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Systemic inflammation & endotoxaemia
Cirrhosis-associated immune dysfunction
Highlights
(termed encephalopathy). We show
that rifaximin-a suppresses gut
� Rifaximin reduced gut-derived systemic inflammation by suppress-
ing oralisation of the gut microbiome.

� Rifaximin suppressed mucin-degrading species rich in sialidase, e.g.
Streptococcus and Veillonella spp.

� Rifaximin promotes an intestinal environment augmenting re-
sponses to pathobionts and promoting gut barrier repair.

� Patients treated with rifaximin were less likely to develop infections.
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Background & Aims: Rifaximin-a is efficacious for the preven- reducing levels of mucin-degrading sialidase-rich species,

tion of recurrent hepatic encephalopathy (HE), but its mecha-
nism of action remains unclear. We postulated that rifaximin-a
reduces gut microbiota-derived endotoxemia and systemic
inflammation, a known driver of HE.
Methods: In a placebo-controlled, double-blind, mechanistic
study, 38 patients with cirrhosis and HE were randomised 1:1 to
receive either rifaximin-a (550 mg BID) or placebo for 90 days.
Primary outcome: 50% reduction in neutrophil oxidative burst
(OB) at 30 days. Secondary outcomes: changes in psychometric
hepatic encephalopathy score (PHES) and neurocognitive func-
tioning, shotgun metagenomic sequencing of saliva and faeces,
plasma and faecal metabolic profiling, whole blood bacterial
DNA quantification, neutrophil toll-like receptor (TLR)-2/4/9
expression and plasma/faecal cytokine analysis.
Results: Patients were well-matched: median MELD (11 rifax-
imin-a vs. 10 placebo). Rifaximin-a did not lead to a 50% reduc-
tion in spontaneous neutrophil OB at 30 days compared to
baseline (p = 0.48). However, HE grade normalised (p = 0.014)
and PHES improved (p = 0.009) after 30 days on rifaximin-a.
Rifaximin-a reduced circulating neutrophil TLR-4 expression on
day 30 (p = 0.021) and plasma tumour necrosis factor-a (TNF-a)
(p <0.001). Rifaximin-a suppressed oralisation of the gut,
words: Hepatic encephalopathy; rifaximin-a; cirrhosis; systemic inflammation;
microbiome; salivary microbiome.
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Streptococcus spp, Veillonella atypica and parvula, Akkermansia
and Hungatella. Rifaximin-a promoted a TNF-a- and interleukin-
17E-enriched intestinal microenvironment, augmenting anti-
bacterial responses to invading pathobionts and promoting gut
barrier repair. Those on rifaximin-a were less likely to develop
infection (odds ratio 0.21; 95% CI 0.05-0.96).
Conclusion: Rifaximin-a led to resolution of overt and covert HE,
reduced the likelihood of infection, reduced oralisation of the gut
and attenuated systemic inflammation. Rifaximin-a plays a role
in gut barrier repair, which could be the mechanism by which it
ameliorates bacterial translocation and systemic endotoxemia
in cirrhosis.
Clinical Trial Number: ClinicalTrials.gov NCT02019784.
Lay summary: In this clinical trial, we examined the underlying
mechanism of action of an antibiotic called rifaximin-a which
has been shown to be an effective treatment for a complication
of chronic liver disease which effects the brain (termed en-
cephalopathy). We show that rifaximin-a suppresses gut bacteria
that translocate from the mouth to the intestine and cause the
intestinal wall to become leaky by breaking down the protective
mucus barrier. This suppression resolves encephalopathy and
reduces inflammation in the blood, preventing the development
of infection.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of Euro-
pean Association for the Study of the Liver. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Introduction
Advanced cirrhosis brings with it a plethora of complications
including hepatic encephalopathy (HE), variceal bleeding, ascites
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and a propensity to develop infections, which can lead to mul-
tiorgan failure. The development of HE in both its covert1 and
overt forms2 confers a poor prognosis.

The gut microbiome has prime importance in the pathogen-
esis of cirrhosis, with the evolution from a healthy gut micro-
biome, to one characterised by dysregulated gut microbial
activity or ‘dysbiosis’ associated with decompensation of
cirrhosis.3 Dysbiosis is greater in patients with cirrhosis who
develop complications correlating with plasma endotoxin levels
and 30-day mortality.4 In cirrhosis there is an imbalance be-
tween healthy and pathogenic gut bacteria with skewed micro-
biota populations in favour of increased numbers of pro-
inflammatory and ammonia-producing species including
Enterobacteriaceae, Firmicutes, Archaea and Prevotella.5 Bacterial
translocation (BT) is a significant driver of cirrhosis-associated
immune dysfunction (CAID), although the mechanisms by
which intestinal dysbiosis drives immune cell dysfunction
remain unknown.6,7 Furthermore, there is growing evidence
supporting a pivotal role of dysregulated gut microbiota in HE, as
well as gut inflammation and barrier dysfunction in decom-
pensated cirrhosis.8

