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Abstract
In skeleton-based action recognition, graph convolutional networks (GCNs), which model human body skeletons using
graphical components such as nodes and connections, have recently achieved remarkable performance. While the current
state-of-the-art methods for skeleton-based action recognition usually assume that completely observed skeletons will be
provided, it is problematic to realize this assumption in real-world scenarios since the captured skeletons may be incomplete
or noisy. In this work, we propose a skeleton-based action recognition method that is robust to noise interference for the
given skeleton features. The key insight of our approach is to train a model by maximizing the mutual information between
normal and noisy skeletons using predictive coding in the latent space. We conducted comprehensive skeleton-based action
recognition experiments with defective skeletons using the NTU-RGB+D and Kinetics-Skeleton datasets. The experimental
results demonstrate that when the skeleton samples are noisy, our approach achieves outstanding performances compared
with the existing state-of-the-art methods.
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1 Introduction

Action recognition, which recognizes human behaviours
using a computational system, is an important area in
computer vision studies. Action recognition can be utilized
in multiple applications, including industrial systems
[48] and multimedia [53, 60]. Interest in this field
has increased rapidly in recent years, and numerous
studies have been proposed. Various modalities, such
as appearance [11], depth [29], motion flow [51], and
skeleton features [41] have been utilized to recognize
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human actions. Among the rapid advancements for learning
useful representations automatically, various approaches
have employed convolutional neural network (CNN) [8,
23] and recurrent neural network (RNN) [27, 59] models
to learn spatiotemporal information and recognize human
actions. These CNN and RNN based approaches, which
take RGB images and motion flows (e.g., optical flow) as
input, have achieved outstanding performances compared
with earlier methods based on hand-crafted features (e.g.
[55]). However, the drawback of deep learning approaches
is that the learned representations may not be focused
specifically on human actions because the entire areas of the
video frames are provided when learning the representations
[12, 39]. In contrast, skeleton features provide quantized
information about human joints and bones. Compared to
RGBs and motion flows, skeleton features can provide more
compact and useful information in dynamic situations with
complicated backgrounds [9, 12, 22].

Early approaches created skeleton data manually in
the form of a sequence of joint-coordinate vectors [9,
27, 36, 42, 59] or as pseudo-images [22, 23, 30] and
used the data to train RNNs or CNNs to predict the
corresponding action classes. Intuitively, skeleton features
can be represented as a graph structure because their
components are homeomorphic. A graph based approach is
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introduced in various methods such as action recognition
[40] and 3D object retrieval [26] and has proven its
effectiveness. In skeleton-based action recognition, the
joints and bones of skeleton features can be defined as the
vertices and connections of a graph, respectively. Recently,
graph convolutional networks (GCNs) have achieved
substantial success in skeleton-based action recognition [25,
39, 41]. ST-GCN [56] was the first work to use GCNs with a
spatial approach to address skeleton models, and it showed
impressive improvements. However, the spatial graph in ST-
GCN is predefined and relies only on the physical structure
of the human body. This makes it difficult to capture the
relationships between closely related joints such as those
between both hands in hand-related actions. To overcome
this limitation, many methods [25, 37, 39, 41, 43] have been
proposed that build adaptive graphs which pay dynamic
attention to each joint based on the action being performed.

However, the existing approaches all assume that a
complete skeleton is provided. Although recent studies on
pose estimation [5, 50] and skeleton-feature construction [8,
22, 30] have shown precise performances, it is unrealistic
to expect to obtain such perfect skeleton features without
noise in real situations. Figure 1 shows the noisy skeleton
estimated by AlphaPose [6]. Even though AlphaPose is
a well-known pose estimation method, it results in noisy
skeletons. To address this issue, Song et al. [43] defined
a noisy skeleton as an ‘incomplete skeleton’ in which
some joints are spatially or temporally occluded. Song
et al. [43] proposed a GCN-based method, named RA-GCN,
that learns the distinctive features of currently unactivated

(a) (b)

(c) (d)

Fig. 1 Examples of noisy skeletons estimated by the existing pose
estimation method (i.e., AlphaPose [6]). As shown in the figures,
the estimated skeletons are corrupted because some of the estimated
joints are in the wrong places. The snapshots were selected from the
UCF-crime [45] and NTU datasets [36]

(occluded) joints in multiple streams by utilizing class
activation maps (CAM).

To the best of our knowledge, Song et al. [43] was the
first GCN-based method to consider ‘incomplete skeletons’.
Figure 2 shows some illustrations of occluded joints.
Although regarding noisy joints as occluded joints is
a reasonable approach, inaccurate joints should also be
considered since inaccuracies can be easily observed when
pose estimation is applied to real-world scenarios. In this
work, therefore, we consider noisy skeletons rather than
incomplete skeletons.

We present a predictively encoded graph convolutional
network (PeGCN) model, which learns a noise-robust rep-
resentation for skeleton-based action recognition. The key
insight of our model is to learn such representations by
predicting the perfect sample from a noisy sample in
latent space via an autoregressive model that summarizes
latent features and produces a feature context. We use a
probabilistic contrastive loss to capture the most useful
information and predict the perfect sample. To demon-
strate the efficiency of the PeGCN on skeleton-based action
recognition with noisy samples, we conducted various
experiments using two datasets: NTU-RGB+D [36] and
Kinetics-Skeleton [56]. The experimental results show that
the PeGCN provides noise-robust action recognition per-
formances using skeleton features and that its performance
surpasses that of existing methods. The key contributions of
our work are summarized as follows.

– We propose a general skeleton-based action recognition
framework that is suitable for noisy skeletons generated
from pose estimation. Any type of graph convolution
network can be applied. To the best of our knowledge,
only few methods have considered noisy skeletons.

