kriging surrogate model are fixed at the values determined by
existing n sample points. Authors suggested two approaches depending
on the arbitrary value: a Kriging Believer (KB) and a Constant Liar
(CL). The KB method uses a Kriging response value temporarily for
the exact function value of the new point. The CL method uses an
arbitrary constant of 𝐿 chosen from the existing function responses,
which can be a minimum, an average, or a maximum value of the
observed responses and denoted as Y𝑚𝑖𝑛, Y𝑚𝑒𝑎𝑛, and Y𝑚𝑎𝑥, respectively.
The schematics of algorithms of q-EI using the KB and CL are shown in
Table 1. Although the approximate q-EI method is more efficient than
the exact q-EI method, depending on the choice of a constant value
and a resultant set of different infill sample points, the efficiency of the
design process can be enhanced or deteriorated.
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Table 1
Pseudo-algorithm for dynamic switching approach.

Dynamic switching approach

If 𝜇𝑘
(

�̂�2
)

> 𝑇
Assign a rank on the individual in population in descending order of
(

�̂�2
)

𝑖 (𝑖 = 1,… , 𝑛𝑝𝑜𝑝)
Select 𝑞 points around the 𝑃�̂�2𝑚𝑎𝑥

else
Assign a rank on the individual in population in descending order of
(�̂�)𝑖 (𝑖 = 1,… , 𝑛𝑝𝑜𝑝)
Select 𝑞 points around the 𝑃�̂�𝑚𝑖𝑛

End if

2.3. Multi-point and multi-objective infill sampling criteria (MPMO ISC)

The method of the MPMO ISC is developed as an alternative method
to the multi-point EI explained in the previous section. The basic idea is
to model the trade-off between two competing merits of the exploration
and the exploitation in a form of the multi objective optimization
problem. In this multi-objective approach, two metrics representing the
exploration and the exploration quantitatively are the (maximum) vari-
ance value of estimation uncertainty �̂�2 and the (minimum) predicted
response value �̂� from the Kriging surrogate model, respectively. The
Pareto front from the multi-objective optimization provides a set of
optimal candidate points with quantitative measure of each metric.
As the design iteration proceeds, the goal of ISC generally changes
such that the exploration is required during initial design iterations
to increase the global accuracy of the model, and once a certain level
of global accuracy is achieved, the exploitation is necessary to better
approximate the local area around the optimum. One important feature
is that various combinations are possible for selecting multiple points
and criteria for such combination can change dynamically depending
on the global versus local characteristics of the surrogate model at the
current iteration.

Advantages of the method are several. First, as pointed out in the
work of Haftka et al. [4] and Ginsbourger et al. [5], the parallel
computation can be effective for simultaneous function evaluations of
the multiple infill sample points. As the MPMO ISC selects 𝑞 additional
sample points per one execution of the multi-objective optimization,
which increase design efficiency by a factor of 𝑞 × 𝑛, where 𝑞 is the
total number of additional sample points at each iteration and 𝑛 is the
number of total design iterations. In addition, unlike the approximated
q-EI ISC method which selects the 𝑞 sample points sequentially through
a series of the incomplete Kriging models using one arbitrary constant
or one of the Kriging prediction values, the MPMO ISC approach is
solely relying on the Kriging model updated by sample points evaluated
by true function analysis. Although the approximated q-EI method does
not re-compute a distribution parameter 𝜃𝑗 during the infill sampling
procedure, the re-construction and inversion of the Kriging correlation
matrix is required during the 𝑞 number of optimizations to find the
maximum EI point.

However, the main issues of the MPMO ISC on the adaptive sam-
pling strategy need to be addressed: (1) which should be more focused
out of the exploration and the exploitation, and (2) how to determine
the weights of the two metrics. The following subsections describe
two different approaches to directly address the issues: a balancing
approach and a dynamic switching approach. With three additional
infill sample points per design iteration, the balancing approach adds
two infill sample points that correspond to those on the opposite ends
of the Pareto front, one for the exploration and the other for the
exploitation, respectively, and one additional point in between the two
end points. The dynamic switching approach selects all three points
near the one far end out of two. For both approaches, local point
clustering is checked by the metric of a clustering radius to prevent
the repetitive selection of the nearby sample points of similar input
parameters. This is because the clustered local points deteriorates the
condition number of the Kriging covariance matrix and greatly lowers
the accuracy of the Kriging predictions.
4

Fig. 1. Pareto-front for ISC.

2.3.1. A balancing approach
At a given design iteration and prior to updating the Kriging sur-

rogate model, a sub-procedure of the multi-objective optimization is
carried out and produces the Pareto front of the optimum candidates.
Fig. 1 shows an example of the multi-objective Pareto front where two
axes represent two objectives of finding the large estimation uncer-
tainty (�̂�2) to improve the global accuracy (exploration) and minimizing
the predicted value of the response (�̂�) for the local accuracy (ex-
ploitation), respectively. The point 𝑃�̂�2𝑚𝑎𝑥 corresponds to the maximum
estimation uncertainty on the Pareto-front and the point 𝑃�̂�𝑚𝑖𝑛 to the
minimum predicted responses, respectively. Therefore, points near the
𝑃�̂�2𝑚𝑎𝑥 tend to have large �̂�2 values, while those around the 𝑃�̂�𝑚𝑖𝑛 tend
to have a lower function response than the current minimum. The
balancing approach chooses the points of 𝑃�̂�2𝑚𝑎𝑥

and 𝑃�̂�𝑚𝑖𝑛 at each design
iteration regardless of the particular distribution of points on the Pareto
front and tries to balance the objectives of the exploration and the
exploitation. The balancing approach also selects one additional point
somewhere on the Pareto-front between 𝑃�̂�2𝑚𝑎𝑥 and 𝑃�̂�𝑚𝑖𝑛 , so that the
point improves the accuracy of the current Kriging surrogate model,
whether local or global.