The non-absorbable antibiotic rifaximin-a reduces the risk of
recurrence of overt HE and need for hospitalisation.9 Treatment
with rifaximin-a has been associated with significant reductions
in bed days, emergency department attendances and 30-day
readmissions.10 The specific mechanism of action of rifaximin-a
remains to be elucidated; it has been shown to reduce circulating
gut-derived endotoxins4 but studies of faecal microbiome
composition in response to rifaximin-a have fallen short of
demonstrating any distinct changes in microbial abundance
utilising 16S rRNA gene sequencing.4,11,12

We hypothesised that rifaximin-a reduces gut microbiota-
derived systemic inflammation, a known driver of HE and
CAID. A single-centre, double-blind, randomised, placebo-
controlled mechanistic trial of rifaximin-a was undertaken on
38 patients with cirrhosis and HE over 90 days to delineate
whether rifaximin-a ameliorates neutrophil-derived oxidative
stress and systemic inflammation (as a primary objective). Sec-
ondary objectives were set to assess changes in HE grade and
neurocognitive functioning, as well as to evaluate rifaximin’s
mechanism of action by undertaking shotgun metagenomic
sequencing (MGS) of faecal and saliva samples, in conjunction
with plasma and faecal metabolic profiling, whole blood bacte-
rial DNA quantification, neutrophil toll-like receptor (TLR)
expression and plasma and faecal cytokine analysis.

Patients and methods
The study was designed to be performed on 50 patients with
cirrhosis and chronic HE recruited from King’s College Hospital.
1:1 allocation of rifaximin-a (Targaxan 550 mg) to matching
placebo was administered twice daily over 90 days between 15/
1/2015 and 20/6/2016 with intention-to-treat analysis. A patient
was considered to have cirrhosis if they fulfilled 2 of 3 diagnostic
criteria: (i) biochemistry consistent with cirrhosis, (ii) radiology
consistent with cirrhosis/portal hypertension and/or (iii) liver
histology. The diagnosis of chronic HE was based on the presence
of (i) persistent overt HE (>−grade 1) or (ii) >−2 episodes of overt HE
in the previous 6 months.

Exclusion criteria: age <18 or >75 years, disseminated ma-
lignancy (an isolated hepatocellular carcinoma <50 mm was not
an exclusion), coeliac or inflammatory bowel disease, intestinal
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failure, intestinal obstruction and/or previous bowel resection,
human immunodeficiency virus infection and chronic granulo-
matous disease, anti-inflammatory or immunomodulatory drug
use, exposure to rifaximin-a in the previous 12 weeks, patients
receiving concomitant oral or parenteral antibiotic therapy,
known hypersensitivity to rifaximin-a or rifamycin-derivatives,
infection with Clostridium difficile or faecal testing positive for
Clostridium difficile toxin in the previous 3-months, and preg-
nancy or breastfeeding women.

Patient demographics, clinical details (including West Haven
HE grade13), biochemistry (including venous ammonia) and
neutrophil function were assessed at baseline and after 30 and
90 days of rifaximin-a/placebo treatment. Clinically relevant
outcomes including overt HE, neurocognitive function by psy-
chometric hepatic encephalopathy score (PHES),14 health-related
quality of life (HRQoL), organ failure, infection and mortality
were recorded for 90 days.

Primary endpoint
A 50% reduction in spontaneous neutrophil production of reac-
tive oxygen species (ROS) 30-days following the start of therapy.

Secondary endpoints
Clinical secondary endpoints included HE grade,13 PHES,14

HRQoL15 and incidence of infection and organ failure at 30 and
90 days. Mechanistic endpoints included assessment of systemic
inflammation with analyses, at 30 and 90 days, of salivary/faecal
microbiome, faecal calprotectin, whole blood bacterial DNA,
plasma and faecal metabolome, and neutrophil phenotype and
function including circulating TLR-4 expression.

Ethics and trial registration
Ethical approval was obtained from NHS Health Research Au-
thority NRES Committee South Central-Oxford C (Bristol)
[REC reference:14/SC/0088] and from the Medicines and
Healthcare products Regulatory Agency for Clinical Trial
Authorisation [EudraCT number: 2013-004708-20; ClinicalTrials.
gov NCT02019784]. The trial was conducted in compliance with
the principles of the Declaration of Helsinki (1996), principles of
Good Clinical Practice, Research Governance Framework and the
Medicines for Human Use (Clinical Trial) Regulations. Fully
informed consent was obtained from all participants. Some
participants eligible for this study were unable to provide
informed consent due to cognitive impairment arising from HE
and permission from a legal representative was sought.

Psychometric hepatic encephalopathy score
A psychometric test battery compromising 5 neurocognitive
tests: trail making test A and B, digit symbol substitution test,
line tracing test and serial dotting test were performed.14

HRQoL assessment
The 3-level version of EQ-5D15 consisting of the EQ-5D descrip-
tive system and the EQ visual analogue scale were performed.