– A simple yet effective network proposed with our
framework, referred to as Predicatively encoded graph
convolutional network (PeGCN), can derive complete
skeleton feature from noisy skeleton feature in latent
space by introducing predictive coding loss.

– We conducted extensive experiments with various
setting and ablation studies. Our proposed approach
outperforms existing methods in noise environments
and is competitive in normal environments on public
benchmark dataset Kinetics-skeleton [56] and NTU-
RGBD [36].

The code has been made publicly available at https://
github.com/andreYoo/PeGCNs.git. The remainder of this
paper is organized as follows: In Section 2, we briefly
review the related methods. In Section 3, we provide our
motivation and intuition, as well as the structural details
of our method, followed by the experimental results and
analysis in Section 4 and conclusion in Section 5.
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Fig. 2 Illustrations of various types of noisy skeletons, where T is the
frame order associated with each skeleton: (Original Data) original
skeleton samples;. (Temporal noising) and (Spatial noising) skeleton

samples considered by Song et al. [43], which are spatially and tempo-
rally occluded; (Our nosing) a noisy skeleton sample generated by our
noising approach using noise level

2 Related works

2.1 Skeleton-based Action recognition

The recent success of deep-learning techniques has had
a significant impact on studies involving human action
recognition. To model the spatiotemporal features of human
actions, many works [27, 36, 40, 59] have attempted to
extract appearance information with convolutional neural
network (CNN) and temporal information with recurrent
neural network (RNN) models. Recently, ST-GCN [56]
successfully adopted a graph convolution network (GCN) to
handle graphs in arbitrary forms; this was the first method
to apply GCNs to skeleton-based action recognition.

The main drawback of GCN based methods is the spatial
graph, which is predefined by only relying on the physical
structure of the human body and is fixed to all GCN layers.
To address these limitations, many methods [25, 37, 39,
41, 43] have been proposed for building adaptive graphs
that pay attention dynamically to each joint based on the
action being performed. The adaptive graph functions as
a trainable mask that can learn the relationships between
any joints, thus, increasing both flexibility and generality
when constructing the graph. Shi et al. [39] proposed the
2s-AGCN model, which includes two adaptive graphs: a
global graph and a local graph. Si et al. [41], in turn,
combined an LSTM with a GCN (AGC-LSTM) to learn
spatiotemporal representations from sequential skeletons,
but most GCN-based models acquire temporal information
with 1D convolution on the temporal axis. Spatial-based
GCNs usually distribute graphs into multiple subgraphs
using either distance partitioning or spatial configuration
partitioning proposed in [56]. In contrast to these common

partitioning strategies, Thakkar et al. [47] proposed a part-
based GCN (PB-GCN) that learns the relationships between
five body parts.

2.2 Noise-robust approach

Some works tried to handle the noise in the data which
resulted in seriously penalizing the performance. Various
types of data can be categorized as noise, such as
occlusions, inaccurate positions, or outliers. In the image-
based approach, one of the challenging issue is the occlusion
in which two objects come too close together and seemingly
merge or combine with each other. To handle this issue,
Wang et al. [52] tried to learn the visibility of overlapped
objects by inferring occlusion maps from a global detector
using a combination of Histogram of Oriented Gradients
(HOG) and Local Binary Pattern (LBP). Similarly, Gao
et al. [13] introduced a binary pattern to propose occlusion-
robust object detection by modeling segmentation-aware
representation, which indicates whether pixels belong to
the corresponding object or not. With this binary variable,
a more compact and rich representation of the target
object can be obtained by considering the target only.
Wang et al. [54] argued that samples of occlusions and
deformations are very rare, making it difficult to train,
and proposed an alternative way which generates those
samples by learning adversarial networks. In the skeleton-
based approach, misaligned joints are regard as noise.
Liu et al. [28] applied a global context attention module
to the original LSTM in an attempt to concentrate on
the salient joints while ignoring the irrelevant joints,
rather than handling noise in each sample one by one.
Song et al. [43] defined an ‘incomplete skeleton’ which
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contains noisy joints and tried to handle it by utilizing class
activation maps (CAM).

2.3 Latent representation learning

In the area of vision, Latent representation learning is
utilized in many ways including reducing computational
cost or solving cross-domain problems. Gao et al. [15]
utilized latent features to handle limited training samples
in cross-domain cases by modeling pairwise network
architecture with a self-attention mechanism. Also, a
new public benchmark dataset for cross-domain action
recognition (CDAR) was constructed. Moreover, Gao
et al. [14] attempted to solve cross-domain few-shot action
recognition by extracting efficient latent spatio-temporal
dynamics from an attentive adversarial network. Carl
et al. [49] tried to predict actions in video by anticipating
the visual representation of the future frame from the
current one. Rohit et al. [16] proposed a new representation
which aggregates signals across time and space in the
latent space for video-level encoding using the two-stream
architecture. Rui et al. [35] proposed the Contrastive
Video Representation Learning (CVPL) method to extract
spatio-temproal representations from unlabeled videos. The
representations are learned by using contrastive loss where
positive samples are encoded to closer representations and
negative samples are encoded to farther representations in
latent space.

3 Predictively encoded graph convolutional
networks

3.1 Motivation and intuition

Most of the existing skeleton-based action recognition
methods only focus on complete skeleton data which are
captured in the constrained environment with a depth
camera. Even if the depth camera has an advantage over
capturing 3D data, noise can still be contained in the data
due to geometric conditions such as camera viewpoint, or
active objects. The situation will be further aggravated if
joints are estimated from the usual RGB camera. Such noise
will cause severe performance degradation even for the
state-of-the-art action recognition methods, especially in
real-world scenarios which likely contain even more noise.

