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Abstract
Gesture understanding is one of the most challenging problems in computer vision. Among them, traffic hand signal
recognition requires the consideration of speed and the validity of the commanding signal. The lack of available datasets is
also a serious problem. Most classifiers approach these problems using the skeletons of target actors in an image.
Extracting the three-dimensional coordinates of skeletons is simplified when depth information accompanies the images.
However, depth cameras cost significantly more than RGB cameras. Furthermore, the extraction of the skeleton needs to be
performed in prior. Here, we show a hand signal detection algorithm without skeletons. Instead of skeletons, we use simple
object detectors trained to acquire hand directions. The variance in the time length of gestures mixed with random pauses
and noise is handled with a recurrent neural network (RNN). Furthermore, we have developed a flag sequence algorithm to
assess the validity of the commanding signal. In whole, the computed hand directions are sent to the RNN, which identifies
six types of hand signals given by traffic controllers with the ability to distinguish time variations and intermittent
randomly appearing noises. We constructed a hand signal dataset composed of 100 thousand RGB images that is made
publicly available. We achieved correct recognition of the hand signals with various backgrounds at 91% accuracy. A
processing speed of 30 FPS in FHD video streams, which is a 52% improvement over the best among previous works, was
achieved. Despite the extra burden of deciding the validity of the hand signals, this method surpasses methods that solely
use RGB video streams. Our work is capable of performing with nonstationary viewpoints, such as those taken from moving
vehicles. To accomplish this goal, we set a higher priority for the speed and validity assessment of the recognized
commanding signals. The collected dataset is made publicly available through the Korean government portal under the URL
“data.go.kr/data/15075814/fileData.do.”
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1. Introduction

Korean road traffic law clearly states that when a traffic signal
and hand signal from a traffic controller (police officer or per-
sonnel appointed by the police commissioner) differ, the latter
takes precedence (Statutes of Republic of Korea, 2009). This regu-

lation imposes an interesting situation for self-driving cars. Nev-
ertheless, because permitted self-driving vehicles must follow
the road traffic law, they must also be able to understand the
hand signals from the traffic controller. Because self-driving cars
move at high speeds, the recognition of hand signals must be
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performed in real time. Many methods that rely on the compu-
tation of skeletons require high computational load and are not
suitable for real-time processing. The use of depth sensors can
reduce this computational load, but this approach requires ex-
pensive devices. Therefore, we propose a method that requires
only an RGB camera. The proposed method does not require the
computation of skeletons, and it is designed to achieve a speed
greater than 30 FPS. The increase in speed is achieved by simpli-
fying the computational model.

Previous works have employed skeleton-based action recog-
nition. Input videos were processed for skeletons that identify
the joints and limbs. Subsequently, the movement of the joints
was applied to identify hand signals. However, these methods
required the preprocessing of video streams to extract skeletons,
and this extra burden reduced the overall processing time. Fur-
thermore, previous works were applied to videos taken indoors
or videos with a limited number of backgrounds. Because we
cannot expect that the recognition of hand signals will be con-
ducted in a controlled environment, these datasets are not suit-
able to generalize the trained neural network to real-world prob-
lems. Certain works use different types of sensors than video
cameras. For example, in certain works, extra sensors, such as
accelerometers, are attached to characteristic locations in the
limbs to measure the motions of the limbs. However, we can-
not expect that all moving vehicles are equipped to wirelessly
receive these sensor signals. Most previous works do not con-
sider the validity of hand signals. In many cases, there are mo-
ments when the actor is not giving any meaningful signals;
however, these works always assume that the actor is giving
a meaningful commanding hand signal. In real situations, a
police officer may not give any commanding signals, or he or
she may be directing a hand signal to other cars and not the
observer.

The following three critical aspects need to be considered to
understand hand signals. First, it is essential to distinguish be-
tween police officers giving appropriate hand signals and those
not delivering meaningful hand signals. The detection accuracy
is significantly affected by the ability to distinguish between sit-
uations in which signals are given and situations when no inten-
tional signals are made. Second, it is vital to know the intended
designation of a hand signal. To avoid classification failure, the
classifier must understand whether the police officer is giving
the signal to them or to another driver in other directions. Last,
the classifier must be able to infer continuous changes in hand
motions. Korean police officers direct their hands to the targeted
driver before giving the driving direction order. Distinguishing
meaningful combinations of basic commands in hand gestures
will enable the classifier to successfully understand the hand
signal given by the police officer.

Furthermore, there are human variations in a performed
hand signal, so each act can vary in terms of duration and am-
plitude. Therefore, hand-signal classification must be capable of
handling inaccurate hand signals.

In this work, an RGB detector and recurrent neural network
(RNN) were employed for hand signal recognition. The flag se-
quence algorithm was selected to assess the validity of the hand
signals. The proposed method does not require the extraction
of skeletons, which significantly reduces the processing time.
A dataset for hand signals was collected outdoors with vari-
ous backgrounds in consideration of real scenarios. Our work
requires no additional sensor types in addition to RGB monocu-
lar cameras. This simple approach greatly reduced the required
processing time.

2. Related Work

Human action recognition has been actively investigated. In
ActionXpose (Angelini et al., 2020), human poses monitored in
CCTV video were classified with long-short term memory (LSTM)
and one-dimensional (1D) convolution neural network (CNN).
Strong attention was given to the work that introduced time-
based three-dimensional (3D) CNN (Ji et al., 2013; Tran et al.,
2015). However, these methods are not suitable for processing
complex actions composed of multiple small actions, similar to
Korean traffic hand signals. Certain works used sensors attached
to the actors.