Analysis of neutrophil phenotype and function
Fluorochrome-conjugated monoclonal antibodies (anti-human
CD16, CD11b, IL-8, TLR-2, TLR-4, and TLR-9; BD UK) were used for
staining individual patient polymorphonuclear leucocytes from
whole blood and analysed by flow cytometry using a FACS Canto
II analyser and FACS Diva 6.1.2 software (BD, San Jose, CA). 50,000
022 vol. 76 j 332–342 333
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granulocytes were gated on forward and side-scatter character-
istics and stained with anti-CD16-phycoerythrin-IgG1j. Fluoro-
chrome mean fluorescence intensity was calculated to detect the
receptor binding response and to measure antigen-antibody
binding. Neutrophil oxidative burst was quantified using Glyco-
tope Biotechnology PhagoburstTM (BD Biosciences) kits
measuring the percentage of phagocytic cells producing ROS at
rest.16 The formation of ROS was detected using the oxidation of
dihydrorhodamine-123 to rhodamine-123. Neutrophil phago-
cytic activity was assessed by neutrophil phagocytosis of
opsonized Escherichia coli.16

Plasma cytokine profiling
Plasma cytokines were measured using the Meso Scale Discovery
(MSD) platform. Samples were run in duplicate on U-PLEX
Proinflam Combo 1 (hu) plates, measuring interferon-c (IFN-c),
interleukin (IL)1-b, IL-2, IL-4, IL-6, IL-8 (CXCL8), IL-10, IL-12 p70,
IL-13, and TNF-a.

Faecal calprotectin
Faecal calprotectin was measured using the Bühlmann EKCAL2
enzyme-linked immunosorbent assay (EK-CAL, Bühlmann Labo-
ratories, Switzerland).17 The calprotectin cut-off level repre-
senting a positive value was 60 lg/g of faeces.

Faecal cytokines
Faecal lysates were produced from frozen faecal samples by
combined chemical and mechanical homogenisation using an
optimised extraction method.8 IL-1b, IL-6, IL-10, IL-17A, IL-17E,
Assessed for eli
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Fig. 1. Consort/patient flow diagram.
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IL-17F, IL-21, IL-22, IFN-c and TNF-awere measured in neat faecal
lysates using the U-PLEX Th17 Combo 2 (hu) plates and
MSD platform.
Plasma and faecal metabonomic analysis
Proton nuclear magnetic resonance (NMR) spectroscopy and
reversed-phase ultra-performance liquid chromatography
coupled to time-of-flight mass spectrometry were undertaken.18

Samples were thawed and prepared for NMR using previously
published protocols.19,20
Whole blood 16S ribosomal DNA quantification
This was undertaken by quantitative PCR (qPCR) by Vaiomer
(Labège, France). DNA was extracted from sterile whole blood.
The 16S rDNA present in the samples was measured by qPCR in
triplicate and normalised using a plasmid-based standard scale
using the workflow described previously.21
Saliva and faecal 16S rDNA and metagenomic
species quantification
16S analysis was undertaken by standard qPCR-based methods.
Abundance of MGS, defined as clusters of >500 genes that covary
in abundance among individuals, and thus belonging to the same
microbial species, was estimated by mapping shotgun
sequencing reads onto the genes (performed by R MetaOMineR
package). Median signals of the 50 marker genes that represent a
robust centroid of gene clusters of MGS were reported
(supplementary materials and methods).
Lost to follow-up
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Table 1. Baseline demographic and clinical characteristics by treatment group.

Rifaximin-a
n = 19

Placebo
n = 19

p value

Age 58 (52–62) 53 (49.5–60.5) 0.48
Male 16 11 0.15
Previous most severe HE grade [0-4] 3 (3–3.5) 3 (2–3) 0.029
Lactulose 7 7 1.0
Proton pump inhibitor 15 11 0.3
Beta blocker 13 7 0.10
Prior TIPS 5 1 0.18
Ascites (Yes:No) 11:8 10:9 0.75
Previous history of SBP 0 0 1.0
Smoking 0.91
Never 6 7
Stopped 8 8
Ongoing 5 4