To solve this problem, we first define a noisy-skeleton
by assigning random noise joints in the complete skeleton.
The noisy joints addressed in this paper are misaligned
joints compared to their actual positions. They are generated
by relocating the joints to random positions within
the bounding box of a person. Song et al. [43] also
defined an ‘incomplete skeleton’, in which the joints are

spatially or temporally occluded skeleton samples, by
replacing the joints to a single fixed position. We assume
that generating noise from the bounding box is more
realistic since joints are estimated within the bounding
box in a top-down manner pose-estimation. Such noise
patterns are inherently unpredictable. Therefore, modeling
noise information explicitly in data-driven approaches is
impractical.

To develop a precise action recognition method, it is
important to not only learn a global representation but
also have outstanding generalizability in order to be robust
to diverse types of noise. Deep learning is well known
as an effective way to improve model generalizability for
various visual recognition studies [2, 9, 17]. GCN is a
unified framework consisting of a graph structure and deep
learning; therefore, it also has the advantage of improved
generalization performance. Based on this advantage,
the dominant approach to training skeleton-based action
recognition methods based on GCNs is to initially extract
information from skeleton samples using GCNs and then to
compute the unimodal loss e.g. cross entropy [25, 37, 39,
41, 43, 56]. This approach can be regarded as a direct end-
to-end learning approach such as modeling p(ō|x) between
skeleton samples x and a corresponding acting label ō.
However, this approach is computationally intensive and
a waste of the representation capacity of the model. For
example, slight noise, which could be alleviated during
generalization via a nonlinear network structure, does not
need to be considered as meaningful. Therefore, to derive
an optimal global representation, it may not be appropriate
to derive a mapping model p(ō|x) directly.

The key insight underlying the developed PeGCN for
noise-robust skeleton-based action recognition is to learn
encoded representations of the underlying shared informa-
tion. These representations can be obtained by predicting
the missing information between a complete sample and a
noisy sample in the latent space. Using this approach, we
can recognize actions using an encoded complete skeleton
instead of a noisy skeleton, since incompleteness has severe
negative impacts on the recognition performance. Utiliza-
tion of the mined core joints was also considered since
each joint contributes differently depending on the action
performed. However, according to ST-GCN [56], the move-
ment of the upper-body may not be negligible even when a
leg-related action (e.g., kicking) is performed. Using only a
small set of joints may not be enough to fully understand
the action. Thus we try to exploit the shared information
rather than mining the core joints. This idea is inspired by
predictive coding [1, 10, 33], which is one of the oldest
techniques in signal processing for data compression. Pre-
dictive coding has recently been applied to unsupervised
learning in order to learn word representations [31] by pre-
dicting neighbouring words. The latent space approach has
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the following advantages. First, an action recognition model
needs to infer more global structures since it requires rel-
atively longer time samples compared to other tasks, such
as event detection [57, 58] or change detection [19]. When
inferring the global structure, high-level information (i.e.,
latent space) is more suitable than low-level information.
Second, the recognition performance is more likely to be
seriously affected by the global noise in the latent represen-
tation than the local noise, which can be reduced via deep
learning nonlinear weighted kernel structures.

To predict appropriate information from noisy skeleton
features, we train the model to maximally conserve
the mutual information (MI) between the two inputs.
The mutual information, which can measure the mutual
dependence between the two inputs, is defined as follows:

I (x; ᾱ) =
∑

x,ᾱ

p(x, ᾱ) log
p(x|ᾱ)

p(x)
(1)

where x and ᾱ are complete skeleton and noisy represen-
tation, respectively. By maximizing the mutual information
between the two representations (which are bounded by the
MI between the inputs), we extract the underlying latent
variable, which is robust to the global noise.

3.2 Structural details

Figure 3 illustrates the PeGCN training and inference
pipeline. The PeGCN consists of GCN module fenc and
autoregressive module far. In preprocessing, the noisy
skeleton sample x ′ is generated from the given skeleton
sample x. The GCN module fenc encodes skeleton
samples x∗ into a latent space α∗, where ∗ indicates the
input type: a normal type (x and α) or noisy type (x ′
and α′). The autoregressive module far summarizes the
latent representation and produces the contextual latent

representation ᾱ = far(α
′). Note that the autoregressive

model is specialized in handling time series data better than
a common linear transformation.

As discussed in the previous section, we do not predict
the appropriate information directly from the noisy skeleton
via the generative model p(x|ᾱ). Instead, we utilize
a density ratio [33], which helps preserve the mutual
information between two representations, as follows:

D(x; ᾱ) = p(x|ᾱ)

p(x)
(2)

where x and ᾱ denote the skeleton sample and the con-
textual latent representations, respectively. By combining
the encoded representation ᾱ and the density ratio D(x; ᾱ),

model is alleviated from modeling high dimensional distri-
bution x. Even though we cannot derive p(x) or p(x|x′)
directly, we can use the samples from these distributions,
which also allows the application of well-known tech-
niques (e.g. important sampling [3] and noise contrastive
estimation [18, 20, 32]).

The backbone network for our GCN module fenc is the
GCN part of Js-AGCN [39]. The GCN module is composed
of adaptive graph convolutional layers, which optimize the
graph topology in combination with the other parameters of
the network in an end-to-end learning manner. The adaptive
convolutional layer is defined by

f out =
Kv∑

k

W kf in(Ak + Bk + Ck), (3)

where Ak is the original normalized adjacency matrix, Bk

is a global attention matrix and Ck is an individual attention
matrix which is a unique graph for each sample. With (3),
the latent representation of a given skeleton can be obtained.
We employed the GCN from the 2s-AGCN model, with the
exception of fully connected networks.