Accelerometers (Wang & Yuan, 2008) and electromyographic
sensors (Zhang et al., 2011; Neacsu et al., 2019) have anal-
ysed signals emitted by sensors attached to the arms. In cer-
tain works, ultrasonic beamforming (Iravantchi et al., 2019) and
radar/thermal sensors were utilized (Skaria et al., 2020). The
works by these four research groups (Zhang et al., 2011; Ira-
vantchi et al., 2019; Neacsu et al., 2019; Skaria et al., 2020) tar-
get either the motions of the fingers or the movements from the
elbows to the fingers. Therefore, they are not suitable for detect-
ing traffic hand signals that require monitoring of both arms.
Attaching intrusive measurement sensors to the actor (police of-
ficer) imposes many weaknesses. First, these measurements do
not consider the driver who is receiving the commanding signal.
Hand signals must be interpreted by the driver or a self-driving
car. Thus, the measurements collected from the attached de-
vices need to be transmitted to the interpreting receiver by ap-
propriate communication channels. Second, the use of devices
requires additional costs, for both the sender and receiver. All
police officers need to be equipped with costly accelerometers
and communication devices. Third, hand signals depend on the
point of view of the receiver. Judging whether the hand signals
are designated to a particular receiver becomes challenging be-
cause the gazing directions from these attached devices are am-
biguous. Because of these problems, most recent research has
focused on vision-based techniques. These techniques are non-
intrusive and require no additional costs other than the cost of
the digital camera attached to the car. No additional equipment
is necessary on the actor side. The classifier can be realized in a
self-driving car with low-cost digital cameras.

Other researchers did not use depth sensors. Wiederer et
al. (2020) employed 2D body pose estimation, RNNs, attention
networks, and graph CNNs. They achieved 87.37% accuracy. Li
and Yang (2018) applied the L-K optical flow method and key-
frame-based image pyramid. They achieved 95% accuracy. Fur-
thermore, convolution pose machines and LSTM (by He et al.,
2020; accuracy of 93.29% with 17.2 FPS), the n-frame cumulative
difference and cumulative block intensity vector (by Sathya &
Geetha, 2015; accuracy of 96.24%), the use of frame partitioning
to detect the entry and exit of the hands in the prescribed region
(by Varshney et al., 2020), motion frequency images (MFIs) and
motion history images (MHIs) (by Wang & Chong, 2014; accuracy
of 81.44% with 17.2 FPS) have been employed in research. How-
ever, these studies have limitations. Extra work is needed to con-
struct the skeleton from body pose estimations, and this short-
coming cancels the benefit of not using depth sensors. Some
works cannot identify Korean traffic hand signals that are com-
posed of various combinations of motions. High accuracy was
only achieved for simple backgrounds or when the distance be-
tween the police officer and the camera was constant.

Some works utilize depth information in addition to color
information. The time variant movements of joints from the
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Figure 1: Overview of the proposed hand signal classifier. The RGB detector localizes the traffic controller, and the controller’s arm directions are calculated from the
input video stream. Arm directions are codified and concatenated by the sequence generator alongside the sequence flag that denotes whether the controller is gazing
toward the camera. The flag and output of the RNN are compared to classify the hand signal.

extracted skeletons were analysed through support vector
machines (Le et al., 2012) or neural networks (Linqin et al., 2017;
Ma et al., 2018; Wang & Ma, 2018). A dynamic descriptor from the
MHI (Guo et al., 2017) was also utilized. For the case of a classifi-
cation accuracy of 97% (Linqin et al., 2017), researchers have not
demonstrated whether their work can be successful in natural
outdoor conditions. Because they applied the dataset obtained
inside a building, it is unclear whether their work can achieve
high accuracy outdoors. For the case of a classification accuracy
of 96.67% (Ma et al., 2018), it is unclear whether their method
can be extended to data obtained outside since their training
data were obtained from a virtual city traffic scene. Wang and
Ma (2018) did not use traffic hand signal data to identify motion
recognition; instead, they applied datasets for gesture recogni-
tion from ChaLearn (Wan et al., 2016).

Most of the classification methods that we have discussed
here are based on RNNs that use time-varying features from
hand signal videos. In broad terms, these methods can be di-
vided into two main streams. First, there are methods (Le et al.,
2012; Linqin et al., 2017; Ma et al., 2018; He et al., 2020; Wiederer et
al., 2020) that use skeletons computed from RGB or depth video
as the key features. Second, there are methods (Wang & Chong,
2014; Sathya & Geetha, 2015; Li & Yang, 2018; Varshney et al.,
2020) that compute features from image processing techniques.
In general, these methods employed direct 3D information from
depth sensors and computed skeletons as features. Depth sen-
sors are costly, and the computation of skeletons imposes recog-
nition speed degradation. The recognition speeds of methods
that rely on the calculation of skeletons range from 1 FPS (Guo
et al., 2017), 17.2 FPS (He et al., 2020), and 17.23 FPS (Wang &
Chong, 2014). These numbers are certainly not real-time value in
the computer vision community, where 30 FPS is the consensus
of real-time performance. In addition to using hand signals to
convey messages typically given by traffic control signals, other
means of sending commanding signals exist. For example, we
can use voice commands. However, voice commands can con-
vey much richer contexts, and several weaknesses need to be
solved. Although voice recognition has recently received much
attention, mainly due to the advancement of natural language
processing, the current state of voice recognition is very weak in
outdoor situations with many disturbing sound sources. Hand

signals can work at distances as far as 100 meters, but voice com-
mands operate only in much closer spaces. Due to these limita-
tions, we believe that hand signals are more suitable for sending
traffic controls.

