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1 Introduction

Holographic methods (gauge/gravity duality) have been providing novel and effective ways
to study universal properties of strongly correlated systems. The representative examples
would be the holographic lower bound of the ratio of shear viscosity to entropy density,
linear-T resistivity and Hall angle of strange metals [1–6].

In this paper, using holography, we study another universal property of strongly cou-
pled systems, which is observed in high Tc superconductors and some conventional super-
conductors: Homes’ law [7, 8]. Homes’ law is an empirical relation between the superfluid
density at T = 0 (ρs(T = 0)), the phase transition temperature (Tc), and the electric DC
conductivity in the normal phase close to Tc (σDC(Tc)):

ρs(T = 0) = C σDC(Tc)Tc , (1.1)

where C is a material independent universal constant. For instance, C ∼ 4.4 for ab-plane
high Tc superconductors and clean BCS superconductors or C ∼ 8.1 for c-axis high Tc
superconductors and BCS superconductors in the dirty limit.

In order to study Homes’ law in holography, first one may need to construct the
holographic superconductor model. Using the complex scalar field, the holographic super-
conductor model was originally proposed by Hartnoll, Herzog, and Horowitz [9, 10] (the
HHH model). Thereafter, there has been extensive development and extension of the HHH
model in [5, 6, 11, 12]. For the recent development of holographic superconductors, see
also [13–18] and references therein.
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Since the HHH model is a translational invariant theory, σDC is infinite so C in (1.1)
is not well defined. Thus, in order to investigate Homes’ law, one may need to break the
translational invariance to render σDC finite. In holography, there are several methods to
incorporate momentum relaxation and yield a finite σDC. For instance, the bulk fields in
gravity with the inhomogeneous boundary conditions [19], massive gravity models [20], Q-
lattice models [21], the linear axion model [22], and the helical lattice model with a Bianchi
VII0 symmetry [23]. Using these models, holographic superconductors in the presence of
the momentum relaxation have been investigated in [24–35].

In the aforementioned holographic superconductor models with momentum relaxation,
Homes’ law has been studied only in several models [24, 32, 33].1 For those models,
there are parameters for the strength of momentum relaxation, which may specify material
properties. Thus, in the holographic setup, Homes’ law means that C in (1.1) is constant
independent of momentum relaxation parameters. In [24], using the helical lattice model,
Homes’ law was studied with the amplitude and the pitch of the helix as momentum
relaxation parameters. In [32], the linear axion model was studied for Homes’ law with the
proportionality constant to spatial coordinate, k in (2.7), for the strength of momentum
relaxation.2 In [33], the Q-lattice model was used to study Homes’ law with the lattice
amplitude/wavenumber for momentum relaxation parameter.

In all holographic studies so far, Homes’ law has not been well realized in that, in [24,
33], Homes’ law is satisfied only for some restricted parameter regime in which underlying
physics has not been clearly understood yet or Homes’ law is not simply satisfied in [32].
Therefore, the fundamental understanding and the physical mechanism of Homes’ law is
still lacking and it would be important to study Homes’ law with other holographic models.

In this paper, we study Homes’ law in the holographic superconductor model based on
the Gubser-Rocha model [42] with the axion field to have momentum relaxation [35, 43–
46].3 Our main motivation to choose this model is that it exhibits linear-T resistivity in
its normal phase [35, 43, 44]. In particular, in [35], it was shown that the linear-T resis-
tivity is robust above Tc in the strong momentum relaxation limit, which is similar to the
experimental result for normal phases (strange metal phases) of high Tc superconductors.
We will examine if Homes’ law can appear also in the strong momentum relaxation limit
and also study its relation with the linear-T resistivity.

The property of linear-T resistivity is important for two reasons. First, it is another
universal property in the normal phase of high Tc superconductors, so it is in fact a nec-
essary property even before discussing Homes’ law. Second, it has been proposed that the
Homes’ law can be explained by considering the Planckian dissipation [47], which is related
with the linear-T resistivity. Therefore, the linear-T resistivity can be a key to understand
the physics of Homes’ law. Because there has been no holographic model studying Homes’

1See [36] for an early attempt to study Homes’ law in holography without momentum relaxation. See
also [34] for a modified version of Homes’ law with Weyl corrections.

2With the linear axion model, the normal phase has been studied in [29, 37–39], the superconducting
phase in [28, 29], and the fermionic phase in [40]. See also [41] for the review/recent development of the
holographic axion model.

3When we remove a dilaton field in the Gubser-Rocha model, it becomes the linear axion model in [32].
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law together with linear-T resistivity4 our study is a necessary and important step to in-
vestigate Homes’ law. Moreover, the Gubser-Rocha model with the axion field allows an
analytic solution so that more tractable analysis is available for the normal phase. Note
that most holographic studies in [24, 32, 33] do not allow analytic solution for normal phase
so one needs to resort to numerical methods.

As one of the ingredient of our holographic superconductor model, inspired by [49, 50],
we introduce the non-trivial coupling, B(φ), between the dilaton field φ and the complex
scalar field Φ for condenstate, and study the role of the coupling in Homes’ law. In [49,
50], using the scaling property from B(φ), the superconducting instabilities have been
investigated in which the translational invariance was not broken. Thus, our work might
be considered as its generalization with momentum relaxation. Note that B(φ) was taken
to be a mass term of Φ, B(φ) = M2, in the previous literature for Homes’ law [24, 32, 33].
We find that Homes’ law may not be realized with this trivial mass term.

This paper is organized as follows. In section 2, we introduce the holographic supercon-
ductor models based on the Gubser-Rocha model with the axion fields. In normal phase,
we review how to obtain the linear-T resistivity analytically. For superconductor phase, we
introduce the coupling term B(φ) and review its properties. We also study superconduct-
ing instability with Tc. In section 3, we numerically compute the optical conductivity and
study the superfluid density. Using the linear-T resistivity in section 2 with the superfluid
density in section 3, we study Homes’ law. We also discuss the role of the coupling B(φ)
for Homes’ law. In section 4, we conclude.