Fig. 3 PeGCN has two branches for normal and noisy represented
in solid-line and dotted-line, respectively. Both branches are used
in training while only the noisy branch is used in testing. GAP and

fc denote global average pooling and fully connected layer, respec-
tively. Note that the noisy skeleton is generated by preprocessing
at every run time
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RNNs with gated recurrent units (GRUs) [7] were
used for the autoregressive module far. This selection
can easily be replaced by other linear transformations or
nonlinear networks. Note that any type of GCN model
or autoregressive model can be applied in the proposed
method. It seems likely that more recent advancements
in GCNs and autoregressive models could achieve better
results.

3.3 Training and inference

Both the GCN and autoregressive modules are jointly
trained to optimize the loss and maximize the MI between
two latent representations of normal and noisy skeleton
features, which we call predictive encoding loss. With a
given set X ∈ x1, ..., xN which contains one positive sample
p(x∗|ᾱ) and N − 1 negative samples from the distribution
p(x′), the following loss is optimized:

Lpe = −EX

[
log

D(x∗; ᾱ)∑
x∈X D(x; ᾱ)

]
, (4)

where x∗ denotes the positive sample corresponding to ᾱ.
Note that (4) is the categorical cross entropy. According to
Oord et al. [33], optimizing this loss will result in estimating
the density ratio in (2). In other words, minimizing the
loss Lpe will lead to maximizing the mutual information
I (x; ᾱ). Action recognition should identify the action class
of a given skeleton sample. Using Lpe alone cannot achieve
this goal since it is only focused on maximizing the MI
between two latent representations. Therefore, similar to
other studies [38, 39, 43], the cross entropy loss is exploited
as follows:

Lce = −
C∑

i

ōi log(oi), (5)

where C is the number of action classes, ō is the given
annotation for an action sample, and o is the output of
the fully connected network for the classification task
in the inference stage. Consequently, to train the noise-
robust skeleton-based action recognition model, the total
loss functions are straightforwardly defined by the sum of
the cross entropy loss Lce and the proposed predictive loss
function with the balancing weight λ, which is represented
as follows:

Lae = Lce + λLpe. (6)

In all our experiments, the best performance achieved
when λ is set to 0.1. Action recognition using the PeGCN
is straightforward. In the test step, the GCN module fenc

encodes an input skeleton sample into the latent space, and
the autoregressive model far summarizes the latent feature
and generates the context latent representation ᾱ. Finally,
ᾱ is used as the input to the fully connected network for
action recognition (Fig. 3).

4 Experiments

4.1 Experimental setting

To evaluate the action recognition performance, the PeGCN
is tested on two datasets: NTU-RGB+D dataset [36] and
Kinetics-Skeleton [56]. We followed the same evaluation
protocol described in [39] in which the Top-1 and Top-5
recognition accuracies are evaluated. The details of each
dataset are as follows:

The NTU-RGB+D dataset [36] is one of the largest datasets
in skeleton-based action recognition, containing approxi-
mately 56,000 samples and consisting of 60 indoor activities
(e.g., hand clapping or drinking water). The samples were
captured by Microsoft Kinect v2 at three different angles (-
45, 0, 45) with 40 volunteers. In the skeleton sequences, 3D
spatial coordinates (X, Y, Z) for 25 joints are provided for
each human action. This dataset has two benchmark pro-
tocols: cross-view (CV) and cross-subject (CS). In the CV
protocol, the samples are split into training and test sets
according to the camera angle with 37,920 and 18,960 sam-
ples, respectively. In the CS protocol, the samples are split
into training and test sets based on the subjects that appear
in the sequences. Some subjects are designated as train-
ing samples, and the remaining subjects are designated as
test samples. Under the cross-subject protocol, the training
and test subsets contain 40,320 and 16,560 samples, respec-
tively. Following these protocols, the top-1 accuracy scores
on both benchmarks are reported.

The Kinetics-Skeleton dataset [56] is another large-scale
skeleton action dataset generated from the Kinetics dataset
[21], which contains 34,000 video clips collected from
YouTube that have a wide variety of characteristics such
as illumination changes and background color variations.
Each video clip is labeled from a set of 400 action classes.
The skeleton model is estimated with the publicly available
OpenPose toolbox [4], which yields 2D locations and 1D
confidence scores for 18 joints. The top two people with the
highest average joint confidence scores in the video clips
are selected when multiple people exist in the scene. The
length of each skeleton sequence is fixed at 300 by repeating
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or sampling the sequence. The dataset (Kinetics-Skeleton)
contains 240,000k samples for the training set and 20,000k
samples for the validation set.

A noisy skeleton can be defined as a skeleton that
contains inaccurate joint positions. A joint position is
determined within the person area in top-down pose
estimation. Based on this background, a noisy skeleton
is generated as follows: 1) The noise level is determined
manually. 2) Based on the noise level, some joints are
selected randomly. 3) A boundary box is determined by
all the joints in the complete skeleton, as described in
Figure 4a. 4) A random point in the boundary box is
assigned to each selected joint in every frame. Figure 4b
describes how random points are assigned to the existing
joints depending on the noise level. In this manner, we can
generate noisy samples based on the assumption that the
skeleton is estimated in a top-down manner where one finds
a person first and then estimates joints from the person area.
Additionally, the generated noisy skeleton is similar to those
estimated by OpenPose from real-world videos. Note that
temporal noise is not considered in this work. Only spatial
noise is addressed since we believe that spatially disordered
joints are the more common noise.

The common hyperparameter settings used to train
the PeGCN are as follows. The number of epochs is
set at 50 and 65 for the NTU-RGB+D and Kinetics-
Skeleton datasets, respectively. Given that our computa-
tional resources are limited, the batch size was reduced to
32, which is half of the original batch size of our back-
bone network [39] and which can negatively affect the
PeGCN’s action recognition performance. The stochastic
gradient descent and weight decay are utilized as optimiza-
tion algorithms. The experiments are divided into two parts:
the first involves the ablation study, and the second performs
comparisons with existing state-of-the-art methods.