However, the exact quantification of the global and local accuracies
requires the cross-validation with a large number of sample points,
which is not practical and may become computationally prohibitive.
An alternative way to determine which objective needs to be focused
on is based on the statistics of optimal points ranked in a single
objective only in terms of mean and variance. Low variance with a
low mean value of an objective indicates the convergence with desired
accuracy in finding minimum objective, and therefore variance is used
to diagnose whether the current Kriging model requires exploration
or exploitation. For example, large variance in the MSE values of
the estimation uncertainty indicates poor convergence of the global
accuracy and more sample points are needed for the exploration.
Likewise, the small variance value in the minimum �̂� values implies that
additional samples point need to be infilled for further refinement near
the minimum. A direct comparison of the magnitude of the variance
values is made by their ratio. For a fair comparison between two
variance values irrespective of the units, the coefficient of variation
(COV) [9],

[

𝑐𝑣
]

, is introduced, and those for the MSE value �̂�2 and
predicted response value �̂� are calculated using Eq. (7).

[

𝑐𝑣
]

�̂�2 =
�̄�
(

�̂�2
)

�̄�
(

�̂�2
) ,

[

𝑐𝑣
]

�̂� =
�̄� (�̂�)
�̄� (�̂�)

(7)

Values with an overbar symbol in Eq. (8), represent that these are
estimated from the existing training set:

�̄�
(

�̂�2
)

= 1
𝑛𝑝𝑜𝑝

𝑛𝑝𝑜𝑝
∑

𝑖=1

(

�̂�2
)

𝑖 , �̄�
(

�̂�2
)

= 1
𝑛𝑝𝑜𝑝 − 1

𝑛𝑝𝑜𝑝
∑

𝑖=1

[(

�̂�2
)

𝑖 − �̄�
(

�̂�2
)]2

�̄� (�̂�) = 1
𝑛𝑝𝑜𝑝
∑

(�̂�)𝑖 , �̄� (�̂�) = 1
𝑛𝑝𝑜𝑝
∑

[

(�̂�)𝑖 − �̄� (�̂�)
]2

(8)
𝑛𝑝𝑜𝑝 𝑖=1 𝑛𝑝𝑜𝑝 − 1 𝑖=1
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where 𝑛𝑝𝑜𝑝 is the total number of optimal candidates on the Pareto-
front.

The third point 𝑃3 is selected based on the ratio of the two COVs
f
[

𝑐𝑣
]

�̂�2 and
[

𝑐𝑣
]

�̂�. To relate the COV ratio to a sample point on the
areto-front, the Euclidean distances to a point 𝑃 from the two extreme

points of 𝑃�̂�2𝑚𝑎𝑥
and 𝑃�̂�𝑚𝑖𝑛 are first computed as 𝑑1 and 𝑑2 as in Eq. (9):

𝑑1(𝑃 ) =

√

[

�̂�2 (𝑃 ) − �̂�2
(

𝑃�̂�2𝑚𝑎𝑥

)]2
+
[

�̂� (𝑃 ) − �̂�
(

𝑃�̂�2𝑚𝑎𝑥

)]2

𝑑2(𝑃 ) =

√

[

�̂�2 (𝑃 ) − �̂�2
(

𝑃�̂�𝑚𝑖𝑛

)]2
+
[

�̂� (𝑃 ) − �̂�
(

𝑃�̂�𝑚𝑖𝑛
)]2

(9)

The third point 𝑃3 is chosen such that the ratio of 𝑑1∕𝑑2 is equiva-
lent, or closest to that of the two COVs, and this relation is shown in
Eq. (10). Note that the indices for two ratios are reversed.

𝑑1 ∶ 𝑑2 =
[

𝑐𝑣
]

�̂� ∶
[

𝑐𝑣
]

�̂�2 (10)

In this way, a point close to 𝑃�̂�2𝑚𝑎𝑥 is selected to improve the global
accuracy when the variance value of MSE �̄�2

(

�̂�2
)

is relatively large
(𝑑1 > 𝑑2), or the local accuracy vice versa. The three additional sample
points, including two extreme points on the Pareto front and the one in
between, are selected at each design iteration to improve the accuracy
of the Kriging model. This procedure is iterated until the termination
criteria are met.