2 Superconductor based on the Gubser-Rocha model

2.1 Model

We study a holographic superconductor model based on Einstein-Maxwell-Dilaton-Axion
theory:

S = S1 + S2 + S3 =
∫

d4x
√
−g (L1 + L2 + L3) ,

L1 = R − 1
2(∂φ)2 − 1

4e
φ√
3 F 2 + 6 cosh

(
φ√
3

)
,

L2 = −1
2

2∑
I=1

(∂ψI)2 , L3 = −|DΦ|2 −B(φ)|Φ|2 ,

(2.1)

where we set units such that the AdS radius L = 1, and the gravitational constant 16πG =
1. The action (2.1) consists of three actions. The first action S1 is the Einstein-Maxwell-
Dilaton theory, which is called ‘Gubser-Rocha model’ [42] composed of three fields: metric
gµν , a U(1) gauge field Aµ with the field strength F = dA, and the scalar field φ so called
‘dilaton’. The metric and gauge field are for a quantum field theory at finite temperature
and density, while the dilaton field was originally introduced to make the vanishing entropy
density (s) at zero temperature (T ) as s ∼ T [42, 43]. The second action S2 is added for the

4Note that other holographic studies for Homes’ law [24, 32, 33] did not show the linear-T resistivitiy.
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momentum relaxation: the ‘axion’ field ψ breaks the translational invariance so that the
resistivity becomes finite [22, 35, 43–45].5 The third action S3 is for the superconducting
phase [9], which is composed of a complex scalar field Φ, the coupling B(φ), and the
covariant derivative defined by Dµ := ∇µ − iqAµ.

The action (2.1) yields the equations of motion of matter fields

∇µ(e
φ√
3Fµν)− iqΦ∗(∂ν − iqAν)Φ + iqΦ(∂ν + iqAν)Φ∗ = 0 , (2.2)

∇2φ− 1
4
√

3
e
φ√
3 F 2 + 2

√
3 sinh

(
φ√
3

)
−B′(φ)|Φ|2 = 0 , (2.3)

∇2ψI = 0 , (2.4)

D2Φ−B(φ)Φ = 0 , (2.5)

and the Einstein’s equation

Rµν −
1
2gµν

[
R− 1

4e
φ√
3F 2 − 1

2(∂φ)2 + 6 cosh
(
φ√
3

)
− 1

2

2∑
I=1

(∂ψI)2 − |DΦ|2 −B(φ)|Φ|2
]

= 1
2e

φ√
3FµδFν

δ + 1
2∂µφ∂νφ+ 1

2

2∑
I=1

(∂µψI∂νψI) + 1
2
(
DµΦD∗νΦ∗ +DνΦD∗µΦ∗

)
.

(2.6)

2.2 Linear-T resistivity in strange metal phase: a quick review

Let us first review the normal phase (Φ = 0), S = S1 + S2, i.e., the Gubser-Rocha model
with momentum relaxation. The purpose of this review is not only to organize this paper
in a self-contained manner, but also collect useful results, linear-T resistivity, to study our
main objective, Homes’ law, in section 3. We refer to [35] for more detailed explanation of
the normal phase.

In normal phase (Φ = 0), the analytic solution is available [35, 44, 45, 50]:

ds2 = −f(r)dt2 + 1
f(r)dr2 + h(r)(dx2 + dy2),

f = r1/2(r +Q)3/2
(

1− k2

2(r +Q)2 −
(rh +Q)3

(r +Q)3

(
1− k2

2(rh +Q)2

))
,

h = r1/2(r +Q)3/2,

At =
√

3Q(rh +Q)
(

1− k2

2(rh +Q)2

)(
1− rh +Q

r +Q

)
, φ =

√
3

2 ln(1 +Q/r) ,

ψ1 = k x , ψ2 = k y ,

(2.7)

where rh denotes the horizon radius, k controls a strength of the momentum relaxation,
and Q is a parameter which can be expressed with physical parameters: temperature

5The axion-type model is related to the Stückelburg formulation of a massive gravity theory [20, 51–53].
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(T ), chemical potential (µ) or momentum relaxation parameter (k). The temperature and
chemical potential reads

T = f ′(r)
4π

∣∣∣
rh

= rh
6(1 + Q̃)2 − k̃2

8π(1 + Q̃)3/2 = rhT̃ , (2.8)

µ = At(∞) = rh

√√√√3Q̃(1 + Q̃)
(

1− k̃
2

2(1 + Q̃)2

)
= rhµ̃ , (2.9)

where
Q̃ := Q

rh
, k̃ := k

rh
, T̃ := T

rh
, µ̃ := µ

rh
. (2.10)

Now one can obtain the dimensionless physical quantities at finite density, T/µ and k/µ, as

T̄ := T

µ
= T̃

µ̃
= 6(1 + Q̃)2 − k̃2

4
√

6π
√
Q̃(1 + Q̃)2(2(1 + Q̃)2 − k̃2)

, (2.11)

k̄ := k

µ
= k̃

µ̃
=

√√√√ 2(1 + Q̃)k̃2

3Q̃(2(1 + Q̃)2 − k̃2)
, (2.12)

where we used (2.8)–(2.10).

The linear-T resistivity: the electric DC conductivity at Φ = 0 can be obtained [38,
39, 52, 54] as

σDC := e
φ√
3 + A′2t h(r) e

2φ√
3

k2

∣∣∣
r→rh

=
√

1 + Q̃+

√
1 + Q̃

k̄
2 . (2.13)

Using (2.11)–(2.12), one can express Q̃ as a function of T̄ and k̄ analytically, i.e. Q̃(T̄ , k̄),
this implies that the electric DC conductivity (2.13) can also be expressed in terms of T̄
and k̄ as σDC(T̄ , k̄).

