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Abstract 

Identifying drug–target interactions (DTIs) is important for drug discovery. However, searching all drug–target spaces 
poses a major bottleneck. Therefore, recently many deep learning models have been proposed to address this 
problem. However, the developers of these deep learning models have neglected interpretability in model construc-
tion, which is closely related to a model’s performance. We hypothesized that training a model to predict important 
regions on a protein sequence would increase DTI prediction performance and provide a more interpretable model. 
Consequently, we constructed a deep learning model, named Highlights on Target Sequences (HoTS), which predicts 
binding regions (BRs) between a protein sequence and a drug ligand, as well as DTIs between them. To train the 
model, we collected complexes of protein–ligand interactions and protein sequences of binding sites and pretrained 
the model to predict BRs for a given protein sequence–ligand pair via object detection employing transformers. After 
pretraining the BR prediction, we trained the model to predict DTIs from a compound token designed to assign atten-
tion to BRs. We confirmed that training the BRs prediction model indeed improved the DTI prediction performance. 
The proposed HoTS model showed good performance in BR prediction on independent test datasets even though it 
does not use 3D structure information in its prediction. Furthermore, the HoTS model achieved the best performance 
in DTI prediction on test datasets. Additional analysis confirmed the appropriate attention for BRs and the importance 
of transformers in BR and DTI prediction. The source code is available on GitHub (https:// github. com/ GIST- CSBL/ HoTS).
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Introduction
Identifying drug–target interactions (DTIs) is a cru-
cial step in drug discovery. As it is not feasible to test 
all chemical compounds against a given target protein, 
in silico prediction of possible active compounds using 
massive chemical libraries can increase the efficiency of 
drug discovery [1]. Thanks to the vast amount of infor-
mation on drug compounds and their targets [2], as well 
as advances in computing power, researchers have been 
able to develop DTI prediction models using the proteo-
chemometric (PCM) approach [3]. The PCM approach 

uses compound and protein descriptors, such as 
extended-connected fingerprints [4], CDK descriptors [5, 
6], protein fingerprints [7, 8], and physicochemical prop-
erties for DTI [9], as the input features of machine learn-
ing models. The approach gives interpretable prediction 
results based on descriptors whose importance can be 
quantitatively calibrated to predict DTIs by a model [10–
12]. Moreover, well-designed PCM models can give reli-
able DTI prediction results by modeling physicochemical 
interactions [13, 14].

As protein feature engineering for DTI prediction, 
identification of binding pockets/sites is important for 
prediction performance and comprehensive modeling 
[13–15]. Consequently, many computational models have 
been developed to identify binding pockets/sites. For 
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example, the P2Rank algorithm [16] calculates the sol-
vent-accessible surface of protein residues from the 3D 
structures of the Protein Data Bank (PDB) and builds fea-
tures based on the calculated solvent-accessible surface 
and neighboring residues, which are used to rank protein 
residues as possible binding sites. DeepCSeqSite adopted 
convolutional neural networks (CNNs) to construct the 
prediction model on protein sequences that can recog-
nize conserved motifs at binding sites, and this can be 
used to predict binding sites [17].

In addition to the DeepCSeqSite model, many CNN-
based models are used to predict DTIs. DeepDTA was 
the first CNN-based model developed to predict binding 
affinity for kinase proteins using protein sequences and 
simplified molecular-input line-entry system (SMILES) 
notations for drug compounds [18]. Subsequently, the 
developers of DeepConv-DTI [19] showed that the latent 
representations of subsequences can be used as features 
to predict DTIs. Deep learning models outperformed 
previous machine learning-based models [3, 9, 20], while 
they learn sequential motifs by the model itself. However, 
deep learning can be a double-edged sword that gives 
accurate but uninterpretable predictions owing to its 
large number of parameters. Moreover, interdependency 
in protein sequence was not considered, meaning that 
the models predict DTIs based solely on motifs without a 
global context of proteins [21].

Recently, many attention-based models featuring pro-
tein sequences based on the local and global patterns of 
residues have been studied to remedy the aforementioned 
limitations. In particular, transformers utilize attention 
to assign relative importance to the residues of a protein 
sequence [22]. For DTI prediction, TransformerCPI [23] 
employs an encoder–decoder scheme to predict binding 
affinity. To model interdependency, MolTrans [24] lever-
ages transformers built on frequent consecutive protein 
subsequences and SMILES notations to construct inter-
action maps for DTI pairs. DISAE [25] utilizes evolu-
tionarily distilled sequence representations as inputs to 
ALBERT [26]. Some attention-based models train physi-
cal interactions between the substructures of ligands and 
binding sites of proteins to give better performance and 
interpretability. For example, DeepRelations [27] regu-
larizes the attention of hierarchical recurrent neural net-
works to follow physical contacts, and MONN [28] builds 
a model to predict non-covalent interaction profiles and 
binding affinity. However, it does not consider long-range 
interaction between protein sequences, such as by using 
a hierarchical recurrent neural network and 1D-CNN for 
protein sequence embedding, and performance valida-
tion on external test datasets was not performed.