4.2 Ablation study

4.2.1 Experimental protocol

The performance analysis was conducted based on the
hyperparameter settings of the PeGCN. The hyperparam-
eters that most significantly affect the action recognition
performance of the PeGCN are the noise level and the
composition of the loss function. The performance analysis
based on the noise level and the loss function composi-
tion settings in the training step is carried out as follows.
First, two PeGCN models trained by Lce (PeGCN ce) and
Lae (PeGCN ae) are constructed, and then, each model is
trained with 1, 3, and 5 noise levels. The other parameters
are set exactly the same as the parameter settings mentioned
in the preceding section. Next, these models are evaluated
with noise levels between 1 and 13. Finally, the trends of
the cross entropy losses and the predictive coding losses
of these models are observed, and their action recognition
accuracies are compared. For efficiency, the ablation study
used only the CV protocol of the NTU-RGB+D dataset.

4.2.2 Experimental results

Table 1 shows that the action recognition accuracy depends
on the noise level and the loss function settings in
the training step. The best accuracy was achieved by
PeGCN ae n5 in all test cases. Specifically, an accuracy of
93.33 and 90.28 was achieved for noise level N3 and N13,
respectively. The models trained at different noise levels,
PeGCN ce n1, PeGCN ce n3 and PeGCN ce n5, achieved
an accuracy of 85.88, 89.61 and 89.79 at testing level
N7, respectively. The performance improved as the training
noise level increased, when the total number of joints
is 25. At testing level N10, PeGCN ae n5 trained with

(a)

N=0 N=1 N=3 N=5 N=10

(b)

Fig. 4 Illustrations of setting the candidate scope to generate noisy joints and example samples of noisy skeleton depending on the noise level: a
defining the scope to generate noisy joints using a given skeleton sample; b noisy skeleton samples created from an original sample depending on
the noise level
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Table 1 The top-1 accuracy of the PeGCN depends on the loss function and the noise level setting under the Cross-View (CV) protocol of the
NTU-RGB+D dataset

Models Test level

N3 N5 N7 N10 N13

w/o the predictive encoding loss Lpe

PeGCN ce n1 91.52(±0.21) 89.33(±0.25) 85.88(±0.15) 78.47(±0.19) 66.66(±0.15)

PeGCN ce n3 92.64(±0.26) 91.1(±0.21) 89.61(±0.25) 85.16(±0.25) 77.99(±0.19)

PeGCN ce n5 92.15(±0.14) 91.33(±0.29) 89.79(±0.21) 87.06(±0.19) 82.23(±0.21)

w/ the predictive encoding loss Lpe

PeGCN ae n1 91.89(±0.27) 90.79(±0.12) 89.61(±0.31) 86.9(±0.21) 83.28(±0.16)

PeGCN ae n3 92.71(±0.19) 92.34(±0.31) 91.62(±0.21) 90.41(±0.14) 88.96(±0.14)

PeGCN ae n5 93.33(±0.12) 92.22(±0.18) 92.13(±0.22) 91.24(±0.24) 90.28(±0.31)

The model name is determined by the loss function and the noise level. For example, the model PeGCN pe n5 is the model which is trained with
loss Lpe at noise level 5. The results are denoted in the form of mean accuracy and standard deviation in the parentheses. The boldface figures
indicate the highest performance for each experiment, respectively

Lae achieved a higher accuracy of 91.24, compared to
PeGCN ce n5 which achieved 87.06, when both models are
trained at the same noise level. These overall quantitative
results demonstrate that among the models trained at the
same noise level, the model trained with the total loss
function Lae usually performs better. It also suggests that
performance degradation occurs much faster in PeGCNs
trained using only the cross entropy loss, compared with
other models.

Moreover, the training losses of each model show
the efficiency of Lpe when learning the noise-robust
representation. Figure 5a illustrates the changes in the
cross entropy losses for PeGCN ce and PeGCN ae trained
at different noise levels. Although both the CE losses
of PeGCN ce and PeGCN ae are similar by the end of
training, PeGCN ce initially converges much faster than

does PeGCNtotal in all cases. This trend suggests that
training with only Lce makes it easier to convert to a
poor locally optimized solution than training Lce with Lpe,
based on their respective accuracies. Figure 5b illustrates the
predictive coding loss of PeGCN ae at different noise levels.

Interestingly, the coding loss of the PeGCN ae trained at
noise level 1 is relatively higher than that of the PeGCN ae

trained at noise level 3 or 5. These trends can be attributed
to the difficulties of making generalizations from a small
volume of noise, where the accuracy of PeGCN ae trained
at noise level 1 is lower than that of others (see Table 1).
In the training step, a higher noise level can provide more
diversity in the training samples than can a lower noise
level. Consequently, the ablation study demonstrates that
adopting a higher noise level in the training step can
improve the action recognition performance in the test step,

(a) (b)

Fig. 5 Trends of the cross entropy and predictive encoding losses
according to the PeGCNs trained at different conditions under the CV
protocol of the NTU-RGB+D dataset: a represents the curves of cross

entropy functions Lce; and b represents the curves of the predictive
encoding losses Lpe. Note that both graphs are smoothed for better
readability
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but not in a linearly proportional fashion. For experimental
efficiency, further studies comparing the PeGCN with the
existing state-of-the-art methods are conducted only with
PeGCNtotal trained at noise level 5.