There are three contributions in the proposed method. First,
our approach relies on a single RGB monocular camera as the
only required sensor. Previous works required various sensor
types, including accelerometers, EMGs, radars, thermal imag-
ing devices, and depth sensors. There are many benefits to us-
ing digital cameras for sensors in self-driving cars. Most vehi-
cles today are equipped with digital cameras. Thus, it is less ap-
pealing to add depth sensors. The most widely utilized depth
sensors are stereo cameras, time of flight (ToF) cameras, and
LIDAR. To equip a car with a stereo camera, an additional cost
of $1300 is needed. In the case of LIDARs, a 16-channel LIDAR
costs $1200 and a 32-channel LIDAR costs $15 000. Compared to
these price tags, monocular RGB cameras are much cheaper. The
ToF cameras on handheld devices are modularized and more af-
fordable, but they are not suitable because of their low resolu-
tions and shorter working distances (∼10 meters). Second, our
method does not require the computation of skeletons. Instead,
we only use 2D bounding box detections. Most previous works
rely on the use of body skeletons that require a dedicated stage
of computations. Third, the time needed for the classification of
hand signals is much faster than that of previous works.

3. Method

Figure 1 illustrates an overview of the proposed method. The in-
put video is processed frame by frame using a detection algo-
rithm based on CNN. The police officer is localized, and the pose
of the arm is detected. The sequence generator concatenated the
directions of the poses into a sequence. The sequence is sent to
the RNN for classification. Concurrent to the timestamps of the
generated sequence, a stream of flags denoting whether the gaz-
ing direction of the traffic controller is facing toward the camera
is also generated. The two sequences, namely the flag sequence
and the hand direction sequence, are compared to classify the
hand signal. We will discuss the nature of hand signals, prepa-
ration of the datasets, and detailed operational steps in the fol-
lowing section.
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Figure 2: Sixteen traffic hand signals dictated by the Korean Central Police Academy. The hand signal is seen from the point of view of the police officer. The signals
to the driver’s point of view can be seen as go-straight, turn-left, turn-right, stop, and signals designated to the other driver.

3.1. Characteristics of police traffic control gesture

In this section, we will discuss the traffic control gestures in the
official curricular at the Korean Central Police Academy (CPA).
Understanding these gestures is crucial for designing the fea-
ture space in the neural network. Hand traffic signals are per-
formed with arms to control the traffic flow of cars. The paper
published by the CPA formally describes the standard rules for
traffic control gestures. According to the paper, there are sixteen
gestures to be used for regulating traffic flow. Figure 2 illustrates
the meaning of each gesture.

Sixteen signals can be generalized to basic commands (given
to a car) that include go-straight, turn-left, turn-right, and stop.
The control signal construct is composed of two parts, the
preamble and the command. The preamble is presented by an
officer who leads their arm to the designator. Figure 3a exem-
plifies this two-way logic for the left-turn command signal. The
officer outreaches his arm to the driver that is positioned in front
of the officer. Subsequently, the pointing direction of the arm of
the officer is moved toward the right. From the point of view
of the driver, this direction is opposite in a sense and appears
toward the left. Likewise, if the officer moves their hand toward
the left, it appears to move toward the right due to the mirroring
condition. After the commanding signal is completed, the offi-
cer lowers their arm to the neutral standing position to convey
that his command signal is completed. The remaining fifteen
signals can be understood with this basic logic. Based on this
basic construction of a two-way commanding signal, we clas-
sified the gesture given by the officer using his arm into seven
basic classes. Because the receiver is responsible for the recog-
nition of the traffic control signal, we define the classes based
on the viewpoint of the driver or a self-driving car.

Figure 4 shows the seven arm directions employed by the po-
lice officer. The arm motions are classified as (1) frontward, (2)

backward, (3) toward-left, (4) toward-right, (5) toward-diagonally,
(6) upward, and (7) downward. Based on this classification, the
command illustrated in Fig. 3a can be codified as (7)-(1)-(3)-(7).
All other commanding signals can be defined using this coding
rule. We can apply the same rule to obtain the codified sequence
for other cases. For example, Fig. 3b is designated to the driver
in a different targeting direction. This command signal can be
codified as (7)-(3)-(2)-(7). In general, the command signal that
is meaningful to the driver must start with the officer correctly
hailing the driver. This correct handshaking between the officer
and the driver has a vital role in recognizing the hand signal. A
total of 16 cases codified by the proposed rule are given in Ta-
ble 1. In the table, the motion of directing the arm downward,
which is always performed when returning to the neutral stand-
ing position, is omitted because it has no effect on the hand sig-
nal.

In Table 1, “Signal” refers to the 16 signals given in Fig. 2,
and the “Sequence of arm directions” are described by the des-
ignated arm directions. The downward direction is omitted for
brevity. “Validity” refers to the meaning of the command signal
conveyed to the driver, who is directly facing the direction of the
toes of the police officer. The cases shown in Table 1 (a) through
(e) are valid hand signal commands conveyed to the driver who
is facing the police officer: (a) go-straight, (b) turn-right, (c) turn-
left, (d) stop, and (e) stop. The hand signals given from (f) to (p)
are directed to the side and back of the police officer and are
deemed “invalid” to the driver positioned in front of the police
officer. As previously described, the driver should be attentive
to the commanding sequence that starts with the front forward
direction. All other command sequences that start with other
directions should be disregarded. We should pay attention to
the commanding sequence directed in the forward direction. An
important question is what happens if the driver is facing the
police officer toward their side or back. In these situations, the
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Figure 3: Left-turn command as seen by the police officer. (a) A command is given to the viewer, and (b) the officer is giving a left-turn command to the driver who is
located to the right of the police officer.

driver must first recognize the intended direction of the police
officer. Subsequently, they must pay attention to the following
directions of the arms of the police officer only if the previous
directions were designated to the driver.