To address the above limitations, we propose a model 
to predict DTIs along what we refer to as binding regions 

(BRs), which are subsequences that include binding sites 
important to DTIs. The model, which we call Highlights 
on Target Sequences (HoTS), provides interpretable pre-
dictions of BRs and DTIs. To predict compound–protein 
BRs in HoTS, CNNs are employed to capture sequential 
motifs, and transformers are utilized to model inter-
actions between sequential motifs and compounds. 
Thus, HoTS leverages the advantages of both CNNs and 
sequential models.

HoTS consists of two prediction models—one for pre-
dicting BRs and the other for predicting DTIs. To pre-
train the BR prediction model, binding pockets/sites 
depicted in 3D complex databases are mapped to pro-
tein sequences and converted to BRs. A 1D-CNN with 
various window sizes on protein sequences then extracts 
motifs important to DTIs. These protein sequences are 
split into blocks of equal length, called protein grids, and 
the maximum convolution results are pooled from each 
grid. As sequential motifs are extracted, a compound 
token is generated from Morgan/circular fingerprints [4] 
and concatenated with the protein grids to reflect inter-
actions between the compound and sequential motifs. 
Next, to model the dependencies between motifs and 
a compound, HoTS employs transformers on pooled 
CNNs and compound token results. For BR prediction, 
for each protein grid, the BR prediction model is pre-
trained to predict the location, size, and confidence score 
of the BRs. For DTI prediction, after passing additional 
transformers in the DTI prediction model, the compound 
token is fine-tuned to predict DTIs. We evaluated the 
DTI and BR prediction performance using independent 
test datasets and analyzed the attention of the transform-
ers to understand the prediction mechanism. The overall 
flow of the model is illustrated in Fig. 1.

Methods
BR dataset construction
The concept of a binding pocket/site is ambiguous. 
Therefore, the definitions of binding sites and binding 
pockets [collectively referred to as binding information 
(BI)] vary by studies and databases. Usually, BI is defined 
as protein residues whose distance towards ligands is 
below a certain threshold. However, the thresholds for BI 
or distance measurements have been defined differently 
(e.g., number of atoms, mass center of ligand) in different 
studies [16, 29, 30]. In addition, motifs are not fully rec-
ognized as information for the distance towards ligands. 
For example, by the folding of a protein sequence and the 
binding mode of a ligand, BI can be discontinuous. We 
propose the concept of “binding regions (BRs)” as subse-
quences that include BI. To generate BRs as described in 
Fig. 2, we expanded the residues in BI and merged them 
into subsequences, defining them as BRs. As shown in 
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Additional file  1: Fig. S1 we confirmed that the median 
percentage of residues in BRs was approximately three-
fold the median percentage of residues in BI, and gener-
ally, residues in BI tended to be concentrated rather than 
dispersed over the whole sequence. We first collected 
3D complexes and generated BRs from scPDB [29] and 
PDBBind [30], employed as the BR training dataset. We 
regarded 3D complexes as DTI pairs. Multi-chain 3D 
complexes were split into single chains with their own 
interacting ligands, and each split pair was considered 
a DTI pair. In addition, we randomly split the collected 
BR dataset into a 9:1 training:validation dataset ratio. As 
an independent test dataset for performance validation, 
we utilized the COACH and HOLO4K test datasets from 
previous studies [16, 31, 32]. We collected BI as-is from 
scPDB [29] and generated ground truth BRs. Any PDB 
complexes that appeared in both the BR training and test 
datasets were removed from BR test dataset  to prevent 
data leakage. Moreover, to evaluate the BR prediction 
performance for unseen proteins, we built a partial test 

dataset with 3D complexes with unseen proteins. We also 
measured the sequence similarity between BR training 
proteins and unseen proteins in the BR test dataset, as 
shown in Additional file 1: Fig. S2. Because our method 
depends solely on the protein sequence and fingerprint, 
rather than the 3D structures of proteins and ligands, the 
similarity of test proteins to training proteins will affect 
the prediction performance. We calculated the similari-
ties between training proteins and unseen test proteins 
using the normalized Smith–Waterman score:

 
Maximum similarity histograms between the BR test 

dataset (COACH and HOLO4K) and training dataset are 
shown in Additional file  1: Fig. S2. The statistics of the 
collected BR datasets are summarized in Table 1.
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Fig. 1 HoTS model overview. We first constructed a DTI dataset from DrugBank, KEGG, and IUPHAR. We also collected 3D complexes and their 
binding information (BI) to construct a BR dataset from scPDB and PDBBind. From the collected BI, we generated true BRs to train the BR prediction 
model. HoTS considers protein sequences of individual proteins and Morgan/circular fingerprints of drug compounds. Therefore, subsequences 
are extracted by a CNN, and the maximum values are pooled from each protein grid. Compound and protein grids are taken into transformers as 
queries, keys, and values to model interactions between subsequences and individual compounds. Closely related subsequences and compounds 
will have high attention, and as much as their attention, values of related subsequences/compounds are merged into new values. After passing the 
transformers, a compound token is used to predict DTIs, and individual protein grids are used to reflect the BRs. For DTI prediction, HoTS calculates 
a prediction score  PDTI ranging from 0 to 1, as well as center (C), length (W), and confidence (P) scores for BRs. We evaluated the DTI prediction 
performance using the PubChem Bioassay and BR prediction performance with the COACH and HOLO4K datasets
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DTI dataset construction
To construct the DTI training dataset for the DTI pre-
diction model, we collected DTIs from three databases: 
DrugBank [33], Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [34], and the International Union of 
Basic and Clinical Pharmacology (IUPHAR) [35].

