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ABSTRACT A combined cycle power plant (CCPP) employs gas and steam turbines to generate 50% more
power while utilizing the same fuel as a normal single cycle plant. The performance of a CCPP under full
load is affected by a variety of factors such as weather, process interactions, and coupling, which makes
it challenging to operate. Therefore, a reliable assessment of the maximum output power of a CCPP is
required to improve plant reliability and monetary performance. In this paper, a predictive model based
on a generalized additive model (GAM) is proposed for the electrical power prediction of a CCPP at
full load. In GAM, a boosted tree and gradient boosting algorithm are considered as shape function and
learning technique for modeling a non-linear relationship between input and output attributes. Furthermore,
predictivemodels based on linear regression (LR), Gaussian process regression (GPR), multilayer perceptron
neural network (MLP), support vector regression (SVR), decision tree (DT), and bootstrap-aggregated
tree (BBT) are also designed for comparison purposes. Results reveal that GAM improves the RMSE by 74%,
68.8%, 70.3%, 54.8%, 21.2%, and 17.3% compared to LR, GPR, MLP, SVR, DT, and BBT, respectively.
Furthermore, the results of the Man-Whitney U test and rank analysis also confirm the effectiveness of GAM
for energy prediction of CCPP. Finally, it can be concluded that the proposed method is effective, robust,
and accurate for the assessment of the maximum output power of a CCPP to improve plant consistency and
financial performance.

INDEX TERMS Combined cycle power plant, electrical energy, generalized additive model, linear regres-
sion, decision tree, Man-Whitney U test.

I. INTRODUCTION
In order to analyze a thermodynamic system, various
hypotheses are needed to compensate for the uncertainty in
the solution. In real time applications, these hypotheses are
impractical for analyzing complex systems. It involves solv-
ing hundreds of nonlinear equations, resulting in excessive
computational requirements. To circumvent this constraint,
machine and deep learning techniques are gaining popularity
as a way to avoid thermodynamic-based techniques, discover
counter-intuitive aspects, and provide performance efficien-
cies beyond design variables. These advances result from the
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discovery of diverse and complex correlations and intercon-
nections between important input and output attributes [1].
A combined cycle power plant (CCPP) is awell-known exam-
ple of a thermodynamic system. The performance of a power
plant under full load is affected by a variety of factors such
as weather, process interactions, coupling, and so on, which
makes it challenging to create a reliable mathematical model
for CCPP. The CCPP uses gas and steam turbines to produce
50% more energy using fuel similar to a standard simple
cycle plant. However, accurate estimation of output power at
maximum load is essential to enhance plant efficiency and
financial operations [2]. Reliable energy generation assess-
ment tools can help to conserve energy and maximize returns
on existing megawatt-hours (MWh), which improves power
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plant efficiency, especially when facing the limits of raw
material conservation and high profitability. Hence, pre-
cise power generation forecasting has great importance in
enhancing the efficiency of power plants and improving envi-
ronmental conditions [3]. In recent years, researchers have
utilized various approaches based on machine learning (ML)
algorithms to predict the output power at full load of CCPP.
Previous studies on the prediction and control of CCP are
reviewed in Table 1.

TABLE 1. Literature Survey on prediction and control of CCPP.

In [16], the LR2,1 norm-based online sequential extreme
learning algorithm (LR21OS-ELM) is designed for different
prediction problems. The performance of LR21-OS-ELM is
compared with that of ELM and LR21-ELM for electrical
energy prediction. Results demonstrate that the proposed
ML algorithm outperformed ELM and LR21-ELM in terms
of RMSE. In [17], the Ridge and support vector regression
models are designed and implemented for the energy pre-
diction of CCPP. The regression coefficient for SVR (0.98)
is higher than the ridge regression (0.92), which shows the
higher predicting accuracy of SVR. In [18], principal com-
ponent analysis (PCA)-based K-means and agglomerative
clustering are used for CCPP energy prediction. The results
show that the proposed algorithms have an accuracy of 80%
compared to the support vector machine (SVM) and regres-
sion tree. A deep learning neural network (DNN) is designed
for the CCPP energy forecasting [19]. The predicting per-
formance of DNN is compared with that of sequential API
and functional API based ANN. Results show the superior
performance of deep learning neural networks.