In summary, all valid signals to the driver, irrespective of
their position in relation to the police officer, can be understood
by a sequence of arm directions given at signal (a) ∼ signal (d).
We also note several interesting points. The downward state is
a dummy state, and no meaning is given. When the downward
state changes to the frontward state, it triggers a change from
the dummy state to the valid signaling state. In contrast, if the
downward state changes to other states (except the frontward
state), it means that the command is given to the other driver.
The command sequence then becomes invalid.

Furthermore, irrespective of the previous state, if the direc-
tion of the arm changes to the downward state, it implies termi-
nation of the hand signal.

In summary, we described the basic flow of logic that
states that the validity of hand signals can be judged by look-
ing at the directions of the arms. Table 6 summarizes the re-
sults; these concepts will be applied in the sequence flag in
Section 3.4.3. We selected six hand signals in total: four mean-
ingful signals (go-straight, turn-right, turn-left, and stop; +4),
with an invalid signal that is directed to a target other than
the observer (+1) and an inactive signal when the officer is in
rest (+1).

3.2. Dataset

In this section, we explain the two datasets employed in the ex-
periment – the dataset for direction detection and the dataset
for the action classifier.

3.2.1. Dataset for RGB detector
Many previous types of research on hand signals involved the
collection of datasets. Eight Chinese traffic hand signals were
collected from 2 hours of 20 RGBD videos (He et al., 2020). Addi-
tional datasets exist with 5000 depth images (Le et al., 2012) and
72 videos performed by nine actors (Guo et al., 2017). Wiederer
et al. (2020) used a dataset that includes 250 sequences of 3D
human body poses for training. Sathya and Geetha (2015) col-
lected 300 video data with a running time of 240 minutes. In
contrast to the notion that most previous researchers have uti-
lized RGBD cameras to collect their datasets, we collected our
dataset with only RGB cameras. The traffic controller works in
visible weather conditions. Under less favorable weather con-
ditions, such as nighttime and snowy and rainy conditions, the
use of a lighted traffic wand is recommended. For these reasons,
we have established a dataset for only clear and cloudy weather.
We recorded our video clips at 14 intersections. Hand signals are
mostly performed in low-speed city traffic conditions. Therefore,
we collected data from cameras attached to tripods. Table 2 sum-
marizes the detailed requirements of the recordings.

To analyse the hand signals using arm directions, we es-
tablished test data consisting of 2317 videos and 1600 train-
ing videos performed by nine actors. Each frame image was la-
beled with bounding boxes by a commercial service provider. As
shown in Table 3, each video belongs to one hand signal ges-
ture of 16 possible classes. All frames of the training video were
carefully labeled with a class based on the hand direction and
bounding boxes tightly surrounding the police officer. Figure 5
illustrates the images correctly labeled according to the arm di-
rections. Training the neural network with these labels resulted
in incorrect identification of the arm direction without 3D in-
formation. We selected the uniforms of Korean police officers.
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Figure 4: Seven arm directions employed by the police officer. The directions are portrayed as they are seen by the viewer in front of the police officer.

Table 1: Sequences of traffic control hand signals.

Signal Sequence of arm directions Validity

(a) front to back frontward – upward – backward go straight
(b) front to left frontward – right turn right
(c) front to right frontward – left turn left
(d) front stop frontward – diagonal stop
(e) front and back simultaneous stop frontward – diagonal stop
(f) right to front left – frontward invalid
(g) right to left left – upward – right invalid
(h) right to back left – backward invalid
(i) left and right simultaneous stop left and right invalid
(j) left to front right – frontward invalid
(k) left to right right – upward – left invalid
(l) left to back right – backward invalid
(m) back to front backward – upward – frontward invalid
(n) back to left backward – right invalid
(o) back to right backward – left invalid
(p) back stop backward invalid

Diverse backgrounds were applied to ensure that the training
was general in nature. The Korean traffic control signal dataset
is available from the following Uniform Resource Locator (URL)
“data.go.kr/data/15075814/fileData.do” run by the Korean gov-
ernment.

3.2.2. Dataset for RNN classifier
The time-varying motions of the arm directions are sent to the
RGB detector. The labels of the images represent the input to
the RGB detector. The labels are codified and concatenated as a

sequence. For example, the “front-to-back” hand signal is con-
verted and assembled as follows: First, the entire sequence of
labels is collected as a stream, e.g. “downward – frontward –
upward – downward.” The RNN for the classification processes
the sequence. The labels are then translated by the dictionary
shown in Table 4 as 00. . . 11. . . 55. . . 00. The dictionary consists of
eight directions and code pairs. Using this procedure, we were
able to obtain 1600 sequence data points from the test dataset.
To enrich the dataset, we generated an additional 7200 sequence
data for the basic motions, as shown in Table 5.
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Table 2: Environments and specifications for the dataset.

Environments Specification Environments Specification

Actors 9 Camera GoPro HERO6
Weather Sunny, cloudy FPS 30
Time Daytime Resolution 3840∗2160
Period 10 days Field of view 118.2◦

Distance to actor 2 m, 3 m, 5 m, 10 m Height from ground 1.2 m

Table 3: Dataset for traffic control hand signals.