To select the hyperparameters of the DTI prediction 
model, we built an external validation dataset of DTIs 
unseen in the training phase. We collected DTIs from 
the MATADOR database [36] as positive DTIs, and DTIs 
that appeared as training DTIs were excluded from the 
validation dataset. To build a credible negative dataset, 

...KYLYEIARRHPYFYAPELLFFAKRYKAAFT...

2. Mapping binding pockets/sites 
    on UniProt sequence

3. Building true binding regions 
    from mapped binding pockets/sites

1. Parsing binding pockets/sites 
    from scPDB/PDBBind

4. Generating binding regions for training 
    whose IoU between true binding regions > 0.7

YLYEIARRHPYFYAPELLFFAKRYKAAF

EIARRHPYFYAPELLFFAKRY
KYLYEIARRHPYFYAPELLFFAKRYK

YEIARRHPYFYAPELLFFAKRYKAA

Fig. 2 Generation of BRs from 3D complex databases. BRs were generated using by the following procedure. We collected BI from the scPDB 
and PDBBind databases. The collected BI was mapped onto the corresponding UniProt sequence, and as shown, it can be in non-consecutive 
sequences. To build consecutive subsequences including BI, we expanded the mapped BI to a length of 9 and merged the overlapped BI. In the BR 
training steps, we fed randomly generated BRs with an IoU larger than 0.7 to the prediction model

Table 1 Statistics of collected BR datasets

Dataset No. of complexes No. of proteins

BR training dataset scPDB (v2017) 15,258 4673

PDBBind (v2018) 11,137 2615

Total 23,278 6143

BR test dataset COACH (unseen protein–ligand complexes) 243 229

COACH (unseen proteins) 138 138

HOLO4K (unseen protein–ligand complexes) 1740 843

HOLO4K (unseen proteins) 692 425
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we obtained negative DTIs using the method described 
by Liu et al. [37].

To evaluate the performance of the model in DTI pre-
diction, we constructed independent test datasets from 
the PubChem BioAssay [38], which includes experi-
mental results. To evaluate model performance, we col-
lected two independent datasets from the PubChem 
BioAssay from a protein perspective. We regarded active 
compounds of ligand binding assays with a dissociation 
constant as positive DTIs, and the same number of inac-
tive compounds with other types of assays were sampled 
as negative DTIs [19]. For the first dataset, we gathered 
all druggable proteins from DGIdb [39] to evaluate our 
general DTI prediction performance, which we called 
DTI test dataset 1. Second, as a subset of DTI test data-
set 1, we gathered DTIs whose proteins were of the same 
SCOPe families [40] as proteins in the BR training data-
set to show that BR training can increase DTI prediction 
performance for proteins whose structural motifs are 
trained; we called this DTI test dataset 2. The statistics 
of the collected DTI datasets are summarized in Table 2.

Proposed HoTS prediction model
For proteins, HoTS first extracts sequential motifs, as 
implemented in DeepConv-DTI [19]. Next, it splits the 
CNN results into grids and then pools the maximum val-
ues in each grid. The pooled maximum values are then 
fed into a fully connected layer. As a result, proteins 
are represented as sequences of grid encodings based 
on the convolution results, which are more suitable for 
predicting BRs and model interdependencies. The com-
pounds are converted to Morgan/circular fingerprints [4] 
of 2048 bits with a radius of 2. Compound fingerprints 
are then passed through fully connected layers, form-
ing what we call a compound token, and are attached to 

their respective protein grid encodings. Thus, the size of 
the concatenated feature representing compound and 
sequence will be H × (1 + ⌈protein_length/grid_size⌉), 
where H denotes the size of the hidden dimension. Posi-
tional encoding is added to this compound–grids feature 
to help the transformers comprehend the relative posi-
tional information. These compound–grids features are 
then taken as the inputs of the transformer blocks. By 
passing this information through the continuous trans-
former blocks, the compound token will reflect the over-
all interaction with the target protein, and the protein 
grid encodings will represent the interactions and selec-
tivity to ligands. Thus, the prediction of BRs can be rep-
resented as

where hgrids denotes the protein grids parts of the com-
pound–grids feature, fBR(·) denotes the dense layers for 
BR prediction, and σ(·) denotes the sigmoid function. 
Predictions cg,wg , pg are given for each protein grid; they 
represent center, width, and confidence score, respec-
tively. Prediction of DTIs can be represented as

where hcompound denotes the compound token that is a 
part of the compound–grids feature, and fDTI (·) denotes 
the dense layers for DTI prediction. Finally, PDTI gives 
prediction score for DTI pair. A more detailed illustration 
of the model, transformers, and training scheme is shown 
in Additional file 1.
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(
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(

hgrids
)))

,

PDTI =σ
(

fDTI(TransformerBlocksDTI
(

TansformerBlocksBR
(

hcompound
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Table 2 Statistics of collected DTI datasets

a PubChem Bioassays whose druggable proteins were from DGIdb
b Subset of DTI test dataset 1, whose proteins have the same SCOPe family as the BR training dataset