Various ML techniques are used in the literature to pre-
dict the electrical energy output of CCPP. Each ML algo-
rithm has its own pros and cons. For example, the number
of neurons in each hidden layer, synaptic weights, learn-
ing rate, and bias values all have a significant impact on
ANN performance. Fuzzy logic-based ML methods require
an accurate estimation of the rule base, which is a time-
consuming operation. On the other hand, the prediction accu-
racy of SVR and SVM is determined by the appropriate
values of their corresponding hyper-parameters. From the
viewpoint of the above discussion, the aim of this work
is to investigate a competent energy forecasting model for
CCPP based on a boosting based generalized additive model
(GAM), which can provide energy experts with the necessary
insight into CCPP energy generation. These predictive mod-
els are simple to interpret while enhancing forecast accuracy.
It also generally outperforms most linear techniques, such
as linear regression, while providing greater interpretability
compared to other ML algorithms. These predictive mod-
els allow current knowledge to be integrated during the
model construction process in order to improve the predic-
tion performance. The key contributions of the article are as
follows.
1. A boosting-based generalized additive model (GAM) is

proposed for the output energy prediction of CCPP.
2. The predictive performance of GAM is compared with

that of linear regression (LR), Gaussian process regres-
sion (GPR), multilayer perceptron neural network (MLP),
support vector regression (SVR), decision tree (DT), and
bootstrap-aggregated tree (BBT).

3. The Mann–Whitney U test, violin plots, and rank analysis
are all utilized to perform a detailed assessment of the
models’ outcomes.
The following are the remaining sections of this work:

Sections II and III provide a full discussion of the dataset as
well as the proposed algorithm. Sections IV and V describe
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FIGURE 1. A schematic representation of combined cycle power plant [19].

the results and discussion, followed by the conclusion of the
work.

II. COMBINED CYCLE POWER PLANT (CCPP) SYSTEM
A CCPP is a combination of steam and gas turbines
(ST and GT) with heat recovery steam generators (HRSG).
The power in a CCPP is produced using ST and GT, which
are integrated in one cycle and transported from one turbine
to the other [20]. In the CCPP, GT not only produced electric
power but also hot emissions consisting of NOx and COx
gases. These gases are passed through HRSG, where they are
converted to steam and generate electricity due to coupled
ST and generators. Thus, the GT generator generates energy,
and the remaining heat from the exhaust gas is used to make
steam, which in turn generates power via the ST genera-
tor [21]. For this study, the data set is from CCPP-1 [22]
with a small production capacity of 480 MW, consisting of
one 160 MW ABB ST, two dual HRSGs and two 160 MW
ABB 13E2 GTs, as shown in Figure 1. The CCPP data set
contains 47840 (9568 per year) data points collected between
2006 and 2011 while the plant was operating at full load. The
power (PE) generated by the combination of GT and ST is
primarily affected by four environmental variables: ambient
temperature (AT), exhaust vacuum (V), relative humidity
(RH), and ambient pressure (AP). Thus, AT, V, RH, and AP
act as input attributes while PE acts as output attribute of the
ML algorithm. A statistical description of the CCPP data set

TABLE 2. Statistical description of CCPP dataset.

is presented in Table 2. For better understanding of the data
set, all input and output attributes are described as histogram
fit in Figure 2.

A. DATA PREPROCESSING
Preprocessing of the data (DP) is regarded as the most
crucial phase in any data-driven investigation. It provides
information about the dataset’s outliers, redundancies, and
missing terms. The highly diverged data points from the other
points are known as outliers and should be removed from the
dataset [23]. In this work, a quartile-based outlier detection
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FIGURE 2. Representation of Input and output attributes of CCPP.

and rejection (OR) method is applied, which is given by
equation (1)

OR(l)

=

{
l if Q1 − 1.5× IQR ≤ l ≤ Q3 + 1.5× IQR
reject otherwise

(1)

where, l is the input or output attribute that lies in m-
dimensional space (l eRm). Q1, Q3 and, IQR represents
the 1st, 3rd and interquartile range of an input or output

attribute, respectively. Further, a median by target method
(equation (2)) is employed to fill the missing (MV ) terms in
the attributes as follows.