Alcohol use 0.28
Never 3 1
Stopped 13 17
Ongoing 3 1

BMI (kg/m2) 29.7 (26.3–32.7) 26.5 (23.1–29.4) 0.068
Mean arterial pressure (mmHg) 87 (78–93) 83 (75–86) 0.082
Ascites grade (1-4) 1 (1–3) 3 (1–3.5) 0.25
Glasgow coma scale (3-15) 15 (15–15) 15 (15–15) 0.29
Overt HE at day 0 (Yes) 14 10 0.31
White blood cell count [x109/L) 6.34 (4.89–7.2) 5.44 (4.42–6.25) 0.4
INR 1.45 (1.26–1.78) 1.37 (1.3–1.67) 0.67
Sodium (mmol/L) 139 (137–142) 135 (132–137) 0.001
Creatinine (lmol/L) 70 (57–87) 77 (64–84.5) 0.63
Bilirubin (lmol/L) 39 (23–56.5) 40 (24–57) 0.66
Albumin (g/L) 36 (30–37.5) 33 (30–38) 0.59
Venous ammonia (lmol/L) 66 (48–78) 45.5 (30–64) 0.08
Lactate (mmol/L) 1.3 (1.15–1.55) 1.7 (1.3–1.95) 0.13
MELD 11 (8–15) 10 (8–12) 0.49

HE, hepatic encephalopathy; INR, international normalised ratio; MELD, model for end-stage liver disease; SBP, spontaneous bacterial peritonitis; TIPS, transjugular intra-
hepatic portosystemic shunt. Data are presented as median (range) with comparison between baseline cohorts done by Mann-Whitney U test. Comparison between cate-
gorical data was done by the v2 test. Bold text denotes statistically significant values.
Statistical analysis
Sample size was determined based on previous in vitro and
ex vivo data.16 Under the assumption of a reduction in sponta-
neous neutrophil OB from 30% to 15% (constant 60% difference in
medians -0.3) and using the Binomial proportions (Exact)
method (power 80%; alpha 0.05 [2-tailed t test]), 22 patients
were required per study arm.

Continuous data were tested for normality using the D’Ag-
ostino Pearson test. Non-normally distributed data are presented
as median (range). A comparison between 2 (or more) groups
was done by Student’s t test (or Analysis of Variance) and Mann-
Whitney U test (or Kruskall Wallis) test for normally and non-
normally distributed data, respectively. Comparison between
categorical data was done by v2 test or Fisher’s exact test for
small sample sizes.

For continuous data measured over 3 time points, determi-
nation of the significance of change was undertaken by repeat
measures analysis of variance (RM-ANOVA) with appropriate
tests for sphericity. Post hoc tests were used to assess statistical
significance between individual time points/groups. Longitudinal
ordinal data (e.g. HE grade) was analysed by ordered logis-
tic regression.

For measures performed at set times using complex labo-
ratory techniques, RM-ANOVA/Student’s t test, partial least
Journal of Hepatology 2
square discriminant analysis (PLS-DA) and principal component
analysis were used. Using ropls R package, metabolomics data
were compared.

Significance was defined at a 95% level and all p values were 2-
tailed. Analyses were undertaken utilising IBM SPSS® (version 21).

Results
Recruitment
Eighty-one patients were screened and 38 randomised to rifax-
imin-a or placebo (Fig. 1) using a web-based block design ran-
domisation system.

The trial failed to complete recruitment as rifaximin-a was
approved in the UK in 2014 for the prevention of recurrent overt
HE. Therefore, patients that would have been candidates for
participation in the trial were commenced on rifaximin-a as
standard of care.

Patient characteristics
Patient demographics and baseline characteristics are summar-
ised in Table 1. Patients were well-matched. Fourteen patients
were taking lactulose (7/19 [37%] in each arm). There were no
significant differences in median MELD (model for end-stage
liver disease) score (11 [8-15] rifaximin-a vs. 10 [8-12] placebo),
venous ammonia and severity of HE at baseline.
022 vol. 76 j 332–342 335



Table 2. Clinical parameters at baseline, 30 and 90 days post rifaximin-a or placebo.

Variable Baseline Day 30 Day 90 Friedman test
within group

p value#

RM-ANOVA within
subject effects

p value*

RM-ANOVA between
subject effects

p valueD

HE grade
Rifaximin-a 1 (0–1) 0 (0–1) 0 (0–0) 0.014 0.043 0.61
Placebo 1 (0–1) 0.5 (0–1) 0.5 (0–1) 0.384

Trails A (sec)
Rifaximin-a 52 (46–81) 48 (36–65) 46 (37–54) 0.417 0.012 0.86
Placebo 46 (34–78) 46 (37–72) 39 (33–61) 0.293

Trails B (sec)
Rifaximin-a 142 (105–161) 143 (106–195) 144 (94–186) 0.88 0.98 0.84
Placebo 140 (57–234) 135 (73–205) 150 (55–194) 0.905

Line tracing (sec)
Rifaximin-a 205 (145–254) 185 (111–213) 167 (115–270) 0.023 0.47 0.56
Placebo 169 (154–255) 165 (131–363) 135 (120–299) 0.496

Serial dot (sec)
Rifaximin-a 133 (94–178) 97 (78–197) 102 (74–219) 0.218 0.94 0.54
Placebo 101 (83–154) 109 (66–189) 113 (66–173) 0.384

Digit symbol
Placebo 23 (20–34) 24 (19–37) 23 (17–38) 0.568 0.096 0.85
Rifaximin-a 21 (16–32) 28 (19–36) 28 (23–39) 0.026