2.3.2. A dynamic switching approach
The dynamic switching approach is developed to decide dynami-

cally on which criterion should be more focused at each design iteration
out of the two criteria of the exploration or the exploitation. From the
Pareto front shown in Fig. 1, sample points near the one end of the
front, rather from both ends, can be selected. The dynamic switching
approach keeps track of the global accuracy of the Kriging model
throughout the entire design iterations by the average value of MSE
of candidate points on the Pareto front, 𝜇𝑘

(

�̂�2
)

, where 𝑘 represents
current iteration step. The ISC switch the infilling criteria between

he exploitation and the exploration depending on the average value
f MSE distribution of all candidate points, 𝜇𝑘

(

�̂�2
)

, on the Pareto-front
t the 𝑘th design iteration with the threshold value, 𝑇 . The threshold
alue is calculated by multiplying the switching parameter, 𝛼, and the
aximum value of 𝜇𝑘

(

�̂�2
)

found so far, and shown as

= 𝛼 × max
[

𝜇𝑘
(

�̂�2
)]

(11)

If 𝜇𝑘
(

�̂�2
)

is larger than 𝑇 , then points around the 𝑃�̂�2𝑚𝑎𝑥
are selected

or the exploration, otherwise; points around the 𝑃�̂�𝑚𝑖𝑛 are sampled for
he exploitation. Additional samples are infilled in the training set to
void ill-conditioning of the covariance matrix and to guarantee the
lobal accuracy.

Clustering parameters, 𝜃𝐺 and 𝜃𝐿, are defined to avoid additional
amples being clustered near the existing sample points. The geometric
ize of the training set, 𝐷𝑘, is defined by the 𝐿2 norm of the two most

distant points in the set of all sample points. If 𝜇𝑘
(

�̂�2
)

is larger than 𝑇 ,
the distance between any pair in the neighboring points of the Pareto
front is calculated, and the points whose distance is larger than 𝜃𝐺𝐷𝑘
re selected around the 𝑃�̂�2𝑚𝑎𝑥 . If 𝜇𝑘

(

�̂�2
)

is smaller than 𝑇 , those points
hose distance is larger than 𝜃𝐿𝐷𝑘 are selected around 𝑃�̂�𝑚𝑖𝑛 . Three

parameters of 𝛼, 𝜃𝐺, and 𝜃𝐿 varies from 0 to 1.

.4. The EGO framework with the MPMO ISC

The EGO design framework includes two optimization procedures:
he primary optimization to find the minimum of the objective of the
esign problem and the secondary optimization to select multiple infill
ample points to update the Kriging model as summarized in Table 2.
he primary optimization problem is formulated as a single-objective
roblem with multiple constraints. The constraints are handled using a
ub-problem approach suggested by Sasena et al. [26] that uses Kriging
5

Table 2
The multi-layered EGO design framework.

Primary optimization problem
Single objective with multiple
constraints

Secondary optimization problem
for MPMO ISC Multi objectives
with multiple constraints

Minimize
𝒙∈𝐷

�̂�(𝒙)

subject to 𝑐𝑗 (𝒙) ≤ 0

Minimize
𝒙∈𝐷

�̂�(𝒙)

Maximize
𝒙∈𝐷

�̂�2(𝒙)

subject to 𝑐𝑗 (𝒙) ≤ 0

models of constraint functions and the feasibility of the optimum
candidates are checked by the model. Thus, the constrained optimiza-
tion problem does not need to be re-formulated as the unconstrained
one like in the penalty method or the probability method. Sasena
et al. pointed out that those two methods may distort the constrained
boundary of design space, leading to infeasible optimum results. The
secondary optimization, which is formulated as the multi-objective
problem for infill sampling also carried out with constraints. That is,
the infill sampling process is carried out only in feasible regions, and
the global accuracy of the surrogate model can be affected by the size
of feasible region. An approach such as the trust region method [29]
can be applied to consider both global accuracy in the infeasible regions
and the solution feasibility, although the approach is not implemented
in the present study.

The MPMO ISC method is directly integrated into the EGO frame-
work to update the Kriging surrogate model at each design iteration,
and the values of the objective and constraint functions are estimated
through separate surrogate models. For the optimization process, the
non-dominated sorting genetic algorithm (NSGA-II) [7] is utilized in
the current study as it is known to be robust.

The overall design procedure of the EGO framework with the MPMO
ISC can be seen in Fig. 2. A total of (𝑑 + 1)(𝑑 + 2)∕2 initial sample
points [18] are randomly selected using the LHS method [10], where
𝑑 represents the number of design variables (or dimension of design
space). The initial Kriging surrogate model is created correspondingly,
and the primary optimization is initiated to search the optimum point.
If the accuracy of the Kriging model and the optimality of the current
design solution do not satisfy termination criteria, then the adaptive
sampling is carried out using the MPMO ISC methods as shown in
Fig. 2(b). The Pareto front from the secondary optimization is used
to determine the additional sample points. Then, the high-fidelity
simulation such as CFD analysis is carried out in parallel to calculate
output/objective and constraint responses for those additional sample
points. The secondary design optimization is carried out at each pri-
mary design iteration. This sequential, primary design continues until
the termination criteria are satisfied. Parallel computation is used to
maximize computational efficiency for function and constraints evalua-
tions of the multiple infill sample points as well as of the initial training
sample points.

3. Validation of the EGO with the MPMO ISC

This section shows the validation results of the proposed EGO
framework which uses the MPMO ISC method of both the balancing and
the dynamic switching approach. An optimization problem with simple
constraints of bounds on design variables is set for two 2D analytic
functions: a six-hump camel function and a Matlab peak function. For
more complicated constraints, additional surrogate models should be
constructed in explicit form for each constraint, and the current GA
algorithm handles them effectively without any changes in the infill
sample strategy.