Signal Test video Labeled video Labeled image

(a) front to back 149 100 8526
(b) front to left 172 100 5813
(c) front to right 149 100 5895
(d) front stop 148 100 5775
(e) front and back simultaneous stop 150 100 8978
(f) right to front 164 100 6134
(g) right to left 142 100 6761
(h) right to back 152 100 6474
(i) left and right simultaneous stop 152 100 6850
(j) left to front 151 100 5966
(k) left to right 129 100 6810
(l) left to back 126 100 6180
(m) back to front 137 100 6527
(n) back to left 135 100 6244
(o) back to right 141 100 6182
(p) back stop 110 100 5542
Total 2317 1600 104 657

Figure 5: Stopped motions of the “front to back” traffic signal. Note that the labeling shows the direction of the arm.

Table 4: Labels for each direction of arm.

Label Direction

0 downward
1 frontward
2 backward
3 left
4 right
5 upward
6 diagonal
7 left and right

3.3. RGB detector

The RGB detector is based on YOLOv4 (Bochkovskiy et al., 2020).
A self-driving car must be capable of making driving decisions
while recognizing hand signals in real time. For the hand sig-
nal classifier to make accurate and quick decisions, high per-
formance of the RGB detector in terms of speed and accuracy
is necessary. YOLOv4 exceeds the performance of its predeces-
sor by incorporating modern deep learning advancements that
include a bag of freebies and a bag of specials. Furthermore, be-
cause it uses spatial pyramid pooling, YOLOv4 is resilient to in-
put size variations instead of other object detection networks.
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Table 5: Sequence for RNN.

Signal Change of directions Example sequence Number of sequences

go straight 1–5–2 1111155555522222 1200
turn right 1–4 1111111444444444 1200
turn left 1–3 1111111111133333 1200
stop 1–6 1111666666666666 1200
invalid Do not start with 1 3333333333222222 4444444555553333 1200
inactive 0 0000000000000000 1200

Total 7200

Figure 6: Flowchart of the proposed method.

YOLOv4 is being applied in many detection applications; we
chose it because of its real-time speed. We randomly split the
image dataset into 8:2 for training and testing and trained the
detector with eight classes for the traffic controller and one class
for the pedestrians. The training for the detector was conducted
on four Tesla V100s. The training time consumed 7 days, and the
testing time took 3 hours.

The hyperparameters are listed as follows: 80 epochs, IoU
threshold of 0.5, and a batch size of 64 were employed for the
training in four Tesla V100s. The resulting accuracy was 91.3%.

3.4. Algorithm

Figure 6 shows a flowchart of the algorithm. The algorithm as-
sumes that the traffic controller gives a traffic hand signal.

3.4.1. RGB detector
The RGB detector D inputs image It at time stamp t ∈ ℕ and out-
puts Dt = D(It). The output result Dt ∈ (0, 7) denotes one of the
arm directions shown in Table 4.

3.4.2. Sequence generator
The sequence generator is responsible for codifying the re-
sult of the RGB detector. The codified sequence is then fur-
ther processed by the RNN. The sequence of length l, st =
〈Dt−l , Dt−l+1, · · · , Dt−1〉, is assembled by stacking the output of
the RGB detector. The sequence examples listed in Table 5 cor-
respond to l = 16. The sequence set is denoted by symbol S. If
there are no values before frame Dt of set st, we assigned a value
of 0 to complete the sequence of length l. The sequence genera-
tor stacks the newly detected code from the RGB detector to the
end of the sequence and pops the beginning of the stack to en-
sure that the length of the sequence is l. The sequence is input
to the RNN with a time-matched sequence flag.

3.4.3. Sequence flag
Previous works have not discussed how to discern the active
state of hand signals or the beginning and end of hand signals.
They assumed that the hand signals were always directed to the
observer and that the video clips always conveyed a valid hand
signal. We believe these assumptions can be a severe weakness
of the classifier because, in natural traffic conditions, the police
officer can be giving signals to a third party or can be giving no
hand signals. To address such situations, our method is only at-
tentive when the police officer has selected the viewer and when
the hand signals are actively meaningful. This task is achieved
by identifying the beginning and end of the command signal and
the assessment that tests for the validity (sequence flag) of the
hand signal. A sequence flag decides whether there is a hand sig-
nal given by the officer, or it can also assess the validity of the
hand signal. Furthermore, the starting and ending moments of
the hand signal can be obtained with the sequence flag. These
moments are used by comparison with the detection result of
the RNN, R(s t), to increase the accuracy of the hand-signal clas-
sification.

Sequence flag f is determined by two previous
subsequences referred to as the first subsequence
s

′
t = 〈Dt−n−m−l , Dt−n−m−l+1, · · · , Dt−n−l−1〉 and second subse-

quence s
′′
t = 〈Dt−m−l , Dt−m−l+1, · · · , Dt−l−1〉. n < l is the length

of the first subsequence, and m < l is the length of the sec-
ond subsequence. The current sequence can be written as
st = 〈s′

t, s
′′
t , Dt−l , Dt−l+1, · · · , Dt−1〉. The two subsequences reside

before the current subsequence. M
′
o ∈ {0, 1, 2, 3, 4, 5, 6, 7} and

M
′′
o ∈ {0, 1, 2, 3, 4, 5, 6, 7} are the mode of s

′
t and mode of s

′′
t ,

respectively. Using the two modes and Table 6, Algorithm 1 is
applied.

From Lines 1–2, we compute the modes of M′
o and M

′′
o . Lines 3–

9 are used if the mode of the first subsequence M′
o is zero. When

M
′′
o is zero, it refers to the case when the officer is putting their

arms downward, and it corresponds to the inactive signal finactive
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Table 6: Types of signals related to the change in arm direction.