PHES score
Rifaximin-a -9 (-13 to -4) -7 (-13 to -3) -6 (-10 to -2) 0.045 0.009 0.617
Placebo -7 (-13 to -2) -6 (-11to -2) -7 (-12 to -1) 0.278

MELD
Rifaximin-a 11 (8–15) 11 (7–14) 10 (7–13) 0.27 0.97 0.99
Placebo 10 (8–12) 10 (8–13) 11 (8–13) 0.076

White cell count x109/L
Rifaximin-a 6 (3.8–7.6) 5.8 (3.3–6.9) 6.9 (2.9–6.6) 0.32 0.37 0.49
Placebo 5 (3.8–5.9) 4.3 (3.2–6.3) 4.7 (3.8–6.4) 0.075

C-Reactive protein
Rifaximin-a 4.6 (2.8–8.8) 5.3 (2.3–12) 4.5 (2.4–9.3) 0.28 0.64 0.96
Placebo 2 (2–9.6) 2 (2–4.7) 3.1 (2–5.2) 0.31

Neutrophils x109/L
Rifaximin-a 3 (1.8–4.4) 2.9 (1.1–3.9) 3.1 (1.4–3.9) 0.56 0.57 0.81
Placebo 2.5 (1.9–4.3) 2.5 (1.9–3.8) 2.5 (2.1–4.7) 0.58

Creatinine (Mmol/L)
Rifaximin-a 68 (58–78) 68 (36–81) 69 (55–81) 0.99 0.68 0.67
Placebo 78 (64–84) 86 (64–90) 79 (76–92) 0.32

Bilirubin (Mmol/L)
Rifaximin-a 33 (20–53) 32 (17–46) 29 (24–49) 0.55 0.37 0.7
Placebo 35 (20–46) 32 (24–47) 29 (22–47) 0.41

INR
Rifaximin-a 1.4 (1.2–1.8) 1.4 (1.2–1.7) 1.3 (1.2–1.5) 0.062 0.49 0.55
Placebo 1.3 (1.2–1.4) 1.4 (1.3–1.5) 1.3 (1.2–1.6) 0.58

Venous ammonia
(Mmol/L)
Rifaximin-a 62 (49–74) 53 (34–72) 63 (41–85) 0.023 0.96 0.39
Placebo 44 (31–59) 58 (42–74) 52 (33–71) 0.024

HE, hepatic encephalopathy; INR, international normalised ratio; MELD, model for end-stage liver disease; PHES, psychometric hepatic encephalopathy scoring; RM-
ANOVA, repeated measures-ANOVA.
p <0.05 represents significant difference between groups. Bold text denotes statistically significant values.
#Friedman test within group p value comparing change across 3 time points within group.
*RM-ANOVA (log transformed for non-parametric data) reflecting within subject effect.
DRM-ANOVA reflecting between subject comparison.
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Primary endpoint
The trial failed to demonstrate a 50% reduction in spontaneous
neutrophil OB at 30 days compared to baseline (p = 0.48) in
patients receiving rifaximin-a.

Rifaximin-a resolved overt HE and improved
cognitive function
No rifaximin-a-treated patients experienced an HE episode
compared to 21% (4/19) on placebo. Patients on rifaximin-a
normalised their HE grade to zero at 90 days (HE grade 0 [0-1] vs.
0.5 [0-1]; p = 0.014) with an improvement in PHES (p = 0.009)
336 Journal of Hepatology 2
(Table 2). Resolution of HE on rifaximin-a did not translate into
an improvement in HRQoL over 90 days.

Rifaximin-a reduced systemic inflammation without
changing blood ammonia concentration
Plasma TNF-a fell significantly at day 30 and 90 (all p <0.001) on
rifaximin-a compared to placebo (p <0.001 [Fig. 2A]) with a
reduction in IL-10 at day 30 (p = 0.005) which normalised by day
90 (Table 3). Whilst there were no changes in whole blood
bacterial DNA levels, there was a significant reduction in circu-
lating neutrophil TLR-4 expression (p = 0.0021) at day 30 in the
022 vol. 76 j 332–342
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p <0.001) compared to placebo. (B) MFI histograms (top panels) and FACS plots
(bottom panels) comparing neutrophil TLR-4 expression (MFI) observed at day
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rifaximin-a-treated patients but not in placebo-treated patients
(Fig. 2B). There were no significant changes in circulating
neutrophil TLR-2, TLR-9 or IL-8 expression. Those on rifaximin-a
were less likely to develop an infection (3 vs. 9); odds ratio for
developing an infection on rifaximin-a was 0.21 (95% CI
0.05–0.96) compared to placebo. There were no significant dif-
ferences in venous ammonia levels between the treatment and
placebo arms.