With the analytic expression of Q̃(T̄ , k̄), one can find that the Gubser-Rocha model
can exhibit linear-T resistivity, the resistivity (ρ = 1/σDC) is linear in temperature, for two
cases6

σDC ∼

√
3
(
1 + k̄

2)2

2πk̄2
√

4 + 6k̄2

1
T̄
, (T̄ � 1 for given k̄) , (2.14)

σDC ∼
k̄

2
√

2π T̄
, (k̄ � 1 for given T̄ ) , (2.15)

where Q̃(T̄ , k̄) has the asymptotic form as

Q̃ ∼ 3(1 + k̄
2)2

8π2(2 + 3k̄2)T̄ 2 , (T̄ � 1 for given k̄) , (2.16)

Q̃ ∼ k̄
2

8π2T̄
2 , (k̄ � 1 for given T̄ ) . (2.17)

6For more details, see [35].
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The former case (T̄ � 1), (2.14), is related to the result in [43] and this linear-T
resistivity is due to the fact that the Gubser-Rocha model has the Conformal to AdS2×R2

IR geometry [55].7 The other case (k̄ � 1), (2.15), will be one of important ingredients of
our main results for Homes’ law in section 3.8

2.3 Superconducting phase and the coupling B(φ)

Let us study the superconducting phase based on the Gubser-Rocha model, S = S1 +S2 +
S3 (2.1), which will also be used for Homes’ law in section 3. Note that in order for the
description of holographic superconductors, first we need to specify the form of the coupling
B(φ). In this section 2.3, we first review how to introduce the coupling (2.25) chosen in
this paper and study the superconducting instability with the critical temperature Tc.

Although we will examine Homes’ law with the fully back-reacted background geometry
in section 3, it would be instructive to treat a complex scalar field Φ as a perturbation field
on top of the background geometry of Gubser-Rocha model (2.7).

There are three main reasons why we perform the perturbative (i.e., without back-
reaction) analysis here. First, we can investigate the properties of the coupling B(φ)
with the analytic IR scaling geometry. Moreover, one may also try to obtain the analytic
instability condition. Second, we may use the perturbative analysis as a guide for the
study of Homes’ law in next section, i.e., we will study Tc, one of the main ingredients
for Homes’ law, in the simple (i.e., no back-reaction) setup and show that Tc from the
perturbative analysis is consistent with Tc in the presence of the back-reaction. Third,
our perturbative analysis for Tc will be an extension to the previous work [50] where the
translational symmetry was not broken (k/µ = 0).

Note that the analysis for Tc would be important not only for Homes’ law, but also to
find the condition for high Tc superconductors having linear-T resistivity. As we will show,
the trivial coupling, B(φ) = M2, would not be enough to have the superconducting phases
at strong momentum relaxation limit, which is connected to the normal phase showing
linear-T resistivity (2.15).

2.3.1 UV completion of B(φ)

Using the scaling properties in the IR region, one minimal way to choose the coupling B(φ)
was introduced in [50]. Here we not only review the method in [50], but also extend the
analysis in [50] to the case at finite k/µ.

The extremal IR geometry: in order to investigate the IR scaling properties, we first
need to have the extremal IR geometry which can be obtained from (2.7) in T → 0 limit.
From (2.11), one can find the condition for T = 0 as rh/Q → 0 (or Q̃ → ∞). Note that

7In the semi-locally critical limit where the dynamical exponent z → ∞ and a hyperscaling violating
exponent θ → −∞ with the fixed θ/z = −η, the Einstein-Maxwell-Dilaton-Axion theory has the Conformal
to AdS2 × R2 IR geometry with the parameter η and the resistivity behaves as ρ ∼ T η. The linear-T
resistivity appears in Gubser-Rocha model because η = 1 for Gubser-Rocha model.

8Note that, as pointed it out in [35, 56], (2.14) may not guarantee that the linear-T resistivity is robust
up to high temperature. Thus, phenomenologically (2.15) would be a more relevant condition to show the
linear-T resistivity above Tc, which is similar to experiments and checked in holography [35].

– 6 –



J
H
E
P
0
3
(
2
0
2
2
)
0
6
0

there is another mathematical possibility to obtain T = 0 from the relation between Q̃

and k̃ such that 6(1 + Q̃)2 − k̃2 = 0. However, this another condition can be ruled out
for the physical reason: it gives the imaginary chemical potential (2.9) and momentum
relaxation (2.12).9

Then, using the condition rh/Q → 0 with the following coordinate transformation10

in (2.7)

ρ =

√
Q

3r , t′ =
√

1− k2

6Q2 t ,
(2.18)

one can express the extremal IR geometry as

ds2 = Q2
√

3
1
ρ

[
−dt′2

ρ2 + 8
6Q2 − k2

dρ2

ρ2 + dx2 + dy2
]
,

At′ =
√

2Q2 − k2

6Q2 − k2
Q

ρ2 , φ =
√

3 ln(
√

3ρ) ,
(2.19)

where the IR is located at ρ→∞. Note that (2.19) corresponds to Conformal to AdS2×R2

geometry and it is consistent with the one in [50] at k = 0.

The coupling B(φ) in IR: the complex scalar field Lagrangian in (2.1), L3, can be
written as follows.