For comparison purposes, the approximated q-EI method [5] and
the LHS sampling method are also implemented for the EGO frame-
work, respectively. For all methods, the additional sample points are
selected to update the Kriging surrogate model sequentially and adap-
tively, and the accuracy of the model and the optimality of the solutions
are compared one another. The gradient-based optimization method
is also carried out to compare the efficiency and optimality of the
proposed EGO results.
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Fig. 2. The EGO design framework with MPMO ISC approach.

.1. Problem description

.1.1. Optimization problems
The test problems of two-dimensional six-hump camel back and

atlab peak functions have different characteristics in terms of local
nd global minima and the degree of non-linearity. The mathematical
ormulations and the exact minimum values are summarized in Table 3.
he six-hump camel back function has two global minima while the
atlab peak function has one global and one local minima. Fig. 3 shows

he functions and the 2D iso-contours, with the locations of minima by
he symbols of ‘×’ in blue.

3.1.2. Performance metrics
The best performance of the EGO framework is defined as the

ability to find accurate optimum/optima at computation cost as low
as possible. As the overall quality of the surrogate model should be
addressed by the local and global accuracies, two metrics are defined.
First, to check the solution optimality, or the local accuracy, relative
errors are computed: difference in 𝒙 location between the optimizer
and the true minimum, 𝜖𝑥, and the difference in function value of
𝑦, 𝜖𝑦. Those are formulated in Eq. (12), where the value of �̂�∗ =
𝑓𝑘𝑟𝑖𝑔(𝒙∗) represents the predicted function minimum, and 𝑦𝑚𝑖𝑛 is the
true optimum at 𝒙𝑚𝑖𝑛. Second, a total of 2500 validation points are pre-
selected and evenly distributed in two-dimensional design space. The
predicted function values are cross-validated at these points with the
exact function values by the RMSE value as shown in Eq. (13).

𝜖𝑥 =
‖

‖

𝒙∗ − 𝒙𝑚𝑖𝑛‖‖
‖

‖

𝒙𝑚𝑖𝑛‖‖
, 𝜖𝑦 =

|

|

�̂�∗ − 𝑦𝑚𝑖𝑛||
|

|

𝑦𝑚𝑖𝑛||
(12)

𝑅𝑀𝑆𝐸 = 1
𝑁𝑡𝑒𝑠𝑡

√

√

√

√

𝑁𝑡𝑒𝑠𝑡
∑

𝑖=1

[

�̂�
(

𝒙𝑖
)

− 𝑦 (𝒙)
]2 (13)

.2. A parameter study for the MPMO-ISC with a dynamic switching
pproach

The method of MPMO-ISC with the dynamic switching approach
nvolves three parameters: a switching parameter, 𝛼, a clustering pa-
ameter for the exploration, 𝜃𝐺, and a clustering parameter for the
xploitation, 𝜃𝐿. A parameter study to find optimal values of param-
ters leading to the least number of total samples is carried out with
nalytic functions used in Section 3. Due to the inherent randomness
f initial training set for the sampling process and of the GA algorithm
n populating individuals, fifty sets of six initial samples are randomly
elected using the LHS method for the Monte Carlo Simulation (MCS)
 i

6

uns and each set is used for separate optimization. The total number
f samples needed to find the function minimum is averaged over the
ifty MCS runs to compare computational cost. For both analytic func-
ions, the termination criterion is set for the relative error of optimum
unction value between current and previous design steps to be less
han 1.0E−5. The average number of samples for the convergence is

compared with that by the balancing approach.
Figs. 4 and 5 show the results of the parameter study for six

hump camel back function and Matlab peak function, respectively, in
terms of the average number of total samples for the convergence. In
the parametric study, the switching parameter, 𝛼, and the clustering
parameter for the exploration, 𝜃𝐿, are varied between zero and one,
while the clustering parameter for the exploitation, 𝜃𝑔 , is varied from
0.001 to 0.1, with two other parameters of 𝜃𝐿 and 𝛼 are fixed. It is
shown that an optimal range of parameters for the minimal number of
required sample points exists for all parameters, and corresponds to 𝛼 =
0.3, 𝜃𝐺 = 0.3 ∼ 0.4, and 𝜃𝐿 = 0.05 ∼ 0.005. These values are used in the
ractical design application shown in Section 4. However, it should be
oted that finding a constant value that is optimal for all kinds of design
roblems is difficult, and a certain amount of inefficiency is inevitable if
on-optimal parameters are used for other design problems. However,
he values ranging from 0.2 to 0.5 for 𝛼 and 𝜃𝐺, and from 0.002 to 0.1
or 𝜃𝐿 appear to be reasonable without much sensitivity, based on the
umerical test with other analytical functions.