4.2.3 Experimental protocol

We evaluated the PeGCN on both normal and noisy
skeleton samples by following the general experimental
protocol described in the NTU-RGB+D dataset [36] and the
Kinetics-Skeleton dataset [21]. For both datasets, the top-
1 and top-5 accuracies were computed for the performance
comparison. In the experiments on the NTU-RBGD dataset,
both the cross-view (CV) and cross-subject (CS) protocols
were applied. To reduce the volatility of performance due
to the randomness of noised joints, all the experiments were

iteratively conducted 10 times, and the mean accuracies
were used for the comparison.

We compared the PeGCN with several recently proposed
state-of-the-art methods. For experimental efficiency and to
ensure fair comparisons, the methods that were proposed
before 2018, or whose performance is at least 5% lower
than ours on normal skeleton evaluation (e.g. [9, 12, 27, 36,
59]) were excluded from this comparison (see Table 2). In
particular, in the experiments using noisy skeleton samples,
the methods whose source codes were not released by the
paper authors were also excluded from the experiments
[34, 37]. In addition, some methods whose source codes
have been made public were also excluded based on the
following criteria: 1) the source code was released but not
by the original authors; 2) the paper has yet to be officially
published in a journal or a conference proceeding.

Table 2 Performance comparisons on complete skeletons from the NTU-RGB+D and Kinetics-Skeleton datasets

Methods Architecture NTU-CS NTU-CV Kinetics-Skeleton

Top1 Top5 Top1 Top5 Top1 Top5

Feature Enc [12] Hand-crafted – – – – 14.9 25.8

HBRNN [9] RNN 59.1 – 64.0 – – –

Deep LSTM [36] LSTM 60.7 – 67.3 – 16.4 35.3

ST-LSTM [27] LSTM 69.2 – 77.7 – – –

STA-LSTM [42] LSTM 73.4 – 81.2 – – –

VA-LSTM [59] LSTM 80.7 – 88.8 – – –

TCN [23] CNN 74.3 – 83.1 – 20.3 40.0

Clips+CNN+MTLN [22] CNN 79.6 – 84.8 – – –

Synthesized CNN [30] CNN 80.0 – 87.2 – – –

3scale ResNet152 [24] CNN 85.0 – 92.3 – – –

DPRL+GCNN [46] GCN 83.6 – 89.8 – – –

AGC-LSTM(Joint&Part) [41] GCN+LSTM 89.2 – 95.0 – – –

AS-GCN [25] GCN 86.8 – 94.2 – 34.8 56.5

ST-GCN∗ [56] GCN 81.6 (81.5) 96.9 88.8 (88.3) 98.8 31.6 (30.7) 53.7 (52.8)

2s RA-GCN∗ [43] GCN 85.8 (85.8) 98.2 93.0 (93.0) 99.3 – –

3s RA-GCN∗ [43] GCN 85.9 (85.9) 98.1 93.5 (93.5) 99.3 – –

PB-GCN∗ [47] GCN 87.0 (87.5) 98.3 93.4 (93.2) 99.4 – –

Js-AGCN∗ (Backbone) [39] GCN 85.4 97.3 93.1 (93.7) 99.08 34.4 (35.1) 57.1 (57.1)

Bs-AGCN∗ [39] GCN 87.0 97.5 94.1 (93.2) 99.23 34.1 (33.3) 57.0 (55.7)

2s-AGCN∗ [39] GCN 88.8 (88.5) 98.1 95.3 (95.1) 99.4 36.8 (36.1) 59.2 (58.7)

GCN-NAS(Joint&Bone) [34] GCN 89.4 – 95.7 – 37.1 60.1

DGNN [37] GCN 89.9 – 96.1 – 36.9 59.6

JB-AAGCN [38] GCN 89.4 – 96.0 – 37.4 60.4

MS-AAGCN [38] GCN 90.0 – 96.2 – 37.8 61.0

PeGCNae GCN 85.6 96.79 93.9 99.02 34.0 57.24

NTU-CV and NTU-CS are evaluation protocol Cross-View (CV) and Cross-Subject (CS) of NTU-RGB+d dataset. Each protocol is described in
Section Experimental setting Section 4.1 A hyphen (‘-’) indicates that the results were not reported. The symbol ∗ indicates a model trained by
the authors of this paper, and figures in the parentheses represent the reported accuracy. The boldface numbers denote the highest performance for
each experiment
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4.2.4 Experiment with normal skeletons

Initially, we compared the PeGCN with other existing
state-of-the-art methods on normal skeleton samples. For
experimental consistency, several methods were tested using
the publicly available source codes compiled by the authors
of this paper [39, 43, 47, 56]. Table 2 contains the top
1 accuracies for the CS and CV protocols on the NTU-
RGB+D dataset and the top 1 and top 5 accuracies on the
Kinetics dataset. In the experiments, the PeGCN achieves
an accuracy of 85.6 and 93.9 for the CS and CV protocols
of the NTU-RGB+D dataset, respectively. The PeGCN
produces 34.0 and 57.2 for the top 1 and top 5 accuracies
on the Kineitcs-skeleton dataset. The MS-AAGCN [38]
achieves state-of-the-art performances—90.0 for the CS
protocol and 96.2 for the CV protocol. The second-highest
performance is achieved by the DGNN [37], resulting in
89.9 and 96.1 for the CS and CV protocols, respectively. On
the Kinetics-Skeleton dataset, the MS-AAGCN [38] scores
37.8 for the top-1 and 61.0 for the top-5. The MS-AAGCN
also scores the second-highest performance on this dataset
with 37.8 and 61.0 for the top-1 and top-5, respectively.
In comparison, the PeGCN produces performances that are
better than or comparable to several of the other methods.
The Js-AGCN [39], which is used as the backbone network
for PeGCN ae, achieves the respective accuracy of 85.4 and
93.1 for the CS and CV protocols on the NTU-RGB+D
dataset, which is only slightly below ours.