−L3 = (∂Φ)2 +
[
q2A2 +B(φ)

]
Φ2 , (2.20)

where Φ can be taken to be real, since the radial component of the Maxwell equations
implies the phase of Φ is constant. Note that the last two terms in (2.20) correspond to
the effective mass term of Φ with the effective mass m2

eff := q2A2 +B(φ).
Plugging the following scaling ansatz (2.21) into (2.20), we can study the scaling prop-

erty of Φ with the IR geometry (2.19)

Φ = Φ0 ρ
∆Φ , B(φ) := BIR(φ) = B0 ρ

∆B , (2.21)

and one can find that the kinetic term and the effective mass term behave as follows

(∂Φ)2 ∼ ρ2∆Φ+1 , q2A2 Φ2 ∼ ρ2∆Φ−1 , BIR(φ) Φ2 ∼ ρ2∆Φ+∆B . (2.22)

In general, one can notice that the gauge field contribution to the effective mass,
q2A2Φ2 term, scales differently with the kinetic term, (∂Φ)2. However, the contribution
from the coupling B(φ), BIR(φ) Φ2, can scale in the same way as the kinetic term if

Scaling case : ∆B = 1 ⇔ BIR(φ) = B0 ρ ∼ e
φ√
3 , (2.23)

9Note also that Q̃ should be positive to be thermodynamically stable [45].
10There would be other coordinate transformation to express Conformal to AdS2×R2 geometry. For the

comparison with the previous literature [50], we have used (2.18).
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where a dilaton solution in (2.19) is used in the proportionality. This (2.23) is called “the
scaling case” [50].

One can generalize (2.23) for the generic scaling IR behavior of B(φ) with the one
parameter τ as

BIR(φ) = B0 e
τφ , (2.24)

where τ = 1/
√

3 corresponds to (2.23).

The UV-completed coupling B(φ): in principle, there would be many possibilities
to choose the UV-completed coupling, B(φ), satisfying (2.24) in IR. In this paper, for
concreteness in our discussion and numerics, we choose one minimal way studied in [50]:

B(φ) = M2 cosh (τφ) , (2.25)

where it has two parameters (M, τ). Note that the coupling (2.25) is the same form of
the dilaton potential in (2.1): cosh(φ/

√
3). In UV region (r → ∞) (or φ → 0), the

coupling (2.25) is expanded as

BUV(φ) ∼ M2
(

1 + τ2

2 φ
2 + · · ·

)
, (2.26)

and in IR region (r → 0) (or φ→∞) we have

BIR(φ) ∼ M2

2 eτφ , (2.27)

where B0 in (2.24) is M2/2. For concreteness in our numerics, we fix M2 = −2 and q = 6
in this paper. We also make some further comments on M2 at the end of this section. Note
that we choose the same value for the charge of Φ, q, which was used in previous studies
of Homes’ law [24, 32, 33] for an easy comparison.

2.3.2 Superconducting instability with Tc
Now we investigate the critical temperature Tc with (2.25), which might be important not
only for Homes’ law, but also for the study of high Tc superconductors. We will determine
Tc by solving the complex scalar field equation of motion (2.5):

Φ′′(r) +
(
f ′

f
+ h′

h

)
Φ′(r)− 1

f

(
B(φ)− q2A2

t

f

)
Φ(r) = 0 , (2.28)

where we can use f(r), h(r), and At(r) from (2.7) in the absence of the back-reaction.
In order to solve the equation of motion (2.28), we impose two boundary conditions.

The first condition is from the horizon, rh, with the regularity condition in which Φ′(rh) will
be determined by Φ(rh). The second boundary condition comes from the AdS boundary,
r →∞. Φ behaves near the AdS boundary as

Φ(r) = Φ(−)

r∆− + Φ(+)

r∆+
+ · · · , ∆± = 3±

√
4M2 + 9
2 . (2.29)
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k / μ

Tc
μ

Figure 1. Tc vs k/µ with τ ∈ [0, 1√
3

12
10 ] (red-purple).

By the holographic dictionary, the fast falloff of the field Φ(−) is interpreted as the source
and the slow falloff Φ(+) corresponds to the condensate. As a boundary condition for super-
conductors, we set the source term, Φ(−), to be zero to describe a spontaneous symmetry
breaking. Thus, when Φ(+) is finite the state will be a superconducting phase, while if
Φ(+) = 0 (or Φ = 0) the state corresponds to a normal phase.

The critical temperature Tc vs k/µ: solving equation of motion (2.28) with the
boundary conditions above, one can find Tc at which the condensate Φ(+) starts to be finite.

In figure 1, we display the plot for Tc in terms of k/µ with various τ . In k/µ � 1
region, one cannot find the τ effect on Tc, i.e., Tc is independent on τ in the coherent regime
(k/µ→ 0). This would be consistent with the result at k/µ = 0 in [50].11

However, as k/µ is increased, we find two main features related to τ . First, there
would be a critical τ , τc, to study superconducting phases at k/µ� 1 limit. For instance,
if τ = 1√

3
8
10 (orange) in figure 1, superconducting phases cannot be obtained in k/µ > 6

regime. Therfore, in order to study superconductors in the strong momentum relaxation
limit (k/µ → ∞), we need to consider τ > τc. In this paper, we take τc = 1√

3
8
10 for

simplicity: in figure 1, one may try to find a more exact value for τc between the orange
one (τc = 1√

3
8
10) and the green one (τc = 1√

3
9
10).

Second, at given k/µ, τ enhances Tc (e.g., from green to purple). This indicates that
the superconducting instability can be triggered more easily at higher coupling τ . Thus, a
larger τ might be useful to investigate the superconducting phase at higher temperature,
i.e., high Tc superconductors.

High Tc superconductor and linear-T resistivity: in summary, we find that the
coupling τ , τ > τc, would be important not only for superconducting phases at strong
momentum relaxation region, but also for high Tc superconductors.

Based on this result, we may argue that, in order to describe high Tc superconductors
having linear-T resistivity (2.15) near Tc (i.e., the region where the normal phase still can

11Depending on the parameter regime in (q, M2), there would be a minimal charge q below which the
superconducting instability with Tc does not exist [50]. Similar parameter regime may also appear in the
presence of momentum relaxation, we leave it as future work.
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be useful), we may need the following conditions:

i) τ > τc; ii) k/µ� 1 . (2.30)

This would imply that the trivial coupling term B(φ) = M2 (τ = 0 case) used in most of
the previous literature may not capture a complete feature of the superconducting phases
at strong momentum relaxation limit. In the following section 3, we will study if the
condition (2.30) can also be related to Homes’ law.