MV (l) =

{
median(l) if l = missed/Nan
l otherwise

(2)

After preprocessing, the next step is sampling of the
dataset into training (70%), validation (15%), and testing
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FIGURE 3. Sampling of the CCPP dataset in training, validation and
testing subset.

(15%) subsets. Figure 3 shows the sampling of the CCPP
dataset into three subsets as follows.

III. GENERALIZED ADDITIVE MODEL (GAM)
As per literature, various machine learning algorithms like
boosted tree, RF, MLP, SVR, and DNN are utilized for the
energy prediction of CCPP. These algorithms provide accu-
rate and precise predictive regression models for low and
high-dimensional predictive problems. Furthermore, in sev-
eral applications, whatever is learnt is just as essential as
predictive accuracy. As a result, the profound precision of
complicated models comes at the cost of interpretability, i.e.,
the influence of a specific input on the predictive output of
a complex model is cumbersome to interpret. Generalized
additive model (GAM) can easily address the interpretability
issue of complex models [24]. GAM is the extended ver-
sion of LR models. A conventional LR models, gives the
linear correlation between input and output attributes. let Y is
the output attribute with normal distribution mean γ and
variance η2. The linear relationship between Y and input
attributes Xj is given as follows

γ = λ0 +

N∑
j=1

λjXj (3)

where,
γ = estimated value of Y
λ0 = intercept
λj = jth predictor attribute coefficient
Xj = jth predictor attribute value
N = No. of predictor attributes

Furthermore, equation (3) can be rewritten by considering
link function h, which relates γ to Xj, as follows

h(γ ) = λ0 +
∑
j

λjXj (4)

The equation (4) is a functional form of generalized linear
models (GLMs). GAM is the extended version of GLMs,
which introduces the non-linear form of predictor attributes.
Such non-linear predictors are linked to the predicted value
of the dependent variables using an appropriate link function
and are therefore expressed as:

h(γ ) = λ0 +
∑
j

ψjfj(Xj) (5)

where,
fj(i) = jth basis function
9j = parameter of jth basis function

In order to improve the accuracy of the conventional GAM,
a pairwise interactions are added to it, then equation (5) can
be modified as [25].

h(γ ) = λ0 +
∑
j

ψjfj
(
Xj
)
+

∑
j6=i

fji
(
Xj,Xi

)
(6)

However, training the GAM is dependent on two critical
factors: (1) the shape function selection and (2) the learning
algorithm used to train the GAM. In this work, boosted trees
and gradient boosting are used as shape function and learning
method to train the GAM.

A. GRADIENT BOOSTING (GB)
GB is a repetitive process that starts by estimating the func-
tion while considering a constant offset, which does not fit the
data adequately. After each iteration, fit is improved by fitting
the base learner to the negative gradient of a pre-specified
error function. GB enhances the predictive performance of
the model along with attribute selection and model identi-
fication. It has significant benefits over other approaches.
If GB stops suddenly before getting convergent, then it
improves predictive accuracy by decreasing regression coef-
ficients to 0, a strategy similar to lasso regression, ridge
regression, and shrinkage smoothing. GB is used to achieve
attribute selection by setting certain components to 0.
Another advantage of GB over other regression is its ability to
integrate nonlinear correlations and spatial impact [26], [27].
As per the GB method, the estimation of the optimal predic-
tion function f∗ to realize the output attribute Y from the input
attribute X is as follows.

f ∗ = argmin
g
EY ,X [ρ (Y .f (X ))] (7)

where, f∗ minimizes the cost function ρ over the all possi-
ble values of input attribute X . f∗ can be any function that
minimizes EY ,X [ρ (Y, f (X ))]. The correct distribution of X
and Y is not known, so GB reduces the following empirical
risk (ER).

ER =
1
n

n∑
j=1

ρ
(
Yj · f (Xj)

)
(8)

where ER is the approximation of EY ,X [ρ (Y, f (X ))], it relates
the mean to −ρ(Yj, f (Xj)), j = 1, 2, . . . n of the sample site.
Steps for the implementation of GB technique [28]–[30].