Dataset No. of compounds No. of proteins No. of positive 
DTIs

No. of 
negative 
DTIs

DTI training dataset DrugBank (v2020) 5080 2685 14,679 −
KEGG (v2020) 4033 772 11,835 −
IUPHAR (v2020) 6295 2017 14,282 −
Total 12,814 3789 36,152 72,304

DTI validation dataset MATADOR 252 145 307 −
Liu et al 255 410 − 508

Total 499 538 307 508

DTI test dataset DTI test dataset  1a 21,459 1453 20,391 20,391

DTI test dataset  2b 4991 134 5001 5001
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Prediction model of binding regions
In the field of computer vision and image processing, 
object detection involves the detection and classifica-
tion of individual objects from an image. Simple object 
detection models slice images into grids and predict B 
bounding boxes and confidence scores in each grid. For 
example, the You Only Look Once (YOLO) model, which 
is a single-shot detector, employs a simple CNN-based 
model to retrieve objects from images [41, 42]. The BR 
prediction model in HoTS relies on a similar architecture 
to detect BRs across three model constructs: CNN layers 
for identifying sequential motifs, transformers for mod-
eling interdependency, and fully connected layers for the 
actual prediction of BRs. The BR prediction model pre-
dicts the center, width, and confidence scores of BRs, as 
well as a prediction score ranging from 0 to 1. These are 
then reconstructed to their original values. The centers of 
the BRs  (Centerg) are reconstructed by

where  cg is a prediction for the BR location, and  sg is a 
starting index of the grid. As a result,  Centerg represents 
the location of the predicted BR in the protein sequence.

The widths of the BRs  (Widthig) are reconstructed by

where  wg is a prediction for the BR width, and  ri is the 
predefined BR width. e is Euler’s number. Therefore, 
 Widthig represents the width of the predicted BR.

In image classification models using region of interest 
pooling methods, such as Faster R-CNN, both objects 
and non-objects are sampled and passed through the 
classification model, leading to class imbalance (i.e., a 
small number of objects in one class and a much larger 
number in the other) [43]. Meanwhile, single-shot detec-
tors, such as RetinaNet and YOLO, use the focal loss 
to dynamically control weights for object classification 
and prevent class imbalance [44]. Similarly, as shown in 
Additional file 1: Fig. S1, the percentages of amino acids 
at binding sites and BRs are small, which would induce 
a class imbalance in the BR prediction model and result 
in a decrease in the prediction performance. Accordingly, 
we utilize focal loss to address the class imbalance in BR 
detection, defined as follows:

where the weights of loss are controlled dynamically to 
reduce the class imbalance. The losses for the centers 
and widths of BRs are calculated using the mean absolute 
error. Therefore, the total loss for BR prediction is calcu-
lated as

Centerg = sg + sizegrid · cg ,

Widthig = rie
wg ,

FL
(

pt
)

= −
(

1− pt
)γ

log (pt ), where pt =
{

p, if y = 1

(1− p), elif y = 0
,

where | |1 represents L1 loss, and λreg and λconf are 
weights for the regression and focal loss, respectively.

Prediction of drug–target interactions
By passing through transformers to model compound–
protein interactions, compound tokens sum up protein 
grid encodings via attention for drug–protein interac-
tions. In the DTI prediction model, we stack more trans-
formers for compound tokens on the BR prediction 
model to better reflect the DTIs over BR prediction. With 
the aforementioned mechanism of attention on drug 
interactions, the transformers act as “aggregators” for 
DTI prediction. After passing all transformers in HoTS, 
compound encoding is used to predict DTIs across fully 
connected layers.

Training scheme
We firstly pre-trained the BR prediction model, which 
consists of (1) a CNN layer to extract interacting motifs, 
(2) transformers to model interdependency, and (3) fully 
connected layers to predict BR. After BR prediction per-
formance converges, we stacked additional transformers 
on the BR prediction model to build the DTI prediction 
model. Therefore, while former transformers are used 
to predict BR, later transformers aggregate interaction 
information on the compound tokens to predict DTI. 
Next, we fine-tuned the BR prediction model to predict 
DTIs with the DTI training dataset. During DTI fine-tun-
ing, we alternatively trained the BR prediction and DTI 
prediction to reduce the discrepancy between the BR 
prediction model and the DTI prediction mode. Because 
the BR training dataset size is smaller than the DTI train-
ing dataset, we trained the BR prediction model three 
epochs for every one DTI prediction model epoch.

Performance evaluation
Intersection over union
We utilized intersection over union (IoU) to evaluate 
BR prediction. IoU is the ratio of the overlapping region 
between the ground truth BR and predicted BR (intersec-
tion) to the combination of the ground truth BR and pre-
dicted BR (union). We regarded a predicted BR with an 
IoU larger than 0.5 as a true positive.

Average precision
To evaluate the BR prediction performance, we assessed 
the average precision (AP) of the model for object detec-
tion. AP was calculated over several steps. First, all pre-
dictions from the evaluation dataset were collected and 
sorted according to their confidence scores. Second, for 
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every sorted prediction, precision and recall were cal-
culated using IoU, as with the calculation of area under 
precision–recall (AUPR) curve. The AUPR curves were 
interpolated by the following formula:

where p is precision and r is recall.
Third, the AP is calculated by averaging the precision. 