Type of signal Change in direction

Valid downward (0) – frontward (1)
Invalid downward (0) – not frontward (2–7)
Inactive downward (0) – downward (0)
End not downward (1–7) – downward (0)

state. When M
′′
o is one, it refers to the case when the officer is

pointing in the frontal direction from the resting state, which
means that the valid signal is being initiated. This situation is
represented by the valid signal fvalid. If mode M

′′
o is not zero or

one, it denotes invalid signal finvalid. Lines 10–14 are executed
when M′

o is a value other than zero. This situation happens when
there is a hand signal in progress. When M

′′
o is zero, it implies

that the police officer is putting his hands downward after giving
a hand signal. This state is represented as fend. If M

′′
o changes to a

signal other than zero, it means that a hand signal is in progress.
This state is represented as fmiddle. Line 15 returns the computed
flag f .

Algorithm 1 Sequence flag

1: Input: s
′
t ,s

′′
t

2: Output: validity flag f
3: M

′
o ← {mode of first subsequence s

′
t};

4: M
′′
o ← {mode of second subsequence s

′′
t };

5: if M
′
o = = 0:

6: if M
′′
o = = 0:

7: f ← {inactive signal finactive}
8: else if M

′′
o = = 1:

9: f ← {valid signal fvalid};
10: else:
11: f ← {invalid signal finvalid};
12: else:
13: if M

′′
o = = 0:

14: f ← {end of signal fend};
15: else:
16: f ← {middle signal fmiddle};
17: return f

3.4.4. Recurrent neural network
An RNN is one of the deep learning models composed of con-
nected hidden nodes that form a directed cycle. An RNN is used
to classify continuous sequential data, such as speech and nat-
ural language. An RNN is also widely employed for classifying
human motions (Wah Ng & Ranganath, 2002; Masood et al., 2018;
Cifuentes et al., 2019). There are works that recognize police
hand signals using RNNs with changes in skeletons or key points
(Chen et al., 2017; Lai & Yanushkevich, 2018; Shin & Kim, 2020).
We also applied an RNN to classify the arm directions of police
officers represented as sequence st. We compared the results
trained with four kinds of RNNs and selected the result with
the best accuracy. The four RNNs are the vanilla RNN (V-RNN),
LSTM (Gers et al., 1999), Bidirectional-LSTM (Bi-LSTM) (Schuster
and Paliwal, 1997) and gated recurrent unit (GRU) (Chung et al.,
2014). The many-to-one structure is applied to classy the hand
signals that were first translated to the codified 1D sequence.
Figure 7 shows the layer structure.

4. Experiments
4.1. Result of RNNs

We trained and compared four types of RNNs (V-RNN, LSTM, Bi-
LSTM, and GRU). The length of the input sequence length was set
to 48, where l = 48. Any sequences shorter than this length were
zero-padded by the data loader. We also set the step size, batch
size, and epoch size to 32, 64, and 250, respectively. The process
of hand signal sequence classification is a simple 1D sequence
classification. Therefore, we decided that the number of layers
was the most critical factor. We changed and tested the number
of layers with 2, 4, 7, and 10. To avoid overfitting problems, early
stopping was applied.

The sequence data shown in Table 5 were partitioned as
train:validation:test = 6:2:2. The amount of training time in-
creased proportionally to the number of layers employed in the
neural network. On average, 3 hours were needed for processing
using 10 layers. The testing time was approximately 10 minutes.

Table 7 lists the results of the training. Since the structure of
the V-RNN is more straightforward than the structures of other
RNNs, V-RNN performed fastest, but the test accuracy dropped
as the number of layers increased. For all numbers of layers,
overfitting occurred where the loss of validation became greater
than that of the training. The number of epochs that triggered
the early stop was 122, 58, 50, and 51 as the number of layers in-
creased. These epochs were consistently higher than other types
of RNNs. LSTM showed less overfitting than the V-RNN. However,
the instability of the training increased as the number of layers
increased.

The number of layers needed for early stopping, which were
29, 43, 56, and 76, was significantly less than that of V-RNN. Bi-
LSTM showed more stable training than LSTM. The number of
required epochs was smallest at 22, 20, 32, and 20. For the GRU,
the number of needed epochs, which were 46, 41, 56, and 73, was
slightly higher than that of LSTM and Bi-LSTM, but the train-
ing stability exhibited the greatest increase. In terms of test ac-
curacy, the GRU with four layers was the best. Thus, we chose
the four layers of the GRU as the sequence classifier for classify-
ing the hand signals. The time-domain graph of the probability
shown in Fig. 8 was obtained by applying the GRU to the hand
signal video. Figure 8a shows an inactive signal when the traffic
controller gives no hand signals. The hand signal probability re-
mains low. Figure 8b shows the results by computing the video
of the traffic controller that issues the go straight signal. At the
initiation of the go straight hand signal, we observed that the
probability of a go straight signal suddenly jumps and continues
until the end of the hand signal. For other types of hand signals,
we observed the probability of the corresponding hand signal
rise and drop, as plotted in Figs 8c, d, and e. The invalid signal
shown in Fig. 8f shows a slight rise in the hand signal probabil-
ity. This result is different from Fig. 8a, which shows no change
in the hand signal probability.

4.2. Comparison

To increase the accuracy of our classification, we compared two
signals: the sequence flag f (st) and the output R(st) from the
RNN. Both signals are derived from st, which is the codified out-
put from the sequence generator. f (st) classifies the codified se-
quence into three classes: inactive, valid, and invalid. f (st) also
catches the start, in-the-middle, and end of the signal. R(st) is re-
sponsible for classifying the sequence into the relevant classes:
go straight, turn left, turn right, stop, and inactive. The flag is
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Figure 7: RNN layers.

Table 7: Results for RNN algorithms.