.3. Cost-efficiency

Three types of the ISC methods are compared: 1) the MPMO
SC method with the balancing approach, 2) the MPMO ISC method
ith the dynamic-switching approach, and 3) the approximated q-EI
ethod. For the approximated q-IE method, three different approxima-

ions to the maximum EI value are used: Kriging Believer (KB), Constant
iars (CL) with a Kriging predicted minimum (CLmin), and CL with
Kriging predicted maximum (CLmax). For the MPMO ISC method
ith the dynamic switching approach, the optimal values of parameters
hich are found in the previous section is used. Starting from a total of

ix sample points, three additional sample points, or less if clustering
s detected, are appended to the existing training sample point set at
ach design iteration and the Kriging surrogate model is updated. The
erformance metrics are computed correspondingly. The termination
riteria are the values of 𝜖𝑥 and 𝜖𝑦 to be less than 0.01%. To mitigate
he randomness of the initial sample point set for the surrogate model
onstruction and in the population of the genetic algorithm for the
ptimization, a total of 50 sets of different initial points are randomly
hosen using the Latin Hypercube Sampling (LHS) method. For each
et, the MPMO-ISC strategy is applied and the average number of
amples for the design convergence is calculated. The values of average,
tandard deviation, and the minimum number of total required sample
oints for convergence, are summarized in Table 4 with respect to 5 an
ndividual ISC method.

For both six-hump camel back function and Matlab peak function,
he results of the MPMO ISC with the balancing approach and the
ynamic switching approach demonstrate the best performance at the
owest computation cost as shown in Tables 4 and 5. For the Matlab
eak function, the dynamic switching approach requires only one more
esign iteration than the balancing approach, which indicates no dif-
erence in the computational efficiency. Since the dynamic switching
pproach needs three parameters which can be varied case by case,
he standard deviation of the total number of samples was larger than
hat of the balancing approach. However, once the parameter is set
orrectly, the total number of samples is dramatically reduced as shown
n the row of minimum number of samples; the minimum number of
amples for the balancing approach is 27, but the one for the dynamic
witching approach is 12.

The approximated q-EI method with the Kriging Behavior, the min-

mum Constant Liar and the maximum Constant Liar show about 30%
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Table 3
The analytic functions.

Analytic Function Bounds of the design variable

Six-hump came back [30] 𝑓 =
(

4 − 2.1𝑥21 +
1
3
𝑥41
)

𝑥21 + 𝑥1𝑥2 +
(

−4 + 4𝑥22
)

𝑥22
𝑥1 ∈ [−2, 2]
𝑥2 ∈ [−1, 1]

𝑓𝑚𝑖𝑛 = 𝑓 (−0.0898, 0.7126) = 𝑓 (0.0898,−0.7126) = −1.0316

Matlab Peak [27]
𝑓 = 3

(

1 − 𝑥1
)2 exp

[

−𝑥21 −
(

𝑥2 + 1
)2
]

−10
(

1
5
𝑥1 − 𝑥31 − 𝑥52

)

exp
[

−𝑥21 − 𝑥22
]

− 1
3
exp

[

−
(

𝑥1 + 1
)2 − 𝑥22

]

𝑥1 ∈ [−3, 3]
𝑥2 ∈ [−3, 3]

𝑓𝑚𝑖𝑛 = 𝑓 (0.2282,−1.6255) = −6.551133
Fig. 3. Configurations and iso-contours of the analytic functions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)
Fig. 4. Parameter study result for six hump camel back function.
Fig. 5. Parameter study result for Matlab peak function.
able 4
total required number of sample points (Six hump camel back function) for the convergence.

MPMO-ISC (Balancing) MPMO-ISC (Dynamic switching) Q-EI (KB) Q-EI (Max. CL) Q-EI (Min. CL)

Average number of total samples 54 48 69 74 79
Standard deviation of total samples 12 15 16 13 15
Minimum number of total samples 27 15 42 45 52
7
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Table 5
A total required number of sample points (Matlab Peak Function) for the convergence.

MPMO-ISC (Balancing) MPMO-ISC (Dynamic switching) Q-EI (KB) Q-EI (Max. CL) Q-EI (Min. CL)

Average number of total samples 51 54 66 78 79
Standard deviation of total samples 12 19 16 13 15
Minimum number of total samples 27 12 36 45 48
t
i
v
a
t
r

to 55% higher computational cost for the design convergence. Based on
the results from the two analytic functions, it is shown that the MPMO
ISC method with both balancing and dynamic switching approaches
shows relatively robust and accurate results. On the other hand, the
accuracy of the approximated q-EI method is sensitive to the specific
approximation value of the EI. It is not straightforward to decide a
priori which approximation value should be used and predict the cor-
responding accuracy and efficiency. However, the MPMO ISC method
also involves some degree of arbitrariness in determining the parameter
values: the number of infill sample points at each iteration (three or less
in the current case) and the parameter values in the dynamic switching
approach.

In summary, for real engineering design applications where the
characteristics of the design space are not known in advance, the choice
of the MPMO ISC method becomes reasonable and robust especially
when the computing resources are limited, and guarantees both the
local and global accuracies.

For more fair comparisons, the efficiency of the MPMO ISC method
is also compared with that of the optimization method which does
not use the surrogate model. Both gradient-based and -free optimiza-
tions are conducted with direct function evaluation with no surrogate
modeling. A sequential least squares programming (SLSQP) [11] is
an algorithm for the gradient-based optimization where sensitivity
information is calculated analytically. The NSGA-II algorithm [7] is
employed for the gradient-free optimization with direct function evalu-
ations. The results from the best performing approximated q-EI method
and the MPMO ISC with the balancing approach are directly compared
in Tables 6 and 7. The metric for the efficiency comparison is computa-
tional cost for the function evaluations and Kriging predictions to carry
out the ISC method, and is summarized in Tables 6 and 7.