Rifaximin-a led to significant changes in faecal and salivary
microbiome whilst preserving beta diversity
Rifaximin-a reduced species richness compared to placebo in
both faeces (Fig. 3A) and saliva (Fig. 3B). Global beta diversity
was preserved in the rifaximin-a-treated cohort, but significantly
reduced in both faeces (p <0.05 day 90) and saliva (p <0.05 at day
30 and 90) in the placebo-treated cohort (Fig. S1). At the phylum
level, rifaximin-a increased faecal Tenericutes and decreased
Verrucomicrobia (p <0.05) (Table S1). At the genus level, signif-
icant reductions in mucin-degrading genera, such as Veillonella,
Journal of Hepatology 2
Akkermansia and Hungatella,were observed in the faecal samples
(p <0.05) (Fig. S3 and Table S2). In the saliva, rifaximin-a reduced
opportunistic pathogenic genera including Filifactor and Abio-
trophia (Table S3). Three distinct genus-based microbial clusters
were identified in the faeces (enterotypes): Prevotella, Bacter-
oides and Firmicutes (Fig. S4). Rifaximin-a enriched the firmicutes
enterotype (Fig. 3C). Similarly, 3 distinct microbial clusters were
identified in the saliva (oraltype): Prevotella, Neisseria and
Lactobacillus (Fig. S4) with rifaximin-a enriching Lactoba-
cillus (Fig. 3D).

Rifaximin-a suppressed growth of orally originating species
in the gut with mucin-degrading capacities
Rifaximin-a suppressed the growth of orally originating species
in the faeces with mucin-degrading capacities and virulence at
day 30 and 90, including Veillonella spp and Streptococcus spp as
well as Akkermansia and Hungatella (Fig. 4A-C; Fig. S2;
Tables S2,4,6). In the saliva, rifaximin-a decreased the opportu-
nistic pathogens Abiotrophia defectiva, Olsenella uli and Filifactor
alocis, and significantly increased oral commensal species such
as Streptococcus spp (Fig. 4B,D; Tables S5 and S7]. We determined
the mucin-degrading capacity of those significantly contrasted
species based upon the carbohydrate-active enzyme (CAZyme)
annotations of the given species such as sialidase (GH33). The
CAZyme families that degrade O-glycans of human mucins are
shown in Fig. 4E. Most gut and oral species associated with
increased plasma TNF-a and neutrophil TLR-4 expression were
enriched with sialidase (GH33) and other mucin-degrading
CAZymes (GH2/GH20/GH92/GH130/GH18/GH29 and CBM50).
For example, 94% and 81% of the co-abundant gut and oral mi-
crobes were enriched with mucin-degrading CAZymes and 19%
and 27% were enriched with sialidases, respectively [Fig. S7].

Rifaximin-a enhanced faecal cytokines suppressing
pathobionts associated with reduced plasma lactate
PLS-DA revealed differing enrichments of plasma metabolites
over time between the rifaximin-a- and placebo-treated cohorts,
such as decreased lactate with no substantial changes in ace-
toacetate, phosphocholine and trimethylamine-N-oxide, which
increased over time in the placebo cohort (variable importance
of projection >1 and fold change >5%) (Fig. 5A; Fig. S5; Tables S8-
11]. No changes in plasma bile acids were seen (data not shown).

Rifaximin-a enhanced day-30 faecal TNF-a (p = 0.0058) and
IL-17E (p = 0.011) concentrations and suppressed faecal Veillo-
nella and Streptococcus spp.

Increased faecal IL-17A (p <0.05), which is important for
neutrophil recruitment and augmentation of antibacterial re-
sponses to pathogenic bacteria,22 was observed on rifaximin-a
(Fig. 5B; Table S12).

Whilst baseline faecal calprotectin was elevated (>60 lg/g) in
the majority of patients, consistent with chronic intestinal
inflammation, levels did not change on rifaximin-a. No changes
were seen in faecal water metabolites on rifaximin-a.

Adverse events
Recorded AEs were almost twice as likely in the placebo-treated
group (n = 33 placebo vs. n = 17 rifaximin-a). Infection-related
AEs were more frequent on placebo. Only 1 serious AE was
recorded; small bowel perforation in 1 participant treated with
rifaximin-a. This was assessed clinically as a spontaneous event
unrelated to the study medication.
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Table 3. Inflammatory indices at baseline, 30 and 90 days post rifaximin-a or placebo.