Instability condition for M2: we finish this section with the instability condition for
M2 with the complex scalar field equation of motion. Here we consider the scaling case
(τ = 1√

3) because one can obtain a simple analytic instability condition with it.12

At τ = 1√
3 , the complex scalar field equation of motion in the IR geometry (2.19) can

be expressed as

Φ′′(ρ)− 1
ρ

Φ′(ρ) + 4Q2 (M2(k2 − 6Q2)ρ2 − 2q2(k2 − 2Q2)
)

(k2 − 6Q2)2ρ4 Φ(ρ) = 0 , (2.31)

and this equation can be solved analytically by the combination of Bessel functions Jν :

Φ(ρ) = c1 ρΓ(1− ν)J−ν

(√
8q2Q2(k2 − 2Q2)

(k2 − 6Q2)2
1
ρ

)

+ c2 ρΓ(1 + ν)Jν

(√
8q2Q2(k2 − 2Q2)

(k2 − 6Q2)2
1
ρ

)
, (2.32)

where the index ν is

ν =
√
k2 − (6 + 4M2)Q2

k2 − 6Q2 . (2.33)

Then, the instability appears when the index ν of Bessel function becomes imaginary. Note
that, unlike the case of k = 0 in [50], there are two ways to make the imaginary ν depending
on the sign of the numerator (or denominator) in ν: i) the positive numerator with the
negative denominator; ii) the negative numerator with the positive denominator. Each
case produces the following instability condition for M2

M2 <
k2 − 6Q2

4Q2 < 0 or M2 >
k2 − 6Q2

4Q2 > 0 . (2.34)

Note that only the first condition in (2.34) is consistent at k = 0. Thus, from the perspective
of continuity encompassing the k = 0 case, the first condition in (2.34) might be the proper
instability condition.

3 Homes’ law

In this section, considering the coupling (2.25), we study Homes’ law with the fully back-
reacted geometry.

12The same thing happens even at k/µ = 0 in [50]. We cannot find the analog of the generalized BF
bound unless τ = 1√

3 . So, identifying the analytic expression for the onset of the phase transition for
non-scaling case is still challenging.
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3.1 Setup for numerics

We consider the following ansatz to obtain the fully back-reacted background solutions

ds2 = 1
z̃2

[
−(1− z̃)U(z̃)dt̃2 + dz̃2

(1− z̃)U(z̃) + V (z̃)dx̃2 + V (z̃)dỹ2
]
,

A = (1− z̃)a(z̃)dt̃ , φ =
√

3
2 log[1 + ϕ(z̃)] , Φ = z̃∆− η(z̃),

ψ1 = k̃ x̃ , ψ2 = k̃ ỹ ,

(3.1)

where
z̃ := z

zh
, t̃ := t

zh
, x̃ := x

zh
, ỹ := y

zh
, k̃ := k zh . (3.2)

Here U, V, a, ϕ and η are functions of the holographic direction z̃. In this coordinate, the
AdS boundary is located at z̃ = 0 and the horizon is at z̃ = 1. Note that the coordinate (3.1)
is related to (2.7) with z = 1/r and the form of ansatz (3.1) is chosen for the convenience
of numerical analysis for superconducting phase.

With the ansatz (3.1), one can identify the Hawking temperature T and the chemical
potential µ as

T = g′tt(z̃)
4π√gttgz̃z̃

∣∣∣
z̃=1

= U(1)
4π , µ = At(0) = a(0) , (3.3)

and the condensate Φ(+) in (2.29) can be read off from η in (3.1) near the AdS boundary as

Φ = Φ(−) z̃∆− + Φ(+) z̃∆+ + . . . ⇔ η = Φ(−) + Φ(+) z̃∆+−∆− + . . . , (3.4)

where ∆± is defined in (2.29).13

In order for the superconducting phases, we set the source Φ(−) = 0, i.e., η(0) = 0
and need to find the state with the finite condensate Φ(+) 6= 0. One can find such a
state by solving the equations (2.2)–(2.6) numerically with the ansatz (3.1). The typical
condensate is plotted in figure 2: the condensate tends to be enhanced with increasing k/µ
and this seems to be a generic feature of holographic superconductors in the presence of
the momentum relaxation.

In what follows, in section 3.2, we focus on the scaling case τ = 1/
√

3 > τc and study
the electric optical conductivity σ(ω) and the superfluid density ρs. Then, using the results
in section 3.2, we investigate Homes’ law in section 3.3. In section 3.4, we discuss the τ
effect on Homes’ law.

3.2 Electric conductivity and superfluid density

Let us study the electric optical conductivity of the holographic model (2.1). From here
on, we use the scaled variables (3.2) without tilde for simplicity.

13For M2 = −2, (∆−,∆+) = (1, 2).
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Figure 2. Condensation vs temperature at τ = 1/
√

3 where Tc is the critical temperature.

Holographic electric optical conductivity: in order to compute the electric optical
conductivity, we need to consider the following fluctuations:

δgtx = htx(z) e−iωt , δAx = ax(z) e−iωt , δψx = ξx(z) e−iωt , (3.5)

where the fluctuations behave near the AdS boundary as

htx(z) = h
(S)
tx

z2 + h
(R)
tx + . . . ,

ax(z) = a(S)
x + a(R)

x z + . . . ,

ξx(z) = ξ(S)
x + ξ(R)

x z + . . . ,

(3.6)

here the leading coefficients (h(S)
tx , a

(S)
x , ξ

(S)
x ) correspond to the sources, and the subleading

terms (h(R)
tx , a

(R)
x , ξ

(R)
x ) would be interpreted as the response by the holographic dictionary.