We can regard AP as an interpolated AUPR for object 
detection problems. In short, AP reflects how accurately 
the model detects BRs across an entire protein sequence.

Top‑n and top‑(n + 2) prediction
Although AP is an effective measurement of the per-
formance of BR detection, it is an overall performance 
evaluation metric rather than an actual prediction for 
the BR of a ligand. Therefore, in the prediction step, we 
adopt top-n and top-(n + 2) prediction from P2Rank [16]. 
Because we predict BRs, which are located separately in 
a sequence but indicate the same binding pocket, which 
are closely located in a 3D complex, we consider each 
BR prediction as a BI prediction. Therefore, as in previ-
ous methods, we take the BR predictions with the highest 
confidence scores as the number of interacting ligands 
to evaluate our model (top-n). For top-(n + 2) predic-
tion, two additional predicted BRs are counted to deter-
mine whether BR prediction succeeds in predicting the 
true BR. We regarded the predicted BR as correct when it 
covered half of the true BR. Finally, we evaluated the suc-
cess rate of BR prediction considering the top-n and top-
(n + 2), where any true BRs are considered correct with 
top-n or top-(n + 2) BR predictions.

Attention analysis
Statistical analysis for the attention of compound tokens 
for BRs/non‑BRs
As mentioned above, protein grids, pooled convolution 
results on a protein sequence are taken as transformer 
inputs, and compound tokens are attached before the 
protein grid to predict DTIs. We assumed that com-
pound tokens are more concentrated on BRs. To verify 
our hypothesis, we first collected the maximum atten-
tion values of the compound tokens from the transform-
ers. We distinguished the maximum attention values of 
BR and non-BR for each ligand–protein complex. With 
the collected maximum values, we fitted two Gumbel 
distributions for the maximum BR/non-BR attention val-
ues. Finally, we conducted a Kolmogorov–Smirnov test 
between the BR/non-BR Gumbel distributions to verify 
the statistical differences between the attentions of the 
BR/non-BR compound tokens.

pinterp(r) = max
r̃≥r

p(r̃),

Circos plot of attention
For more detailed inspection, we visualized the attention 
values using a Circos plot [45, 46]. Compound tokens and 
protein grids were represented as sectors of a Circos plot. 
We colored sectors by their type, where the compound 
token is yellow, BR is blue, and non-BR is gray. Sectors 
were arranged clockwise from compound token to last 
protein grid; note that compound token and last protein 
grid are attached in the Circos plot but they are actually 
not adjacent in the transformer input. We take only the 
upper 90% of the attention values for better visualiza-
tion, neglecting unnecessary attention values. The atten-
tion value from the query to the key is represented as a 
stroking line starting from the source sector to the target 
sector, whose color follows the source sector and width 
represents the relative attention value. A more detailed 
explanation of the Circos plot with an example is pro-
vided in Additional file 1: Fig. S3.

Results and discussion
Training results
We trained the HoTS model under the following scheme. 
First, we trained the BR prediction model using CNN 
layers and transformers. After the pre-training steps, we 
added more transformers to reflect the DTIs based on 
pre-trained information for BRs. In training for DTIs, the 
initial validation performance of the BR prediction model 
dropped, as shown in Additional file 1: Fig. S4. Therefore, 
we further trained the BR prediction model using addi-
tional DTI training epochs. The untrained BR prediction 
model showed a low AP for BRs. After further pre-train-
ing epochs, the AP values for the BR prediction model 
in the validation dataset gradually increased. However, 
as stated above, the AP dropped significantly at the first 
DTI training epoch, although AP values for additional 
DTI training epochs converged following the trend of 
those for the BR prediction epochs. Given the observed 
convergence in model performance, we interpret that the 
BR and DTI prediction models shared common features. 
Finally, we achieved an AP of 62.28% for the BR valida-
tion dataset, consisting of a randomly sampled 10% of the 
collected dataset. Using the selected hyperparameters 
summarized in Additional file 1: Table S1 the DTI predic-
tion model exhibited an area under the receiver operating 
characteristic curve of 0.8542 and an AUPR of 0.8232 on 
the BR validation datasets.

Prediction performance for binding regions
We evaluated performance on the COACH and 
HOLO4K datasets, where complexes and proteins, which 
are redundant to BR training dataset, were removed for 
the validity of the performance evaluation. Previous 3D 
information-based methods (Fpocket [47], SiteHound 
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[48], MetaPocket 2.0 [49], DeepSite [50], P2Rank [16]) 
regard prediction as true positive when the distance 
between the center of the pocket and any ligand atom 
(DCCcriterion) is less than 4 Å. However, the proposed 
HoTS, only takes a protein sequence and predicts BRs. 
We gathered as many predictions as the number of 
ligands (top-n success rate, where n indicates the num-
ber of interacting ligand in complex) for comparison, 
following the previous evaluation methodology [16, 51, 
52]. In addition, we considered two additional BR pre-
dictions for the top-(n + 2) success rate. With top-n or 
top-(n + 2) predictions, we regarded success as the pre-
diction of BRs covering true BRs. As shown in Tables 3 
and 4, HoTS showed better performance than the other 
methods on the COACH dataset. For the HOLO4K 
dataset, although it could not outperform 3D structure-
based methods, HoTS achieved reasonable performance 
for BR prediction, outperforming some previous meth-
ods without 3D information of proteins. HoTS showed 
better performance on COACH than HOLO4K, while 

their percentages of BI/BR and sequence similarity to 
BR training proteins were similar. We speculate that the 
performance gap is due to the difference between dataset 
compositions. HOLO4K mainly contains larger multim-
ers, while COACH contains single chains with smaller 
proteins [16], similarly to our BR training dataset.