Methods 2 layers 4 layers 7 layers 10 layers

Evaluation
accuracy

Test
accuracy

Evaluation
accuracy

Test
accuracy

Evaluation
accuracy

Test
accuracy

Evaluation
accuracy

Test
accuracy

V-RNN 95.46 95.50 94.17 90.29 93.35 87.06 94.25 86.73
LSTM 96.35 93.53 96.76 95.47 96.11 92.88 95.46 92.23
Bi-LSTM 95.06 95.47 95.46 95.79 95.79 96.12 95.30 96.76
GRU 96.11 96.76 96.03 97.41 95.06 97.09 96.19 95.47

used to understand whether the hand signal is directed toward
the viewer or whether it is directed to another driver. The RNN
will process the sequence only if the direction is toward the
viewer.

Three values are returned by f (st). If st is a valid hand sig-
nal, one is returned, and f (st) = 1. For the case when the hand
signal is inactive, f (st) returns zero, and f (st) = 0. For the invalid
case, 0.5 is returned, and f (st) = 0.5. Special attention must be
made for 0.5. This finding indicates that the hand signal is not
directed toward the viewer, and the signal is in some switch-
ing state. Thus, at least one f (st) = 1 is required to know that
the hand signal is directed toward the viewer. This result also
means that the hand signal is being initiated. After initiation,
the returned value becomes f (st) = 0.5, and f (st) = 0 will denote
the end of the hand signal. Based on f (st), R(st) is computed to
classify the hand signal class type. Figure 9 shows the overall

picture of the operation. Figure 9a denotes an inactive signal,
no changes in the flag, and the plot of the hand signal probabil-
ity. This signal is an inactive hand signal. In Fig. 9b, the plot of
the flag rises to one, remains at 0.5, and drops to zero. This re-
sult denotes that a valid hand signal is monitored and that the
width of the signal triggers the computation of the hand sig-
nal probability. The hand signal probability plot shows that the
stop signal becomes highest during the monitoring time band.
We can conclude from the plot that the stop signal is being sent
to the driver. In Fig. 9c, the flag value continues to plot at 0.5
but never reaches one and drops to zero at frame 65. During
the time band, we observe a series of turn-right, go-straight, and
turn-left signals. These signals are not directed toward the driver
and are deemed invalid signals. By comparing the flag with the
RNN signal, we can classify the hand signal directed toward the
viewer.
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Figure 8: Results of GRU.

Figure 9: Comparison of flag and RNN.

4.3. Results of the proposed method

We conducted tests on videos that were not used in training. The
test videos are videos shown in Table 3 that were not labeled.
The flowchart shown in Fig. 6 was applied to the test video. The
accuracy of the algorithm was 90.8%, and Fig. 10 shows the con-
fusion matrix. Table 8 summarizes the evaluation result for each
hand. We had performed the test on RTX8000 GPU with a frame
rate of 32.5 with FHD video. Since the inactive signal is a signal

that does not give any instructions, it is regarded as an invalid
signal.

4.4. Discussion

We have proposed a method for classifying the hand signals
given by a traffic controller. We have discussed the features of
hand signals and the gathering and construction of a dataset
for hand signals. We compared four types of RNNs for the best
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Figure 10: Confusion matrix.

result and presented the use of two sequences (flag and proba-
bility of hand signals) to increase the accuracy of the proposed
method.

Previous works on hand signals relied on depth information.
More specifically, the skeleton computed from the police offi-
cers was utilized to obtain feature values, such as the relative
joint angles. The time transient features were then trained using
RNNs. These works required additional sensors to compute the
depth and needed significantly higher computations to capture
the features, which yielded performances that reached merely
17 FPS.

Table 9 shows detailed comparisons of our method with pre-
vious works. Studies (Le et al., 2012; Linqin et al., 2017; Ma et al.,
2018) that applied depth information and were performed in-
doors generally showed high accuracy. Studies (Wang & Chong,
2014; Wiederer et al., 2020) that were performed outdoors gener-

ally showed low accuracy or a low FPS. This finding is attributed
to the notion that outdoor scenes are unpredictable and possess
various illuminations with unseen backgrounds. For more chal-
lenging cases that were performed outdoors, without considera-
tion of the validity of the detected hand signal and only using the
raw RGB data, far less accuracy or low processing frames per sec-
ond than those in our work were exhibited. We also emphasize
that our dataset comprises 1600 sequences, which is the largest
compared with previous works.

The proposed method uses only RGB cameras and relies on
a high-speed, one-stage object detector. We simplified the algo-
rithm to the simple features of a hand signal. The first feature
is that the arm points in the right direction. Because the officer
will be directing his arm toward the targeting driver, we devised
a logic that concentrates on the direction of the arms. Our ap-
proach classified the directions of the arm into seven classes and
employed supervised learning to train the one-stage detector to
classify the seven cases. Subsequently, directed motions of the
arms were then applied to classify the hand signals into six cat-
egories. This classification also used the one-stage detector to
identify the sequence of directions of the arms to codify and de-
tect the relevant six categories. The codified representation of
the hand signal constitutes the second feature.

The first feature is essential because it saves considerable
computational time. The expensive classification process of
identifying the hand signal is only activated when the traffic
controller is attentive to the driver. The classification process
is dormant most of the time, saving a considerable part of the
computer clock cycle. We propose a unique concept that is re-
ferred to as the sequence flag to identify the state of hand sig-
nal motion. The sequence generator creates a sequence includ-
ing two prior subsequences evaluated in terms of the predefined
modes; that is, the direction of the arms is used to classify the
attentive state of the hand signal as inactive, valid, or invalid.
The sequence flag is combined with the RNN classification re-
sults to monitor only the valid hand signals directed toward the
viewer. We tested four types of RNNs to conclude that the GRU

Table 8: Results for the proposed method.