The electric optical conductivity can be obtained by the Kubo formula in terms of the
boundary coefficients in (3.6):

σ(ω) = 1
iω
GRjxjx(ω) = a

(R)
x

iω a
(S)
x

, (3.7)

where GRjxjx is the current-current retarded Green’s function. The second equality in (3.7)
holds when a(S)

x is the only non-zero source.
In order to make the source-vanishing boundary condition except a(S)

x , one may use
the diffeomorphisms and gauge-transformations [21, 38]. With a constant residual gauge
parameter ζ fixing δgrx = 0 [38], it can be shown that the fluctuations in (3.5) except δAx
can be expanded near the AdS boundary as14

z2 δgtx ∼ (h(S)
tx − iωζ)e−iωt = 0 , δψx ∼ (ξ(S)

x + kζ)e−iωt = 0 , (3.8)

14For more detailed analysis and discussion about the diffeomorphism and gauge-transformations, see [21,
32, 38].
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(a) k/µ = 0.1, T/Tc =
1.5, 1, 0.93, 0.75, 0.21 (dashed,
red, orange, green, blue)
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Figure 3. Electric conductivity with various k/µ = 0.1, 1 and 10. The first row displays Re[σ(ω)],
while Im[σ(ω)] is plotted in the second row (τ = 1/

√
3).

where the equalities correspond to the source-vanishing boundary condition except a(S)
x .

Plugging one of the equations in (3.8) into the other, (3.8) produces a single condition

ξ(S)
x − ik

ω
h

(S)
tx = 0 . (3.9)

Therefore, one can use (3.7) to study the electric optical conductivity by solving the equa-
tion of motion of the fluctuations with the boundary condition (3.9).

Electric optical conductivity in strange metal/superconductor transition: using
the method above, we make the plot of the optical conductivity in figure 3.15 The color of
curves denotes a temperature ratio T/Tc: the dashed black is for the normal metal phase
(T > Tc), the red line is for the critical temperature (T = Tc), and other colors (from
orange to blue) correspond to the superconducting phase (T < Tc).

For T ≥ Tc, one can see that the DC conductivity, σ(ω = 0), is finite due to the
momentum relaxation,16 while the superconducting phase (T < Tc) produces 1/ω pole
in Im[σ] giving the infinite DC conductivity. By the Kramers-Kronig relation, 1/ω pole
in Im[σ] implies that Re[σ] has a delta function at ω = 0: this is one of hallmarks of
holographic superconductor.

Let us make some further comments on the electric conductivity of our model (2.1).
In holography, there are two simple gravity models to study the electric conductivity of the
normal phase in the presence of the momentum relaxation: i) the linear axion model [22];17

ii) the Gubser-Rocha model with the axion field (2.1).
15We also checked that our numerical code produces the consistent result in [57]: the optical conductivity

of the Gubser-Rocha model at k/µ = 0.
16We checked that σ(ω = 0) is consistent with the analytic result in (2.13). For instance, see figure 4(b).
17Recall that the linear axion model is (2.1) without a dilaton field φ.
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Figure 4. The electic conductivity at µ/k = 0. Left: σ(ω) of the Gubser-Rocha model at T/Tc =
1.5, 1, 0.93, 0.75, 0.41 (dashed, red, orange, green, blue). Right: the DC resistivity ρ (1/σ(ω = 0))
of two holographic models: the Gubser Rocha model (solid gray) (3.10), the linear axion model
(dotted blue) (3.11). The black (red) dot corresponds to the DC limit of the black (red) line in
figure 4(a): it shows that the numerical result of σ(ω = 0) is consistent with the analytic DC result.

In [29], using the linear axion model, the authors studied the optical conductivity with
the phase transition between the normal phase and the superconducting phase.18 Thus,
it would be instructive to compare the features in figure 3 and the result in [29]. To our
knowledge, our work is the first holographic study considering the optical conductivity
of (2.1) for the normal phase (Φ = 0), i.e., the Gubser-Rocha model with the axion field.

We found one distinct feature between two holographic models at strong momentum
relaxation region: unlike the linear axion model [29], at large k/µ, the Drude like peak
in the normal phase does not disappear for the Gubser Rocha model (e.g., see dashed
black (and red) line in figure 3(c)). In order to show this feature more clearly at strong
momentum relaxation limit (k/µ→∞), we take µ/k = 0 and make the plot of the optical
conductivity in figure 4(a).19

The non-vanishing Drude like peak in the strong momentum relaxation limit might
be related to the fact that the Gubser-Rocha model produces linear-T resistivity unlike
the linear axion model. For instance, at µ/k = 0, both holographic models show the DC
conductivity as

σDC =
√

1 + Q̃

(
1 + µ2

k2

)
∼
√

1 + Q̃ ∼ k

2
√

2πT
, (Gubser-Rocha model) (3.10)

σDC = 1 + µ2

k2 ∼ 1 , (Linear axion model) (3.11)

where Q̃ from the dilaton field plays an important role for the linear-T resistivity.20

In figure 4(b), we display the DC conductivity of two holographic models: the Gubser
Rocha model (solid gray) (3.10), the linear axion model (dotted blue) (3.11). The black

18Although the linear axion model cannot exhibit the linear-T resistivity, it has been used to describe
the metal/superconductor transition.

19One may directly compare figure 4(a) with figure 4(c) in [29].
20(2.17) is used in (3.10) which corresponds to (2.15).
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(red) dot in figure 4(b) corresponds to the DC limit of the black (red) line in figure 4(a): it
shows that the numerically computed σ(ω = 0) is consistent with the analytic DC result.21

Note that, at ω/k → ∞, σ(ω) = 1 in both models. However, in the opposite limit,
ω/k → 0, the linear axion model gives the constant value, i.e., σ(ω) = 1 (3.11) unlike the
Gubser-Rocha model (3.10). Thus, for the linear axion model, the optical conductivity
of the normal phase would be a constant, σ(ω) = 1, in all ω regime without producing a
Drude like peak.

Two-fluid model and superfluid density: for superconducting phase (roughly 0.5 <
T/Tc < 1) in figure 3, Re[σ] also has a remaining finite value at ω = 0 in addition to
the delta function by the Kramers-Kronig relation. This residual Drude-like peak may be
interpreted by the two-fluid model [25] as a contribution from the normal component in the
superconducting phase, which has also been observed in other holographic superconductor
models such as linear-axion model [29], Q-lattice model [27], and Helical lattice model [24].