We also evaluated the prediction performances 
on HOLO4K with different similarity thresholds, as 
shown in Additional file 1: Table S2. As a result, for the 
COACH dataset, we showed that HoTS BR prediction 
performance is rigid to protein sequence similarity. For 
HOLO4K, although the BR prediction performance 
of HoTS decreased with similarity, HoTS achieved 
66.53 ± 0.78% top-(n + 2) prediction performance with a 
0.5 similarity threshold.

In addition to quantitative evaluation of performance, 
we analyzed the 3D complexes of the test dataset with 
low sequence similarity (0.4321) but high structural simi-
larity. We compared beta-lactamases of different organ-
isms: Klebsiella pneumonia in training (PDB ID: 5EEC 
[53], UniProt ID: Q9F663, white-colored), and Staphylo-
coccus aureus in testing (PDB ID: 1GHM [54], UniProt 
ID: P00807, cyan colored). As shown in Fig.  3a, despite 
their low sequence similarity, the test structure is aligned 
on the training protein with a root mean square devia-
tion of 1.177 Å by MatchMaker [55] of UCSF Chimera 
[56]. True BRs are colored red for 5EEC from the BR 
training dataset, and the top-3 predicted BRs are colored 
blue for 1GHM from the BR test dataset. We can see that 
the top-3 predicted BRs are located near the interacting 
ligand, covering the true BRs of 5EEC. In addition, as we 
can see with the aligned sequence with AliView [57] in 
Fig.  3b–d. HoTS predicted the same BRs, despite their 
differences in residues and ligands.

Prediction performance for drug–target interactions
Next, we compared the performance of the HoTS model 
in predicting DTIs with those of MONN [28], Deep-
Conv-DTI [19], TransformerCPI [23], and HoTS without 
BR training (model only). First, MONN was pretrained 
by the two types of binding affinities (KIKD and IC50) 
separately, with their non-covalent bonds between pro-
teins and the ligands from PDBBind, resulting in two 
models, MONN (KIKD pretrained) and MONN (IC50 
pretrained). We fine-tuned each pretrained MONN 
model to predict DTI using the DTI training data. Next, 
DeepConv-DTI and TransformerCPI are also trained 
with the DTI training dataset without BR pre-training. 
To evaluate the effect of BR pre-training to DTI pre-
diction performance, we also trained the HoTS model 
without BR pre-training. The HoTS model with BR pre-
training showed the highest performance on DTI test 
datasets 1 and 2 (Fig. 4), with much greater precision and 

Table 3 BR prediction performance on the COACH test dataset

Name COACH (unseen protein–
ligand complexes)

COACH (unseen proteins)

Top-n 
success 
rate (%)

Top-(n + 2) 
success rate 
(%)

Top-n 
success 
rate (%)

Top-(n + 2) 
success rate 
(%)

Fpocket 59.2 63.5 55.2 59.0

SiteHound 54.8 74.1 52.2 69.6

MetaPocket 
2.0

68.3 80.9 64.1 76.3

DeepSite 61.8 67.8 57.5 64.9

P2Rank 74.7 82.0 73.1 79.9

HoTS (pro-
posed)

66.3 ± 0.9 85.26 ± 0.8 59.9 ± 1.3 81.4 ± 0.9

Table 4 BR prediction performance on HOLO4K test dataset

Name HOLO4K unseen protein–
ligand complexes)

HOLO4K (unseen 
proteins)

Top-n 
success 
rate (%)

Top-(n + 2) 
success rate 
(%)

Top-n 
success 
rate (%)

Top-(n + 2) 
success rate 
(%)

Fpocket 61.1 67.2 58.4 62.6

SiteHound 64.9 78.2 57.9 70.3

MetaPocket 
2.0

70.9 82.2 65.4 75.8

DeepSite 60.6 65.7 64.3 70.5

P2Rank 78.1 89.3 74.4 86.5

HoTS (pro-
posed)

61.4 ± 0.7 79.1 ± 0.4 53.2 ± 0.6 71.7 ± 0.6
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specificity, suggesting that training BRs helps more pre-
cise predictions. Regarding the MONN model, the pre-
trained MONN models showed better performance than 
the other previous models, representing the importance 
of BI pre-training in DTI prediction. However, because 
MONN does not consider long-distance interactions in 
proteins and having high complexity of attention calcula-
tion for DTI prediction (the length of protein sequence 
by the number of atoms in ligand), we speculate that the 
problems above reduced DTI prediction performance 
[24, 25, 27]. The other transformer-based models (Trans-
formerCPI and HoTS without BR training) showed no 
better performance than the simple convolution-based 
model (DeepConv-DTI). DeepConv-DTI utilizes CNN 
layers to extract important sequential motifs of protein 
sequences, and their maximum values are utilized as pro-
tein representations. However, DeepConv-DTI does not 
model interdependency or long-distance interactions 
[21], and it does not train important motifs explicitly. 
HoTS overcomes these limitations by employing trans-
formers that model interactions between compounds 
and protein grids and explicitly training BRs. However, 
the mere use of transformers does not guarantee a per-
formance increase. For example, although Transformer-
CPI utilizes 3-mers of protein sequence data as protein 
features, researchers have shown that full-length repre-
sentations of a protein sequence can lower DTI predic-
tion performance [24, 25]. In contrast, HoTS extracts 

interacting motifs and pools maximum convolution 
results in protein grids to reflect sequential motifs impor-
tant to DTIs while reducing the complexity of attention 
calculations.