Variable Baseline Day 30 Day 90 Friedman test
within group

p value#

RM-ANOVA within
subjects effect

p value*

RM-ANOVA between
subjects effect

p valueD

TNF-a (pg/ml)
Rifaximin-a 4 (3.1–5.3) 3.4 (2.8–4.1) 3.3 (2.5–3.8) <0.001 <0.001 0.717
Placebo 4.3 (3–5.9) 3.5 (3–5.1) 3.7 (3–4.5) 0.578

IL-8 (pg/ml)
Rifaximin-a 34 (28–50) 27 (18–68) 29 (20–47) 0.409 0.547 0.811
Placebo 38 (23–84) 30 (20–114) 25 (21–107 0.733

IL-6 (pg/ml)
Rifaximin-a 4.1 (1.8–10.8) 3.7 (2.7–4.7) 3.8 (2–5.4) 0.935 0.412 0.239
Placebo 9.1 (2.8–19.1) 7.1 (2.9–8.3) 6.4 (2.3–9.7) 0.384

IL-10 (pg/ml)
Rifaximin-a 0.42 (0.23–0.57) 0.23 (0.17–0.19) 0.4 (0.19–0.47) 0.005 0.216 0.076
Placebo 0.61 (0.3–1) 0.48 (0.21–0.77) 0.44 (0.22–0.98) 0.274

IFN-c (pg/ml)
Rifaximin-a 18 (15–37) 19 (12–35) 16 (10–37) 0.935 0.206 0.911
Placebo 23 (16–36) 24 (16–39) 17 (9–104) 0.039

Bacterial DNA (x103)
Rifaximin-a 3.2 (1.7–4.6) 3.5 (1.1–4.5) 3.3 (1.2–4.3) 0.181 0.447 0.717
Placebo 2.2 (1.6–2.7) 2.5 (1.8–3.7) 2.9 (2.1–3.9) 0.076

Faecal calprotectin
(lg/g of faeces)
Rifaximin-a 105 (55–155) 44 (14–129) 71 (14–166) 0.176 0.658 0.58
Placebo 116 (48–211) 40 (24–149) 122 (24–149) 0.032

IFN-c, interferon-c; IL-, interleukin-; RM-ANOVA, repeated measures-ANOVA; TNF-a, tumour necrosis factor-a.
p <0.05 represents significant difference between groups. Bold text denotes statistically significant values.
#Friedman test within group p value comparing change across 3 time points within group.
*RM-ANOVA (log transformed for non-parametric data) reflecting within subject effect.
DRM-ANOVA reflecting between subject comparison.
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Discussion
In this double-blind, randomised, placebo-controlled mecha-
nistic trial of rifaximin-a vs. placebo in patients with cirrhosis
and HE, rifaximin-a improved HE at 30 days in association with
a reduction in biomarkers of gut-derived systemic inflamma-
tion, including plasma TNF-a and neutrophil TLR-4 expression.
Rifaximin-a suppressed growth of opportunistic orally origi-
nating pathogens that were identified in cirrhotic faeces
including Veillonella atypica, Veillonella parvula and Strepto-
coccus spp, as well as Akkermansia and Hungatella, all of which
are rich in sialidase that degrades O-glycans in the gut mucin
barrier. In the saliva, rifaximin-a decreased opportunistic
pathogens including Abiotrophia defectiva, Olsenella uli and Fil-
ifactor alocis, and led to a significant increase in Lactobacillus
and Streptococcus spp associated with oral health. Furthermore,
rifaximin-a changed the intestinal microenvironment, resulting
in an increase in faecal TNF-a and IL-17E; increased faecal IL-
17A being associated with reduced faecal Veillonella and Strep-
tococcus spp.

Whilst the efficacy of rifaximin-a in reducing the risk of
recurrent overt HE is well-established,9 its mechanism of action
Journal of Hepatology 2
remains to be elucidated. Rifaximin-a reduces circulating endo-
toxin levels4 but previous studies have fallen short of demon-
strating any distinct changes in microbial abundance by 16S
rRNA faecal microbiota profiling.4,11 One study demonstrated a
significant increase in potentially beneficial serum fatty acids
and intermediates of carbohydrate metabolism with rifax-
imin-a.4

This is the first study utilising shotgun metagenomic
sequencing to explicitly identify changes in the salivary and
faecal microbiome in response to rifaximin-a. This was associ-
ated with reduced systemic inflammation as evidenced by a
reduction in plasma TNF-a and neutrophil TLR-4 expression,
surrogate markers for a reduction in circulating endotoxin. Our a
priori hypothesis had been that rifaximin-a would reduce
neutrophil ROS, as circulating neutrophil dysfunction in cirrhosis
has been shown to determine 90-day and 1-year mortality.16

Whilst not proven, the study was underpowered to reach this
endpoint, after rifaximin-a was introduced into national clinical
guidelines, making completion of recruitment difficult. However,
the improvement in systemic inflammation and neutrophil TLR-
4 expression in response to rifaximin-a was evident.
022 vol. 76 j 332–342 339
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Research Article Cirrhosis and Liver Failure
A change in gut microbiome composition and function im-
pacts on a multitude of vital homeostatic functions including
immunomodulation.23 Patients with cirrhosis have gut dysbiosis
with small bowel bacterial overgrowth and translocation of
bacteria and their products (such as lipopolysaccharide and
bacterial DNA) across a more permeable gut epithelial barrier,
exacerbated by underlying portal hypertension and endothelial
dysfunction.7 This culminates in systemic inflammation and
endotoxemia, inducing CAID through TLR signalling, predispos-
ing to infection, and the development of hepatic decompensa-
tion. In this study, patients treated with rifaximin-a experienced
fewer infections during the 90-day follow-up period than pa-
tients on placebo. This is in keeping with published experience
that highlights a potential role for rifaximin-a beyond the pre-
vention of overt HE by augmenting intestinal barrier function
and reducing BT and CAID.24,25 Furthermore, plasma lactate, a
metabolic biomarker of poor prognosis associated with non-
survival in decompensated cirrhosis18 was reduced by rifax-
imin-a.