The two-fluid model demonstrates that the low frequency behavior of the optical con-
ductivity can be fitted with the following formula:

σ(ω) = i
ρs
ω

+ ρn τr
1− i ω τr

+ ρ0 , (3.12)

where ρs and ρn are defined as the superfluid density and the normal fluid density.22 τr
is the relaxation time. ρ0 may be related to the pair creation and can be used to fit the
numerical data in the presence of the momentum relaxation [29].

The superfluid density ρs is our main interest to study Homes’ law, which can be read
off from the fitting curve (3.12). One interesting feature of ρs in holographic superconduc-
tors [24, 32, 33, 36] is that there is a finite gap at T = 0 between ρs and the charge density
n in the presence of the momentum relaxation.23 This also happens in our superconductor
model. See figure 5. Thus, this non-vanishing gap at finite k/µ seems to be a generic
feature of holographic superconductors.

We also find that, as T is lowered, ρ0 and ρn are reduced while ρs is enhanced.24 For
the relaxation time τr, we find it is decreasing as T is lowered. The behavior of τr, at low
T depends on holographic models: it is increasing in [25], it is decreasing first and then
increasing in [27]. So, apparently, the more detailed analysis and the unified description for
the relaxation time for holographic superconductor is still needed. We leave this subject
as future work.

3.3 Homes’ law at strong momentum relaxation

Now let us discuss Homes’ law (1.1). Computing three quantities (ρs(T = 0), Tc, σDC(Tc))
as a function of k/µ, we may check Homes’ law at given τ .25

21Moreover, also note that the linear-T resistivity is robust above Tc (red dot) in figure 4(b), which is
similar to experiments.

22ρs and ρn are supposed to be proportional to the superfluid density and the normal fluid density from
the viewpoint of experiments or there could be prefactor π/2 in each terms. However, for the theoretical
study of conductivity, we define the superfluid density and normal fluid density including all the factors.

23The charge density n is defined by a subleading coefficient of At: At = µ − n z + . . . near AdS
boundary. The normal fluid density would be given by the difference between n and ρs.

24At small T , ρ0 would be vanishing, however ρn could be finite even at T = 0 [25–27].
25Recall that we have two parameters (τ , k/µ) in our setup.
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Figure 5. The charge density n, superfluid density ρs vs T/Tc. The gap between n and ρs at
T = 0 opens at finite k/µ (τ = 1/

√
3).
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Figure 6. ρs, Tc, and σDC(Tc) for τ = 1/
√

3. T̄c is the shorthand notation for Tc/µ. The blue solid
line corresponds to the one in figure 1.

Note that ρs(T = 0) can be read off from (3.12) in principle. However, as one can see
from figure 5, ρs(T ) does not reach to T = 0 due to the instability in our numerics. Thus,
we extrapolate ρs(T ) up to zero temperature in order to obtain ρs(T = 0). Other quantity
for Homes’ law, σDC(Tc), is determined by (2.13) with a numerically computed Tc.

We first study Homes’ law for the scaling case (τ = 1/
√

3). In figure 6, we display
(ρs(T = 0), Tc, σDC(Tc)). As we increase k/µ, in the strong momentum relaxation regime,
one can see that ρs and Tc are increasing linearly while σDC saturates to some constant.26

Unlike the behavior of ρs and σDC, the increasing behavior of Tc is the distinct property
not observed in other holographic studies, for instance, Tc tends to decrease or saturates
to some value in [24, 32, 33].27 Moreover, this increasing feature from Tc seems to play an
important role for Homes’ law as we show in shortly.

Homes’ law with linear-T resistivity: using the data in figure 6, we make a plot of
the ratio ρs/(σDCTc) (=: C) as a function of k/µ in figure 7(b), and observe that the ratio
C becomes a constant, C ∼ 4.7, at k/µ � 1 limit, i.e., Homes’ law (1.1) appears to hold
in the strong momentum relaxation limit. One may wonder if C remains a constant at

26σDC tends to diverge in small k/µ region. This implies the infinite DC conductivity for the weak
momentum relaxation.

27In figure 6(b), the blue line corresponds to the one in figure 1. This implies that Tc obtained in the
fully back-reacted background geometry is consistent with the one without the back-reaction.
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Figure 7. Left: σDCTc vs k. T̄c is the shorthand notation for Tc/µ. The black solid line is (3.13).
Right: checking Homes’ law: Homes’ law appears to hold in the strong momentum relaxation limit.

k/µ > 25 in figure 7(b). Evaluating C at µ/k = 0, we confirmed that C is a constant
around 4.7 in k/µ� 1 limit.

Homes’ law at strong momentum relaxation limit, the constant C, can be viewed as
the cancelation of the two linearities in k/µ: one from ρs in figure 6(a) and the other from
σDCTc in figure 7(a). The linearity in figure 7(a), the black solid line, can be understood by

σDC
T

µ
= 1

2
√

2π
k

µ
, (3.13)

where the DC conductivity formula (2.15) is used. Note that linear-T resistivity in (2.15)
plays a crucial role because (3.13) becomes T -independent so valid at T & Tc. Alternatively,
the linearity in figure 7(a) (or (3.13)) may be understood from the fact that Tc is linear in
k (figure 6(b)) and σDC is constant (figure 6(c)).

3.4 The coupling τ dependence

Next, let us discuss the τ dependence in Homes’ law.28 We display the plots for (ρs(T = 0),
Tc, σDC(Tc)) with various τ in figure 8: blue dots in figure 8 correspond to figure 6 (i.e.,
the scaling case τ = 1/

√
3).