On DTI test dataset 1, the HoTS model trained with 
BRs also exhibited better DTI prediction performance 
on general druggable proteins from DGIdb [39] (Fig. 4a), 
indicating that training with BRs helps in DTI predic-
tion in general. On DTI test dataset 2, for proteins of the 
same SCOPe family [40], the HoTS model trained with 
BRs showed significantly better accuracy and F1 scores 
(Fig. 4b). Training BRs worked for both exact motifs and 
sequentially/structurally/functionally similar motifs, 
reflecting the generalization of the trained BRs. Because 
binding motifs are evolutionarily conserved, the DTI 
prediction model, which employs BRs trained in the BR 
prediction model, is able to concentrate on learned BRs, 
showing great performance improvements over other 
available DTI prediction models.

We also trained and tested our model on previous 
benchmark datasets, BindingDB dataset [58], Human 
dataset, and Caenorhabditis elegans dataset [59]. Perfor-
mance on external benchmark datasets are summarized 
in Additional file 1: Tables S3–S5. As reported, the pro-
posed model mostly outperforms previous models.

a b

c

d

: Protein sequence of 5EEC (training)
: True BRs of 5EEC (training)
: Protein sequence of 1GHM (test)
: Predicted BRs of 1GHM (test)

Fig. 3 Prediction and visualization of binding regions on homologous 3D complexes with low sequence similarity. We visualized BR prediction for 
beta-lactamase in the test dataset (PDB ID: 1GHM, UniProt accession: P00807, white colored), which is homologous to the training protein (PDB 
ID: 5EEC, UniProt accession: Q9F663, dark gray colored) with low sequential identity/similarity. a Structural alignment results for 5EEC and 1GHM. 
True BRs of 5EEC are colored red, and the predicted top-3 BRs are colored blue for IGHM. b–d Structural and sequential alignment of predicted BRs, 
showing that HoTS can predict the same BRs with different residues
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Analysis of attention
As shown above for the BR training datasets, HoTS pro-
vided better DTI prediction performance for proteins of 
the same SCOPe family than CNN-based methods, such 
as DeepConv-DTI. In HoTS, attention on a compound 

token in a transformer is designed to reflect the relative 
importance of protein grids to a given DTI. Accordingly, 
we inspected the maximum attention value of protein 
grids for proteins in the COACH and HOLO4K datasets 
for the transformers, drawing the Gumbel distribution 
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Fig. 4 Prediction performance for drug–target interactions in the independent test datasets. DTIs were evaluated using PubChem Bioassays. Error 
bars stand for standard error. a DTI prediction performance for bioassays with all druggable proteins derived from DGIdb. HoTS overall 
outperformed the other models and HoTS without BR training, showing that BR training indeed improves DTI prediction performance. b DTI 
prediction performances for a subset of bioassays on DTI test dataset 1, whose proteins have the same SCOPe family as the BR training dataset. 
HoTS overall greatly outperformed the other models and HoTS without BR training, showing that BR training indeed helps DTI prediction with the 
same structural motifs
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for the first transformers in Fig. 5. In doing so, we noted 
that attention scores of protein grids for BRs (μ: 0.1523, β: 
0.1093 of Gumbel distribution for COACH, μ: 0.2209, β: 
0.2168 of Gumbel distribution for HOLO4K) were higher 
than those for non-BRs (μ: 0.0640, β: 0.0318 of Gumbel 
distribution for COACH, μ: 0.0549, β: 0.0332 of Gumbel 
distribution for HOLO4K), thus allowing a compound 
token to concentrate on grids with higher values that 
more likely contain BRs, improving DTI prediction per-
formance. In addition, when we conducted a Kolmogo-
rov–Smirnov test to evaluate the difference between 
BR and non-BR, we achieved extremely low p-values 
(< 1e−53 for COACH, < 1e−100 for HOLO4K), justify-
ing our hypothesis. To examine a more detailed mecha-
nism of attention, we firstly visualized the complex of 
O-phosphotyrosine and human RAF protein (PDB ID: 
2QYQ, [60]), which is predicted as a positive DTI pair in 
the test dataset, as shown in Fig. 6a. First, for predicting 
BRs, the attention mechanism in the transformer blocks 
well-captured the importance of BRs in the given com-
plex (Fig. 6a, b). The top-3 predictions properly indicate 
binding pocket, and the top-4 prediction is also located 
at the right helix of the binding pocket with a BR pre-
diction score of 0.52. In addition, from head 3 of trans-
former 1, we mapped the attention scores to compound 
token from each protein grid and visualized in 3D struc-
ture and sequence, shown in Fig. 6b, c. Also, we can see 
the attention scores of protein grids that are actual BRs 
are higher than other protein grids (Figs. 5a, b, 6b). This 