Gut microbiome pertubations are linked to the pathogenesis
of cirrhosis and progression to advanced liver disease.26 Over
75,000 microbial genes differ between patients with cirrhosis
and healthy individuals, with over 50% taxonomically assigned
bacterial species of oral origin, suggesting an invasion of the
distal gut from the mouth in cirrhosis.27 Salivary dysbiosis is also
observed in patients with cirrhosis.28 Our data confirm salivary
dysbiosis – bacteria that are normally resident in the oral cavity
translocating to the gut and associated with the generation of a
systemic inflammatory milieu. Rifaximin-a suppressed the
growth of these orally originating species in the faeces including
Veillonella atypica, Veillonella parvula and Streptococcus spp rich
in sialidases, enzymes that degrade O-glycans of human mucins.
340 Journal of Hepatology 2
These species are commonly found in dental plaque29 being
associated with periodontal disease30 and cystic fibrosis.31 Many
bacteria that colonise the mouth express sialidases that degrade
sialoglycoprotein substrates and can use sialic acid and/or un-
derlying sugars as carbon sources, improving their survival while
facilitating access to the epithelium. Sialidases are produced by
oral Streptococci viridans including most strains of Streptococcus
oralis, intermedius and mitis.32,33 Bacterial sialidases unmask
underlying ligands to which bacteria or their toxins adhere.34 In
the saliva, rifaximin-a decreased opportunistic pathogens
including Abiotrophia defectiva, Olsenella uli and Filifactor alocis,
with significant increases in Lactobacillus and oral commensal
species, such as Streptococcus spp, associated with oral health.
Previous studies have also shown that rifaximin-a promotes the
growth of beneficial strains in ulcerative colitis35; additionally, in
a mouse model of visceral hyperalgesia, Lactobacilli grew in the
ileum in response to rifaximin-a.36 Rifaximin-a reduced adhe-
sion, invasion and motility of E. coli independent of its antimi-
crobial effect37 reducing the virulence of resident microbiota.38 A
recent metagenomic study evaluating patients with cirrhosis
before and after rifaximin-a demonstrated collapse of bacterial–
phage interactions, especially phages directed against patho-
bionts associated with cirrhosis, such as Streptococcus, Pseudo-
monas and Enterobacteriaceae spp.39

Rifaximin-a increased faecal TNF-a and IL-17E concentrations
whilst the suppression of Veillonella spp and Streptococcus spp
was associated with increased faecal IL-17A. IL-17A is a mucosal-
associated cytokine involved in local immune modulation. IL-17A
and IL-17E are secreted by TH17 cells and play a critical role in
establishing local host antimicrobial immunity and promote gut
barrier repair.40 IL-17 and TNF-a induce antimicrobial peptides in
mucosal organs with IL-17A serving as a potent neutrophil
022 vol. 76 j 332–342



recruiter.41 They also promote epithelial cell proliferation and
replacement of cells lost through homeostatic shedding.42 In
addition, TNF-a is an important regulator of intestinal microbiota
populations.43 IL-17E, a barrier surface cytokine, promotes
epithelial cell division and increases mucus secretion.44 There-
fore it can be postulated that rifaximin-a promotes an intestinal
microenvironment conducive to increased mucus production
and gut barrier repair. This may be a mechanism by which
rifaximin-a reduces BT of enteropathogens and endotoxaemia
although the design of this study did not allow direct interro-
gation of the mucus layer. Furthermore, the gut barrier is com-
plex with a multitude of factors contributing to barrier function
and immune-competence. In vitro/in vivo studies will be needed
to further investigate the impact of rifaximin-a on gut barrier
function which are beyond the scope of this trial.

In summary, the mechanism of action of rifaximin-a in pa-
tients with cirrhosis has been further elucidated. Rifaximin-a
improved overt HE and neurocognitive function and ameliorated
systemic inflammation by suppressing oralisation of the gut
microbiome via suppression of Veillonella spp and Streptococcus
spp as well as Akkermansia and Hungatella; all species rich in
mucin-degrading enzymes and known to induce gut barrier
damage. Rifaximin-a promoted a TNF-a and IL-17E-enriched
intestinal microenvironment conducive to improved antimicro-
bial function and gut barrier repair.
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