I. Set the initial value for the n-dimensional shape function
vector f̂ [0] with a preliminary estimate f̂1, . . . . . . , f̂n to 0.

II. Select the base-learner for GB. Set the current value of
the boosting iteration to m = 0.

III. After incrementing the boosting iteration m by 1, eval-

uate the negative gradient −
(
∂ER
∂f1
, . . . .. , ∂ER

∂fn

)
, and

f̂ [m−1] =
[
f̂
[m−1]

1 , . . . . . . , f̂
[m−1]

n

]
respectively, in order

to calculate U [m−1]
= −

(
∂
∂f1
ρ
(
Yj, f̂

[m−1]
j

))
j=1,.......,n
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IV. Fit the negative gradient to each base learner to acquire
the predicted output values. whereas predicted values
of vector Û [m−1] from the excellent-fit base learner is
depends on the predictor values.

V. Update the shape function by adding the fraction of
Û [m−1] to it as f̂ [m] = f̂ [m−1] + βÛ [m−1], where β is
the step-length.

VI. Repeat steps III-V till the stopping criteria is not
achieved (mStop). After that, we have the final predictive
value of f̂ [mStop], which evaluates the optimum forecast-
ing function.

Figure 4 shows the schematic representation of the overall
methodology considered in this work. Furthermore, three per-
formance indices, i.e., root mean square error (RMSE), mean
absolute error (MAE), and R-squared (R2) are considered for
the performance investigation of the proposed ML algorithm
towards energy prediction.

RMSE =

√√√√ 1
N

N∑
k=1

(Ŷk − Yk )2 (9)

MAE =
1
N

N∑
k=1

∣∣∣Ŷk − Yk ∣∣∣ (10)

R2 = 1−

N∑
k=1

(
Ŷk − Yk

)2
N∑
k=1

(Yk − Ymean)2
(11)

where, Ŷk and Yk are predicted and actual values under the
k th independent variable, N is the total number of samples in
the CCPP dataset.

FIGURE 4. Layout of overall methodology of the work.

IV. RESULT AND DISCUSSION
As an illustration, CCPP uses gas and steam turbines to
produce 50% more power in comparison to a single-cycle
plant. Further, the development of a mathematical model for
CCPP under full load is a tedious job due to its dependencies
on various factors. Hence, a predictive model is required for

FIGURE 5. Pearson correlation matrix for CCPP.

the improvement of the plant’s efficiency and financial oper-
ations. Therefore, in this work gradient boosting based GAM
is proposed for the prediction of energy generation by CCPP.
Preprocessing of the data is required before designing the
predictive models in order to remove outliers. They introduce
skewness and kurtosis, which make the algorithm overfit or
underfit to the predicted output values.

Figure 5 shows the Pearson correlation matrix for CCPP
input and output attributes after preprocessing. The Pearson
correlation coefficient provides an indication of the level of
gradual shift of independent parameters in order to accurately
examine the influential aspects of the data. The negative value
of coefficients shows the inverse correlation between the
variables, whereas the positive value suggests a positive
correlation. If the value of the coefficient is 0, it means
both the variables are uncorrelated. It can be observed from
Figure 5 that input attributes AT and V are negatively
correlated to the output PE. Whereas AP and RH have
a positive correlation with PE. There is a strong positive
correlation between AT and V, and both the input attributes
have a negative correlation with AP and RH, respectively.
After preprocessing, the dataset is divided into three subsets:
training (70%), validation (15%), and testing (15%). Thus,
33488, 7176, and 7176 samples have been chosen randomly
as the train, validate, and test subset. It is a well-known fact
that, the predictive accuracy of any ML algorithm greatly
depends on the values of its hyper-parameters. A trial and
error method is performed in order to evaluate the optimal
values of the GAM hyper-parameters (ILRP = Initial Learn
Rate for Predictors; IN = Interactions; MNSP = Maximum
Number of Splits Per Predictor; ILRI= Initial Learn Rate for
Interaction; NTP= Number of Trees Per Predictor; MNSI=
Maximum Number of Splits Per Interaction). Firstly, GAM
is trained for the randomly selected hyper-parameter values.
Secondly, its performance has been evaluated on a validation
dataset and, simultaneously, the values of RMSE, MAE, and
R2have been recorded. Finally, the hyper-parameter values
for which RMSE and MAE are lower with a higher value
of R2 is selected. Table 3 shows the quantitative analysis
of estimating the optimal values of GAM hyper-parameters.
It can be observed from the table that the values of RMSE
and MAE on the validation sets are least for the ILRP =
0.9987; IN = 3; MNSP = 65; ILRI = 0.9999; NTP = 47;
MNSI = 30 with a higher value of correlation coefficient,
respectively. So, for further investigation, these values are
considered. Furthermore, predictive models for CCPP using
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TABLE 3. Quantitative analysis of estimating the optimal values of GAM hyper-parameters.