Hand signal Go straight Turn right Turn left Stop Invalid

Accuracy 0.76 0.99 0.90 0.96 0.89
Sensitivity 0.99 1 1 1 0.64
Specificity 1 0.94 0.96 0.94 0.99
F1-score 0.99 0.88 0.92 0.89 0.78

Table 9: Comparison.

Author Method Accuracy FPS
Amount of

dataset
Outdoor

condition Validity

Wiederer et al. (2020) Skeleton (RGB) 87.37% - 250 sequences ◦ ◦
Li and Yang (2018) Key-frame extraction (RGB) 95% - 5000 images ◦ X
He et al. (2020) Skeleton (RGB) 93.29% 17.2 20 videos ◦ ◦
Sathya and Geetha (2015) CBIV (RGB) 96.24% - 300 videos X X
Wang and Chong (2014) MFI and MHI (RGB) 81.44% 17.2 - ◦ X
Linqin et al. (2017) Skeleton (depth) 97% 2.7 800 sequences X X
Ma et al. (2018) Skeleton (depth) 96.67% - - X X
Guo et al. (2017) Skeleton (RGB) 95% 1 1834 frames ◦ ◦
Le et al. (2012) Skeleton (depth) 99% 0.34 5000 frames X X
Ours (2021) 2D bounding box (RGB) 90.8% 32.5 1600 sequences,

104 654 frames
◦ ◦
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with four layers performed the best. The complete system that
we developed demonstrated a test accuracy of 91%. In Fig. 10, we
observed that the results for identifying turn right, turn left, and
stop hand signals were somewhat higher.

In comparison, the go straight test results were low. We be-
lieve that these results are attributed to the relatively small en-
velope of motions given when the officer is directing their arms
upward and then giving the hand gestures for the next com-
manding direction. Other signals typically use fully stretched
arm motions that are directed upward before giving the direc-
tional order using hand motions. In contrast, the go straight
signal gives directional order with half stretched arm motions.
Such a small envelope of motions may have caused the detec-
tor to misclassify them. We were able to verify that all signals
were wrongly identified as an invalid class. This result is due to
the sequence flag process. The detector has not correctly identi-
fied the correct designation of the targeting observer using arm
motion. When the hand-signal classification is prematurely ter-
minated with the sequence flag changing to the invalid state,
the ongoing classification process is abandoned, and the sys-
tem returns invalid hand signals. In the proposed method, the
errors from the detector can be accumulated, which decreases
the accuracy. The trained detector is capable of distinguishing
pedestrians and traffic controllers. However, the training data
do not have more than one traffic controller on a scene. There-
fore, when multiple traffic controllers are on a scene, the de-
tector would probably not work or the detection accuracy may
decrease. However, this problem is inherent in all vision-based
supervised classifying methods. Nevertheless, we argue that the
proposed method is favorable because it requires no additional
hardware other than the RGB camera and because the compu-
tational performance is twice that of previous works.

In future works, the dataset will include videos of actual road
conditions. Current datasets were collected using performed ac-
tors and do not include data obtained from real situations. The
collection of videos in the field would include situations that
were not anticipated in the current dataset. Such movements in
the field would consist of very distant police officers approach-
ing the car, and variations in videos caused by the actual decel-
eration, shaking, and turning of car wheels. Furthermore, var-
ious adverse weather conditions, such as fog, rain, and snow,
can degrade the image quality. It would also be interesting to
use object detectors other than YOLOv4. More accurate detectors
would improve the detection of the hand directions and there-
fore enhance the accuracy of the classification results obtained
in addition to the detected hand directions. However, it is gener-
ally noted that more accurate detectors require more time and
may produce implementations that would not be running in real
time. There should be a balance between accuracy and respon-
siveness.

5. Conclusion

In this study, we proposed a deep learning-based architecture
for classifying the hand signals given by a traffic controller. The
proposed architecture is simple yet performs much faster than
previous works, with an accuracy greater than 90%. We utilized
the notion that hand signals can be decomposed into a more
straightforward sequence of arm directions. The method ex-
tracts the directions of the arms as the features and then codi-
fies them into a sequence of numbers. The sequence is viewed
in terms of the validity of the hand signal command and the
actual interpretation of the hand signal commands. The former

is referred to as the sequence flag, and the latter is referred to
as the probability of hand signals. These two outputs are si-
multaneously compared to classify the given hand signal. The
strength of the proposed method can be attributed to two as-
pects. First, no additional sensors other than RGB cameras are
necessary. Because we require no stereo or depth cameras, the
cost is low. Second, the proposed method only uses 2D images,
the operations are simple, and the computation is high speed.
We boast 30 FPS for FHD videos. Compared to previous works
(Wang & Chong, 2014; He et al., 2020), with an average speed
of 17.2 FPS, our work increased the performance by 52%. This
result is twice as fast as previous studies. Last, we use the se-
quence flag that identifies the initiation and end of the hand
signal. Because we can turn off the more expensive hand sig-
nal probability pipeline and only use it when experiencing hand
signals, many computational cycles can be reserved for other
purposes. The accuracy during testing was 90% of that for cor-
rect hand-signal classification. We admit that this accuracy is
not high enough to be reliably utilized in self-driving cars. Even
1% of failures can cause serious injuries or deaths in the lives of
humans. We believe that reaching 100% accuracy would not be
possible even for human intelligence. Therefore, there should be
a backup in the event of such failures. For example, we should
enforce a manual, human-intervened emergency brake system.
In emergency situations, nonspecialists may need to give hand
signals. Understanding hand signals given by laypersons can be
challenging and requires further study. We plan to extend our
work to understand hand signals given by laypersons.
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