If the computation time for the function and its partial derivative
(𝑁𝑑𝑓∕𝑑𝑥1 or 𝑁𝑑𝑓∕𝑑𝑥2 ) calculation is assumed to be similar, then the
radient-free optimization without a surrogate model requires as many
s 3,200 function evaluations for the six-hump camel-back function,
hereas the gradient-based optimization needs about 120 computa-

ions for function and derivative calculations depending on the location
f the starting point. On the other hand, the current MPMO ISC method
akes 54 function evaluations, although it needs a considerable number
f the Kriging prediction for the primary optimization as well as the
ub-optimization to choose the ISC (whether the EI or the MPMO ISC).
he Kriging prediction of the function output response typically takes
illiseconds to carry out, and if we consider the entire computation

ime to find a function minimum, then the current MPMO ISC method
an be compatible, for simple analytic functions, to the gradient-based
ptimization in efficiency. However, the ratio of the computational
ost between function (and derivative) computation to the Kriging
rediction becomes huge if the design application uses high-fidelity
FD analysis for function evaluation, which may take up to several
ours even with parallel computing resources. Computation of the
unction and/or constraint derivatives with respect to a large number
f design variables is also challenging, although the state-of-the-art
djoint-based sensitivity analysis can be alternatively used [31] with its
iggest advantage being almost no dependence on the number of design
ariables. In those design applications, the efficiency of the MPMO
SC method is significant. Also, the limitation of the local search by
he gradient-based optimization does not exist in the EGO with the
PMO ISC method as it can explore larger design space. Although the

ssociated computational cost saving from the parallel computation in
he MPMO ISC method to carry out function evaluations of multiple
nfill sample points is not directly formulated in Table 6, it can further
mprove the computational efficiency.
 v

8

Fig. 6. Configuration of Design variables.

4. Practical design application

As a practical design application of the EGO framework with the
MPMO ISC approach, high-lift multi-element airfoil is optimized in
shape to maximize lift at a take-off condition. The EGO design frame-
work with the MPMO ISC method and the approximated q-EI method,
as well as the gradient-based design method with direct high-fidelity
CFD evaluations are used and their results are compared. The derivative
values are computed by the finite-difference and the adjoint solution
method.

4.1. Design problem description

A baseline airfoil is chosen as the NLR 7301 multi-element air-
foil [12]. The objective of aerodynamic design is to maximize lift at
drag force maintained as the baseline value at the take-off condition.
The design variables are angle of attack, flap deflection angle, gap and
overlap of flap. The design flow condition is at Mach number of 0.185,
Reynolds number of 2.51 million and angle of attack of 13.1◦. The
baseline NLR 7301 multi-element airfoil has a flap of the 32% of the
chord length, 2.6% of the gap and 5.3% of the overlap relative to the
main airfoil. Baseline configuration of main airfoil and flap is shown in
Fig. 6 and 7.

The mathematical formulation of the design problems is shown in
Eq. (14) as a single objective optimization problem. The constraint
of non-increasing 𝐶𝑑 is included in the objective function, and conse-
quently the design problem reduces to the unconstrained optimization
and requires only a single surrogate model. The optimization process is
iterated until the relative error in the objective function value between
previous and the current design steps to be less than 0.01%.

minimize
𝛼,𝛿𝜃 ,𝛿𝑥 ,𝛿𝑦

(

1.0 −
𝐶∗
𝑙

𝐶𝑙

)2

+
(

1.0 −
𝐶∗
𝑑

𝐶𝑑

)2

where, 𝐶∗
𝑙 = 1.5𝐶𝑙,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝐶

∗
𝑑 = 𝐶𝑑,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

(14)

Instead of using conventional definitions of flap gap and overlap,
he location of flap is defined by horizontal and vertical displacements
n a cartesian coordinate system to conveniently handle geometry
ariation and CFD mesh generation. Mesh deformation for the CFD
nalysis is carried out automatically through the software journaling
echnique [32]. The flap geometry changes from the baseline configu-
ation depicted in Fig. 6 corresponding to the variation of the design
ariables with their upper and lower bounds listed in Table 8.
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Table 6
Performance comparison of Six-hump camel back function.

Average number
of actual function 𝑁𝑓
and derivative 𝑁𝑑𝑓∕𝑑𝑥𝑖
evaluations

Number of function prediction

Gradient-based optimizer
(SLSQP)

120 N/A

Gradient-free optimizer
with direct function
evaluations

3210 N/A

Gradient-free optimizer
with the surrogate model
using the approximated q-EI
method
with Kriging Behavior

69
– initial samples : 6
– infill samples : 63

10.75 million
– Optimization : 256 pop. × 500 gen. × 21
iter.
– Maximize EI : 256 pop. × 500 gen. × 21 iter.

× 3 add. samples

Gradient-free optimizer
with the surrogate model
using the MPMO ISC
with the balancing approach

54
– initial samples : 6
– infill samples : 48

4.10 million
– Optimization : 256 pop. × 500 gen. × 16
iter.
– MPMO ISC : 256 pop. × 500 gen. × 16 iter.
Table 7
Performance comparison of Matlab peak function.