linear regression (LR), support vector regression (SVR),
Gaussian process regression (GPR), multilayer perceptron
neural network (MLP), decision tree (DT), and bootstrap-
aggregated tree (BBT) ML algorithms are also designed for
comparison purposes.

As discussed previously, 7176 data points are considered
for validation and testing purposes. Figure 6 shows the regres-
sion plots for all the algorithms in the validation data set.
According to the regression plots, GAM had the highest R2

value of 99.54%, followed by BBT (99.32%), DT (99.21%),
SVR (98.11%), GPR (95.82%), and MLP (95. 30%). How-
ever, LR has the lowest value of R2 (94%) in comparison to
other models. Table 4 demonstrates the performance compar-
ison for all the designed algorithms in terms of RMSE and
MAE. From Table 4, it can be observed that GAM attains the
lowest RMSE and MAE when compared to other techniques.

TABLE 4. Quantitative comparison amongst all the ML techniques for
validation data set.

The next step is to investigate the performance of the pre-
dictive models for the testing data subset. Figure 7 shows the
individual tracking plots of all the designed ML algorithms
for the testing dataset. It can be observed from Figure 7, that
GAM is able to track the testing dataset with the highest R2

value of 99.58%, followed by BBT (99.28%), DT (99.12%),
SVR (97.93%), GPR (95.65%), and MLP (95.20%). In this
case also, LR attains the lowest value of R2 (93.70%)

compared to other algorithms. Finally, Figure 8 shows the
tracking performance of ML algorithms on 50 data points
(6000–6050) for a better understanding of the comparison.
It is observed that the predicted values by GAM are nearer
the testing data points compared to the other ML algorithms.

Figure 9 shows the error distribution plot of predictive
models for CCPP electrical energy prediction. Table 5 dis-
plays the maximum and minimum error deviations for all the
predictive models. The maximum and minimum deviations
attain by GAM are 11.2470 and −10.9319, respectively.
Hence, from table 5 it can be revealed that the deviation
of the error is less in the case of GAM in comparison to
other ML algorithms. It can also be further concluded by
the visual inspection of Figure 9. In addition to this, a non-
parametric ‘Mann–Whitney U’ test [31] is also performed to
investigate the normality and probability distribution of actual
and predicted values for all the developed models.

The M-W test compared the actual and predictive outputs
to investigate whether both the outputs are derived from the
same distribution or whether there is a difference in their
median values. Table 6 shows the outcomes of the M-W test
for all the predictive models. After comprehensive analysis,
it can be observed that the Z value is highest for SVR (1.8437)
and the smallest for GAM (0.0294), respectively. There is a
homogeneity in the 1t-P and 2t-P values, meaning no large
deviations are observed. Further, GAM has the larger values
of 1t-P (0.4882) and 2t-P (0.9764) compared to other tech-
niques, which shows the effectiveness of the proposed model.

Furthermore, the performance of GAM with other
designed models and models existing in the literature are
estimated on the basis of performance indexed (PI) and
rank analysis values. For this analysis, all the relationships
evaluated using RMSE and MAE presented in Table 7 are
considered. The PI can be defined by following equation [32].

PIa =
1
2

(
RMSEa
RMSEmax

+
MAEa
MAEmax

)
(12)

where, a is related to every predictive model. From table 6, it
can be seen that predictive models based on GAM (0.2514),
BBT (0.2830), DT (0.2987) and SVR (0.5925) have better
accuracy in comparison to existing models. However, the
predictive model developed in [11] has a PI value equal
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FIGURE 6. The regression plots of all the designed ML techniques predictive models for
validation data set.
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FIGURE 7. Prediction performance of all the designed ML techniques for testing data.
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FIGURE 7. (Continued.) Prediction performance of all the designed ML
techniques for testing data.