Nevertheless, the performance of PeGCNae is generally
lower than that of a few other methods, such as MS-
AAGCN [38], DGNN [37], GCN-NAS [34], and AS-
GCN [25]. The performance gap between these state-of-
the-art methods and the PeGCN can be interpreted as
follows: The MS-AAGCN [38] uses additional attention
modules (e.g. spatial, temporal, channel-wise attention) and
exploits four different modalities, including joint and bone
information and motion information. During training, its
batch size is twice that of ours, and the adaptive graphs
are fixed in the first 5 epochs to achieve better learning, as
explained in the DGNN [37]. The MS-AAGCN achieved
top-1 accuracies higher than ours by 4.4%, 2.3% and 3.8%
on CS, CV and Kinetics, respectively. Although the DGNN
[37] uses the same batch size (32), it has a longer training
epoch (120), while our training epoch is 50 for NTU-
RGB+D and 65 for Kinetics Skeleton. In addition, the
DGNN utilizes both joint and bone information through a
directed acylic graph. This leads to improvements in its top-
1 accuracy of 4.3%, 2.2% and 2.9% over the PeGCN on
CS, CV and Kinetics, respectively. Other methods (such
as GCN-NAS [34] and AS-GCN [25]) also adopt longer
training epochs than ours, and their learning rate decays
more frequently.

4.3 Comparisons with the existing state-of-the-art
methods

4.3.1 Experiment with noisy skeletons

The experimental results on skeleton-based action recogni-
tion with noisy samples clearly demonstrate the efficiency
of PeGCN when recognizing actions on noisy skeleton
samples. In contrast to the other approaches, in which
the performance rapidly degrades when the noise levels
increase, the PeGCN shows noise-robust action recognition
performances. As shown in Table 3a of the results on the
CV protocol using the NTU-RGB+D dataset, the PeGCN
achieves accuracies of 93.75 and 91.84 which are the high-
est accuracies obtained in experiments with noise levels 1
and 10. No other method has reached 88% accuracy level
even at noise level 1. Js-AAGCN∗ [38] produces an accu-
racy of 87.51 for noise level 1. However, its recognition
performance degrades steeply as the noise level increases.
In the experiment with noise level 10, the performance of
Js-AAGCN∗ is only 51.38. Furthermore as shown in the
Fig. 6, all methods except our PeGCN tends to drop accu-
racy significantly as noise level increased. PeGCN showed
considerable performance that maintains 90% of accuracy
in highly noised environment (i.e., noise level 13).

The experimental results for the CS protocol using the
NTU-RGB+D dataset also suggest that the PeGCN can
provide more noise-robust performance than the existing
state-of-the-art methods. As shown in Table 3b, the PeGCN
achieves accuracies of 85.18 and 84.54 in the experiments
where the noise levels are 1 and 5, respectively. The
performance gap between these two figures is less than 1%,
which is significantly lower than the performance gap in the
other methods. 2s-AGCN et al. [39], who achieved a state-
of-the-art performance in experiments with normal skeleton
samples (see Table 2), reported accuracies of 76.37 and
49.41 in noise-1 and 5 experiments, respectively, and the
gap between these two accuracies is greater than 26%. In
the experiments with noise level 10, the performances of
the other methods are all lower than 50, while PeGCNtotal

obtains an accuracy of 83.13.
The experimental results on the Kinetics-Skeleton dataset

also show noise-robust performances on noisy skeletons. As
shown in Table 3c, the PeGCN obtains better accuracies
than the other methods for all noise level cases. The
Js-AGCN [39] achieved top-1 and top-5 accuracies of
23.04 and 43.45 at noise level 1, respectively. However,
its performance drops dramatically when the noisy level
increases, resulting in a top-1 accuracy of only 11.05 and
6.44 in noise-5 and noise-10 experiments, respectively. The
performance dropped more than 15% compared to that in
the noise-1 experiment. Although the accuracy of PeGCN
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Table 3 Recognition accuracies depending on the noise level on the NTU-RGB+D and Kinetics dataset