Average number
of actual function 𝑁𝑓
and derivative 𝑁𝑑𝑓∕𝑑𝑥𝑖
evaluations

Number of function prediction

Gradient-based optimizer
(SLSQP)

221 N/A

Gradient-free optimizer
with direct function
evaluations

1920 N/A

Gradient-free optimizer
with the surrogate model
using the approximated q-EI
method
with Kriging Behavior

66
– initial samples : 6
– infill samples : 60

10.24 million
– Optimization : 256 pop. × 500 gen. × 20
iter.
– Maximize EI : 256 pop. × 500 gen. × 20 iter.

× 3 add. samples

Gradient-free optimizer
with the surrogate model
using the MPMO ISC
with the balancing approach

51
– initial samples : 6
– infill samples : 45

3.84 million
– Optimization :256 pop. × 500 gen. × 15 iter.
– MPMO ISC : 256 pop. × 500 gen. × 15 iter.
Table 8
Design variable bound.
Design variable Symbol Baseline Lower bound Upper bound

Angle of attack 𝛼 13.1◦ 7.0◦ 13.0◦

Flap deflection angle 𝛿𝜃 −14.5◦ −30.0◦ −12.0◦

Horizontal displacement 𝛿𝑥 0.0%c −5.0%c 10.0%c
Vertical displacement 𝛿𝑦 0.0%c −2.0%c 2.0%c
4.2. High-fidelity aerodynamic analysis using CFD

The function evaluations of a set of initial sample points and adap-
tive infill sample points are carried out through high-fidelity CFD
analysis using parallel CPUs. The Reynolds-averaged Navier–Stokes
(RANS) equations are solved by a SU2 flow solver [33]. The flow
solver uses an unstructured grid topology and includes a computational
design suite with a sensitivity analysis module which is based on
continuous adjoint formulation. Automatic mesh deformation using a
torsional spring analogy or a free-form deformation (FFD) method for
three-dimensional shape variation are available in the design frame-
work along with the choice of various gradient-based optimization
algorithms.

To validate the flow solver, flows around the baseline airfoil (NRL
7301 with the flap) are solved at the take-off condition and the results
are compared with the experimental data. The O-type unstructured grid
system with 64,201 elements and 32,531 nodes is generated using the
T-REX model of Pointwise software [32] and shown in Fig. 7(a). For the
spatial discretization, the 2nd order centered differencing scheme with
9

JST artificial dissipation [34] is used, and time is integrated using the
second-order of Euler-implicit method [35]. Viscous flux is discretized
using the centered differencing method with a Spalart–Allmaras turbu-
lence model [36]. The two-level multi-grid technique [37] is used to
accelerate the convergence. Pressure coefficients on the airfoil surface
and near-field pressure coefficients are plotted in Figs. 7(b) and 7(b),
respectively, showing good agreement with experimental data.

4.3. Design results

Initially, a set of 15 initial sample points are generated by the LHS
method for the four dimensional design space. This number is notably
small considering a general sampling rule based on (𝑑+1)(𝑑+2)∕2 [18],
but was sufficient for the design due to the efficiency of the MPMO
ISC. Initial sample points are evaluated by the CFD analysis, and the
initial Kriging model is constructed correspondingly. For infill sampling
method, the MPMO ISC with the balancing and the dynamic switching
approach as well as the approximated q-EI method with KB, CLmax,
and CLmin are used. To save computational time considerably, an
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Fig. 7. Validation of CFD analysis for baseline airfoil.
𝜕

Fig. 8. Comparison of objective value variations w.r.t the number of sample points.

lternative to finding the optimal value by the GA with the Kriging
odel, the minimum objective value of existing sample points at each
esign iteration is regarded as the minimum point. This approach
oes not harm the original purpose of the EGO framework, because
he optimal point searched by the optimization procedure and the
inimum function value of sample points will converge to the same

alue, if the exploitation performance of the ISC method is good and
 e

10
refines design space near the minimum. The number of additional
sample points is set three.

Starting from the 15 initial sample points, more sample points are
added at each design iteration by the MPMO ISC method with the bal-
ancing approach, the MPMO ISC method with the dynamic switching
approach, and the q-EI method with CLmin. An optimum function value
at each design iteration is plotted in Fig. 8 with respect to the number of
sample points. The MPMO ISC method with the balancing approach is
the most efficient, finding the minimum with 186 sample points after
57 design iterations. The second most efficient ISC is the MPMO ISC
method with the dynamic switching approach and finds the minimum
point with 243 sample points after 76 iterations. The optimum found
by the q-EI method with the CLmax has a larger objective value than
that by the MPMO ISC method, even using more than the twice the
number of sample points.

The gradient-based optimization using the SLSQP algorithm [11]
is conducted independently for the multi-element airfoil design. The
gradient value can be calculated by the finite-difference method or
the adjoint solution method. The adjoint-based gradient computation
requires one CFD analysis and one adjoint solution which costs nearly
equivalent computational time to that of the CFD analysis even with
a large number of design variables. On the other hand, the finite-
difference method, if the forward differencing is used, for example,
calculates gradient values by five CFD computations with four design
variables. As can be seen in the last column of Table 9, the number of
CFD computation is 421 with 33 runs to compute each of 𝜕𝐶𝑙∕𝜕𝑥𝑗 and
𝐶𝑑∕𝜕𝑥𝑗 (𝑗 = 1,… , 4) as well as 157 runs for the objective function

valuation. Even if the adjoint method is assumed, the equivalent
Fig. 9. Comparison of baseline and design results in pressure contour.
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Table 9
Aerodynamic performance of the minimum point.