result indicates that our model correctly predicts DTIs 
by automatically detecting the BRs as important pro-
tein grids. In addition, we drew a Circos plot [45, 46] of 
heads in the transformers. As depicted in Fig. 6d, we can 
see that all protein grids give attention to the compound 
tokens. However, the attention portion of the compound 
token of BRs is higher than that of non-BRs. BRs give 
most of the attention to compound tokens, while non-
BRs give more attention to the far non-BR grid between 
BRs (protein grid labeled as “NMKGNDISSG”), mod-
eling the ligand selectivity of BRs. In addition, in head 2 
of transformer 2 for the complex of N-acetylglucosamine 
and human Lysosome C (PDB ID: 1LZS [61]), BRs give 
attention to BRs regardless of their distance, crossing the 
circle of the Circos plot (Additional file 1: Fig. S5). Com-
pound tokens give high attention to far BRs, and we can 
see directly how compound tokens aggregate to predict 
DTIs. In short, by visualizing attention with a Circos plot, 
we can understand how HoTS transformers play a role in 
the interdependencies between BRs and aggregating BR 
information to predict DTIs for compound tokens. 

Docking simulation result based on HoTS prediction results
Because HoTS predicts BRs to the corresponding DTI, 
HoTS can provide a good starting point for further virtual 
screening like docking simulation. For a brief example, 
MARK1 of human does not have any 3D complex with 
interacting druggable ligand, while it has many interact-
ing compounds tested in binding assays [62, 63]. On the 
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Fig. 5 Histograms and Gumbel distributions of maximum attention on compounds for BR/non-BR. We collected the maximum attention values 
of compound tokens in the first transformer for BR/non-BR from each complex. We fitted the collected maximum attention values to a Gumbel 
distribution, showing the differences in the distribution of attention on BR and non-BR protein grids. The blue histogram plots the maximum 
attention values for BR, while the blue line shows the fitted Gumbel distribution. The gray histogram and line analogously represent the non-BR 
case. a Histograms and fitted Gumbel distributions of the COACH dataset. b Histograms and fitted Gumbel distributions of the HOLO4K dataset
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other hand, Staurosporine is known to bind to kinase 
families [62, 64], and it has a high DTI prediction score 
of 0.91. Thus, we choose MARK1 and Staurosporine to 
show an example of the possible usage of HoTS in the 
virtual screening pipeline. Detailed docking procedures 
are described in Additional file  1. In preparation for 
docking simulation, predicted BRs can be mapped to 3D 
structures, and a search box of docking simulation can 
be drawn based on predicted BRs (Additional file 2). We 
confirmed that the search box derived from predicted 
BRs correctly includes kinase binding motifs (Additional 
file 1: Fig. S6). Furthermore, we demonstrated the dock-
ing result from AutoDock Vina [65] gives high binding 
energy for the docking of Staurosporine into kinase bind-
ing motifs (Additional file 1: Fig. S7, Additional file 2).

Limitations
Despite the good performance of our model, it can still 
be improved. First, we may be able to incorporate other 
compound representations, such as neural fingerprints 
[66], message passing neural networks [67], and SMILES-
BERT [68], which are expected to overcome several 
limitations when using Morgan/circular fingerprints, to 
build a fully end-to-end model that is more interpret-
able. In addition, we may be able to apply image segmen-
tation [69] instead of object detection for BR detection. 

Although we aimed to predict BRs explicitly for DTIs as a 
trial study, we will likely be able to predict more delicate 
motifs by leveraging segmentation techniques. We expect 
that with greater improvement, our model will be able to 
predict the exact binding sites and potentially even bind-
ing modes.

In addition, HoTS cannot deliver drug action informa-
tion, such as agonistic/antagonistic, for predicted DTIs. 
The main reason why HoTS neglects this type of infor-
mation is that the databases we used in this research do 
not fully provide enriched drug action knowledge. For 
example, DrugBank [33] provides limited information 
like identifiers of drugs, without their detailed molecular 
mechanism. Therefore, the chemogenomic community 
should elaborate more efforts to build comprehensive 
data resources, and we further that better and more 
interpretable prediction models will be built.

Conclusions
In this study, we developed a deep learning model called 
HoTS to predict BRs and DTIs. Firstly, we parsed BRs 
from 3D complex databases and collected DTIs from 
various drug databases to train our model to predict BRs 
and DTI. The model is based on transformers whose 
inputs are compound token from chemical fingerprints 
and encoded protein grids representing sequential motifs 
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captured by CNN. HoTS predicts BRs from transformer 
output of protein grid encoding and DTIs from trans-
former output of the compound token. As a result, HoTS 
showed good performance in the BR predictions com-
pared with previous models using 3D-complexes and 
outperformed the other DTI prediction models. Moreo-
ver, we analyzed attention values by quantitative statisti-
cal tests and visualized the impacts of attention in diverse 
aspects. Thus, we can conclude how transformer struc-
tures help DTI and BR prediction by emphasizing on 
BRs and the compound token. Finally, we gave an exam-
ple that HoTS prediction can provide a good starting 
point for further drug discovery processes like docking 
simulation.
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