FIGURE 8. Prediction performance of all the designed ML techniques for
50 testing samples.

FIGURE 9. The error distribution of all the ML models in violin plot for
CCPP electrical energy prediction.

to 0.7677, which is better than LR (1), MLP (0.8581) and
GPR (0.8091), respectively

A. UNCERTAINTY ANALYSIS
The confidence ranges of forecast errors (CL±) are calculated
by the given equation (13) to measure the uncertainty related
with all the predictive models [33].

uncertainity band = CL+ − CL−

where, CL± = ξ ± Dλω. (13)

TABLE 5. Quantitative analysis of error distribution for all designed ML
techniques.

TABLE 6. Mann–Whitney U test.

where, ξ and ω are the mean and standard deviation of the
forecasted error, respectively.Dλ is the standard variable with
λ % of significance level. Figure 10 shows the uncertainty
band bar graph of all the models for CCPP electricity gen-
eration prediction. It can be observed that GAM possesses
the lowest forecasted uncertainty value of 4.3773 for 5 % of
significance level. On the other hand, BBT, DT, SVR, GPR,
MLP, and LR have uncertainty band values equal to 5.2978,
5.5546, 9.6780, 14.0466, 14.7453, and 16.8523 respectively.
LR has the highest level of forecasted uncertainty. Finally,
it can be concluded from the above findings that GAM is
superior and robust in comparison to other designed models
developed in this study.

B. SENSITIVITY ANALYSIS
One of themost important components of a forecastingmodel
is sensitivity assessment, which evaluates the significance of
every input attribute to the forecasting of the target attribute.
The level of dependency (SA) between target attribute (Oj)
and predictive variables (Ii) is given as follows [34], [35]

SA(i,j) =

N∑
k=1

Ii,kOj,k√
N∑
k=1

I2i,k
N∑
k=1

O2
j,k

(14)

VOLUME 10, 2022 24575



N. Pachauri, C. W. Ahn: Electrical Energy Prediction of CCPP Using Gradient Boosted GAM

TABLE 7. Performance assessment of GAM in comparison to other
designed models and models existing in the literature.

FIGURE 10. Uncertainty band of all the models for CCPP electrical energy
prediction.

FIGURE 11. Sensitivity Analysis of predictor variables for CCPP electrical
energy prediction.

whereas, for every Ii the higher value of SA (i,j), shows the
greater dependency of that predictive variable on the target
attribute (Oj). Figure 11 shows that the SA values for the
input attributes AP (0.9994) and RH (0.9829) are higher
than AT (0.9228) and V (0.9661), respectively. This sug-
gests that AP and RH are the most important elements in
estimating PE.

V. CONCLUSION
In this article, a gradient boosted generalized additive
model (GAM) ML algorithm is proposed for the develop-
ment of a predictive model for combined cycle power plant
(CCPP). Initially, preprocessing of a CCPP dataset is com-
pleted by removing the outliers using a quartile-basedmethod
and replacing the missing values using the median method.
The next step is to split the preprocessed dataset into training,
validation, and test subsets. Furthermore, optimal values of
GAMhyper-parameters are estimated using the trial and error
method. In addition to this, predictive models based on LR,
GPR, MLP, SVR, DT, and BBT are also designed for the
performance comparison of GAM. The performance of the
presented models has been analyzed with different statistical
measures like RMSE, MAE, and R2 respectively. A detailed
comparison has been carried out among all the predictive
models on the basis of violin plots and the nonparametric
M-W test. Results also suggested that GAM shows
the best performance amongst the seven models, with
RMSE = 1.1053, MAE = 0.8187, and PI = 0.2514. Finally,
an uncertainty analysis was also conducted for all the models.
GAM shows the least uncertainty in predicting the electrical
energy of CCPP. As a result of this study and the overall
review, it can be said that the proposed model has a better
ability to improve plant reliability and financial performance
than other predictive models.
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