Design method Obj. value Lift coefficient
(Increment, %)

Drag coefficient
(Increment, % : counts)

Number of
design iter.

Number of
func. eval. (CFD)

Baseline 0.25 3.2089 0.06079

Gradient-free optimization
using MPMO ISC
with balancing approach

0.07332 3.80822
(18.68%)

0.064703
(6.438% : 3.914 counts)

57 186

Gradient-free optimization
using MPMO ISC
with dynamic switching

0.07601 3.79125
(18.15%)

0.064512
(6.124% : 3.723 counts)

76 243

Gradient-free optimization
using approx. q-EI KB

0.07333 3.81164
(18.78%)

0.0650356
(6.985% : 4.246 counts)

118 369

Gradient-free optimization
using approx. q-EI CLmax

0.07480 3.80177
(18.48%)

0.064892
(6.749% : 4.103 counts)

134 417

Gradient-free optimization
using approx. q-EI CLmin

0.07371 3.80618
(18.61%)

0.06472
(6.466% : 3.931 counts)

122 381

Gradient-based optimization
with F.D. sensitivity

0.08213 3.7450
(16.71%)

0.0625
(2.814% : 1.711 counts)

n/a 421 = 157𝑁𝑜𝑏𝑗
+ 4 × 33 𝑁𝑑𝐶𝑙∕𝑑𝑥
+ 4 × 33 𝑁𝑑𝐶𝑑∕𝑑𝑥
Table 10
Design variable of the minimum point.

Design method 𝛼 𝛿𝜃 𝛿𝑥 𝛿𝑦
Baseline 10.26◦ −29.66◦ 6.44%c 1.06%c
Gradient-free optimization using MPMO ISC with balancing approach 10.26◦ −29.66◦ 6.44%c 1.06%c
Gradient-free optimization using MPMO ISC with dynamic balancing 10.24◦ −29.84◦ 6.42%c 1.05%c
Gradient-free optimization using approx. q-EI KB 10.25◦ −30.00◦ 6.47%c 1.08%c
Gradient-free optimization using approx. q-EI CLmax 10.24◦ −29.92◦ 6.45%c 1.05%c
Gradient-free optimization using approx. q-EI CLmin 10.26◦ −29.99◦ 6.41%c 1.06%c
Gradient-based optimization with F.D. sensitivity 8.9962◦ −29.33◦ 4.272%c 0.645%c
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Fig. 10. Comparison of baseline and design results in geometry — Black : Baseline,
Red : Optimum. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

number of CFD computation would be 190 with 33 runs for adjoint
analysis to compute 𝑑𝑓∕𝑑𝒙 and 157 runs of CFD analysis, which
involves more CFD computations than the MPMO ISC with balancing
approach. Computational cost for the single CFD computation takes
about 15 min using 60 CPUs of Authentic AMD@2300 MHz.

Improvements in the lift force are summarized in Table 9 by the
EGO frameworks with different ISC methods as well as the gradient-
based optimization. The lift coefficient is increased by about 18.5%
by the EGO with the MPMO ISC and q-EI methods, while the drag
coefficient is slightly increased by about 6.5%. Meanwhile, the lift
coefficient is increased by 16.71% with slight increase in the drag
coefficient by 2.814% as a result of the gradient-based optimization.

Optimal values of the design variables are listed in Table 10. The
angle of attack is reduced to about 10.3 degree from 13.1 degree of the
baseline airfoil. The flap angle is reduced so that the total chord length
is increased and flows over the main airfoil move smoothly over the
flap, which can be seen in Figs. 9 and 10. The increase of the lift force
is also observed in the plot of surface pressure coefficient in Fig. 9.

5. Conclusions and future work

In this study, the multi-point and multi-objective infill sampling
criteria (MPMO ISC) is developed and implemented in the EGO design
framework to maximize the efficiency. The MPMO ISC is proposed in

the consideration of where additional sampling should be placed, either b

11
on the less explored area — exploration, or near the optimum point
— exploitation. The trade-off between exploration and exploitation is
resolved with the multi-objective optimization where two objectives are
to find a point of the large prediction uncertainty, �̂�2(𝒙) and to search a
point of the minimum response, �̂�(𝒙). Two approaches of the balancing
nd dynamic switching are developed to choose infill sample points
ith flexibility and adaptivity along the Pareto-front set of the MPMO

SC method. They are based on the assumption that the reduction
f uncertainty in design space is indicated by decreased variance of
rediction uncertainty during the design iteration. Both approaches are
bserved to be more efficient than the approximated q-EI methods from
he results of validation of two analytic functions — six-hump camel
ack function and Matlab peak function. The practical aerodynamic
ptimization is conducted for the NRL 7301 multi-element airfoil,
here the design objective is to increase the lift force of airfoil, while
aintaining the drag force of the baseline. The flap deflection angle,

nd the horizontal and vertical displacements of flap location are design
ariables as well as the angle of attack. Lift increase by about 18%
s resulted by the proposed design method at the computational cost
ignificantly lower than the existing approximated q-EI method and the
radient-based design optimization method. In the future work, current
esign framework with MPMO ISC will be extended to multidisciplinary
esign optimization.
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