ρs and Tc with τ : ρs(T = 0) in figure 8(a) shows the qualitatively similar behavior with
Tc in figure 8(b): as we increase k/µ, at τ < τc (red, orange), it is reduced while, at τ > τc
(green, blue, purple), it is linearly increasing.29 One may understand the resemblance
between ρs(T = 0) and Tc as follows. As can be seen in figure 5, ρs(T ) is zero at T = Tc
and monotonically increasing at T < Tc. Thus, in order to have a large (small) ρs at T = 0,
Tc may need to be large (small) as well, i.e., ρs(T = 0) ∼ Tc.

Note that the solid lines in figure 8(b) are figure 1, i.e., Tc from the fully back-reacted
geometry is consistent with the one without back-reaction. This may imply that ρs might

28In this paper, we perform the computation up to τ = 1√
3

12
10 because of the stability in our numerics,

which might be enough to discuss Homes’ law.
29This would be another universal relation similar to Homes’ law, called Uemura’s law which holds only

for underdoped cuprates [7, 8]: ρs(T = 0) = C̃ Tc with a universal constant C̃.
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also be understood in the probe limit. If one can develop the methodology to compute σ(ω)
only with the IR geometry (the T = 0 analysis), we suspect that the numerical result in
figure 8(a) might also be confirmed in a simple probe limit with the scaling property (2.21).

σDC(Tc) with τ : in figure 8(c), unlike ρs, there is no resemblance between σDC(Tc) and
Tc. At small k/µ, σDC is diverging independent of τ , which reflects the fact the conductivity
is infinite at zero momentum relaxation.

On the other hand, at larger k/µ, one can see the τ dependence on σDC(Tc). At τ < τc
(red, orange), it is increasing while, at τ > τc (green, blue, purple), it saturates to some
constant. Note that the behavior of σDC(Tc) at large k/µ depends on the holographic
models: for instance, it is increasing in the Q-lattice model [33] or saturated in the linear
axion model [32].

Homes’ law at τ > τc: with the data in figure 8, we find Homes’ law (1.1) at the strong
momentum relaxation limit for τ > τc (green, blue, purple): i.e., C become a constant at
k/µ� 1. See figure 9(b). As did in the scaling case (τ = 1/

√
3) in figure 7(a), Homes’ law

at τ > τc can be understood from the cancelation of the two linearities in k/µ: one from
ρs (figure 8(a)) and the other from the linear-T resistivity (figure 9(a)).
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We also find that the saturating value of C depends on the value of τ . Thus, τ might
be used to match the experiment data: C = 4.4 for ab-plane high Tc superconductors as
well as clean BCS superconductors and C = 8.1 for c-axis high Tc superconductor and BCS
superconductors in the dirty limit.

4 Conclusions

We have investigated Homes’ law (1.1) by computing the critical temperature Tc, the
superfluid density ρs at zero temperature, and the DC conductivity σDC at Tc in a holo-
graphic superconductor based on the Gubser-Rocha model (2.1) with the minimally chosen
coupling term B(φ):

B(φ) = M2 cosh (τφ) , (4.1)

where it corresponds to the mass term of the complex scalar field, M2, at τ = 0. The
action (2.1) also contains the axion field to study the momentum relaxation where its
strength is denoted as k/µ. In this setup, Homes’ law means that C := ρs/(σDCTc) is
independent of the momentum relaxation.

The Gubser-Rocha model, a normal phase, is appealing in that the linear-T resistivity
can be obtained at strong momentum relaxation limit (k/µ � 1) above Tc. Considering
the complex scalar field with the Gubser-Rocha model, we find that, in order to study the
superconducting phase at k/µ� 1, τ in the coupling (4.1) is important. We show that the
conditions to study a holographic superconductor having the linear-T resistivity above Tc
would be:

i) τ > τc; ii) k/µ� 1 , (4.2)

where τc 6= 0 can be determined numerically from the instability analysis for Tc. The first
condition i) in (4.2) means that if τ is smaller than τc the superconducting phase does
not exist at large k/µ. In particular, the trivial coupling term B(φ) = M2 (τ = 0 case),
the mass term of the complex scalar field, used in previous literature can not capture a
complete feature of the superconducting phase at k/µ� 1.

With the condition (4.2), we find Homes’ law can hold in the strong momentum re-
laxation limit, i.e., C becomes a constant at k/µ � 1 limit. In [48], it is argued that if
the momentum is relaxed quickly(strongly), which is an extrinsic so non-universal effect,
transport can be governed by an intrinsic and universal effect such as diffusion of energy
and charge. Thus, the universality of linear-T resistivity may appear in the regime of
strong momentum relaxation (so called the incoherent regime). Consequently, Homes’ law
can appear also in the strong momentum relaxation limit.

Furthermore, we showed that Homes’ law at k/µ � 1 can be understood from the
cancelation of the two linearities in k/µ: one from ρs(T = 0) (numerical result) and the
other from the linear-T resistivity (analytic result) (3.13). It will be interesting to show the
linearity of ρs(T = 0) in k/µ also analytically. If one can develop the method to compute
the optical conductivity with the IR geometry (T = 0 analysis) in the superconducting
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phase,30 we suspect that the linearity of ρs(T = 0) in k/µ might be related with the IR
scaling property of the coupling B(φ) (2.21).

We find that the value of C at k/µ � 1 depends on the value of τ so τ can be used
to match the experiment data: C = 4.4 for ab-plane high Tc superconductors as well
as clean BCS superconductors and C = 8.1 for c-axis high Tc superconductor and BCS
superconductors in the dirty limit.

It may also be interesting to study Homes’ law with the holographic models having
other IR geometries [55, 56, 61] together with linear T resistivity. In [56], authors found that
when the IR geometry is governed by a finite dynamical exponent z and a hyperscaling
violating exponent θ unlike the Gubser-Rocha model (z → ∞, θ → −∞), the linear-T
resistivity can also exhibit at high temperature if the momentum relaxation is strong.
Therefore, one may investigate how much general our results in this paper are. One may
also check if τ > τc condition in (4.2) is necessary for Homes’ law in more generic setup.
We leave these subjects as future work and hope to address them in the near future.
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