Methods Noise level

1 3 5 10

Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

(a) NTU-RGB+D Cross-View (CV) Accuracy

ST-GCN∗ [56] 83.09 97.27 76.26 94.75 68.89 90.76 51.77 78.08

PB-GCN∗ [47] 79.67 95.17 67.11 88.27 54.94 80.12 35.57 60.86

3s RA-GCN∗ [43] 79.85 92.63 66.55 84.76 55.74 76.51 35.83 58.28

2s RA-GCN∗ [43] 79.57 92.76 66.23 84.23 54.53 74.84 35.04 55.01

Js-AGCN∗ [39] 86.19 96.26 77.23 92.35 68.71 87.19 48.46 71.05

Js-AAGCN∗ [38] 87.51 95.96 79.84 91.77 71.51 85.9 51.38 68.91

Bs-AGCN∗ [39] 87.63 97.91 79.23 94.81 71.03 90.06 50.91 74.03

2s-AGCN∗ [39] 89.34 98.48 83.46 96.23 76.81 92.74 56.91 78.47

PeGCN (ours) 93.75 99.15 93.33 99.11 92.92 99.04 91.84 98.92

(b) NTU-RGB+D Cross-Subject (CS) Accuracy

ST-GCN∗ [56] 73.1 93.26 64.82 88.23 56.8 82.57 40.5 68.17

PB-GCN∗ [47] 77.17 94.81 67.03 89.35 56.86 81.88 37.78 64.15

3s RA-GCN∗ [43] 71.52 91.23 57.06 80.86 46.82 70.52 28.87 50.51

2s RA-GCN∗ [43] 72.29 90.16 58.29 79.35 47.12 69.18 29.45 49.15

Js-AGCN∗ [39] 76.01 92.02 65.44 84.87 54.49 76.27 35.82 56.95

Js-AAGCN∗ [38] 80.57 93.5 73.17 89.37 66.13 84.19 49.11 70.15

Bs-AGCN∗ [39] 79.35 93.98 70.29 89.15 61.05 83.41 43.95 68.94

2s-AGCN∗ [39] 83.02 96.12 75.12 92.32 66.65 87.01 47.33 70.84

PeGCN (ours) 85.18 97.08 85.01 96.85 84.54 96.95 83.13 96.39

(c) Kinetics-Skeleton Accuracy

ST-GCN∗ [56] 22.17 42.59 8.92 22.19 3.54 11.17 0.92 3.8

Js-AGCN∗ [39] 23.04 43.45 15.41 32.01 11.05 24.67 6.44 15.2

Js-AAGCN∗ [38] 27.38 48.5 19.26 37.37 14.03 28.8 7.89 17.42

Bs-AGCN∗ [39] 24.11 45.56 16.14 33.38 11.95 25.63 6.67 15.9

2s-AGCN∗ [39] 28.32 49.11 20.05 38.14 14.89 29.47 8.72 18.04

PeGCN (ours) 33.23 55.6 32.78 55.22 32.39 54.34 29.63 51.78

The symbol ∗ indicates methods trained and tested by the authors of this paper. The numbers in boldface denote the highest performance for each
experiment

also decreases as the noise level increases, the accuracy
dropoff rate is much less than that of the other models. At
noise level 1, PeGCNae achieved 33.23 accuracy, while the
other methods achieved less than 29%. Moreover, at noise
level 5, the other methods showed an accuracy below 15%,
while the PeGCNae achieved 32.39.

To show the effectiveness of our framework, a compar-
ison is conducted between accuracies obtained with and
without the application of predictive encoding learning. As
shown in the Fig. 7, all three methods are dramatically
improved on both protocols (i.e., CV and CS ) and the
performance decline rates are considerably alleviated. It is
interesting to observe that ResGCN [44], to which resid-
ual connection is applied, outperformed ST-GCN [56] on

the normal skeleton data but showed relatively low perfor-
mances under the noisy environment.

4.4 Analysis and discussion

The overall results indicate that the PeGCN provides
outstanding skeleton-based action recognition that is robust
to noisy samples, compared to the existing state-of-the-
art methods. The accuracy scores achieved by the PeGCN
for all noise levels on the NTU-RGB+D and Kinetics
datasets outperform those of the compared models. In
addition, the performance gap between the PeGCN and
other methods is proportional to the noise level. In the
experiment on noise level 10, the performances of nearly all
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Fig. 6 Illustration of
performance dropoff of each
method. The results was tested
on noise level between 1 to 15
under NTU-RGB+D
cross-view (CV) protocol

the methods except PeGCN degrade by over 30% compared
with their results on normal samples. In addition to the
accuracy scores, the standard deviations also suggest that
the PeGCN has advantages in noise-robust skeleton-based
action recognition.

Interestingly, among the experimental results, the RA-
GCN [43], which was proposed to recognize actions from
incomplete skeletons, achieves relatively worse accuracy
scores (Table 3a and b) than do other methods [37, 39,
56] that do not consider skeletons with noise information.
This may be caused by a difference in the definition of
‘noise’ on skeleton features. As shown in Fig. 2, Song
et al. [43] assigned 0 to noisy joints, which were defined by
the ‘missed joints’ due to the spatial or temporal occlusions.
However, in our experiments, an arbitrary value for joint
noise is defined randomly within a bounding box (see
Fig. 4). Moreover, the PeGCN not only shows strength

on noisy skeletons but also performs comparably to its
backbone method on clean skeleton data. This suggests
that adopting a better backbone network for the PeGCN
could lead to even better performance. Nevertheless, the
entire set of experimental results serves to demonstrate the
efficiency of PeGCN when applied to skeleton-based action
recognition with noisy skeleton samples.

5 Conclusions

In this work, we presented a noise-robust skeleton-
based action recognition method based on the graph
convolutional networks with predictive encoding for latent
space, called a predictively encoded graph convolutional
network (PeGCN). In the training step, the PeGCN learns
to improve its representation ability of noisy skeleton by
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Fig. 7 Illustration of changes in the accuracy for each method before
and after applying our noise-robust learning. Symbol + of model name
denotes the model to which our predictive encoding learning (PEL)

is applied. In each subfigure, the yellow bar and the green bar rep-
resent the original accuracy and the improved accuracy with PEL,
respectively
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predicting complete samples from noisy samples in latent
space. The PeGCN increases the flexibility of GCNs and
is more suitable for action recognition tasks using skeleton
features. When we evaluated the PeGCN on two large-scale
action recognition datasets, NTU-RGB+D and Kinetics, it
achieved competitive performances to state-of-the-art on
both datasets. Although the PeGCN shows considerable
action recognition performance on noisy skeletons, training
it requires a large numbers of samples. Additionally, the
processing speed of the PeGCN is quite slow because it
includes two different deep-learning networks.

In future studies, therefore, a unified model will be
explored to improve the model’s performance on both noisy
and clean skeletons, where the current structure consists
of two networks connected in sequence. We expect the
performance and processing speed to further improve as
a result. Although both normal and noisy skeletons were
used in this paper for mutual information to extract rich
representation, we plan to use only noisy data by applying
unsupervised learning without a guide-network. In this way,
our method can be applied to any environment even without
the availability of a complete skeleton. Lastly, various
noise types, not only spatial noise but also temporal noise
including partial occlusion, will be studied as well.
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