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HIDTI: integration 
of heterogeneous information 
to predict drug‑target interactions
Jihee Soh, Sejin Park & Hyunju Lee*

Identification of drug‑target interactions (DTIs) plays a crucial role in drug development. Traditional 
laboratory‑based DTI discovery is generally costly and time‑consuming. Therefore, computational 
approaches have been developed to predict interactions between drug candidates and disease‑
causing proteins. We designed a novel method, termed heterogeneous information integration for 
DTI prediction (HIDTI), based on the concept of predicting vectors for all of unknown/unavailable 
heterogeneous drug‑ and protein‑related information. We applied a residual network in HIDTI to 
extract features of such heterogeneous information for predicting DTIs, and tested the model using 
drug‑based ten‑fold cross‑validation to examine the prediction performance for unseen drugs. As a 
result, HIDTI outperformed existing models using heterogeneous information, and was demonstrating 
that our method predicted heterogeneous information on unseen data better than other models. In 
conclusion, our study suggests that HIDTI has the potential to advance the field of drug development 
by accurately predicting the targets of new drugs.

Drug development is a costly, time-consuming, and risky process with no guarantee of  success1. Proteins are 
the main target class for drugs since drugs typically bind to target proteins to produce the desired therapeutic 
effect. As proteins linked to diseases are continuously being discovered, the identification of drugs targeting these 
disease-related proteins has become increasingly important. Thus, identifying drug-target interactions (DTIs; 
also known as compound-protein interactions) is now a critical step in the early stages of drug development and 
drug  repositioning2,3. Recently, computational methods for accurately identifying potential DTIs have received 
significant  attention4.

Existing methods for predicting DTIs include molecular docking- and machine learning-based models. 
Molecular docking-based methods have been used to predict DTIs by finding stable complexes with three-
dimensional (3D)  simulations5–8. Li et al.6 and Liu et al.7 provided comparative assessments of scoring functions 
for protein-ligand complexes to objectively evaluate the available scoring functions. Li et al.8 developed a web-
based tool called TarFisDock to predict the possible binding proteins for a given ligand using docking methods. 
Using a docking-based inverse screening approach, Kumar et al.9 proposed the compound prioritization method 
by integrating machine learning, quantitative-structure activity relationship, and classical molecular docking 
approaches to identify probable hits. Their approach was based on the concept that molecules with better bind-
ing affinities should have the expected biological activity. In addition, Kinnings et al.10 developed a new server, 
ReverseScreen3D, that applies a reverse virtual screening method to find potential targets for a compound of 
interest. Such methods can be effective because they consider 3D structures. However, if the 3D structure is 
unknown, molecular docking-based methods cannot be applied.

Machine learning-based methods incorporate features of both the drug and protein to predict DTIs and learn 
the binding patterns of known drug-target  pairs4,11–13. Yu et al.11 designed two powerful methods based on the 
random forest (RF) and support vector machine (SVM) algorithms using chemical, genomic, and pharmaco-
logical information from the DrugBank database. Faulon et al.12 proposed a model that predicts DTIs by using 
representations of proteins from their atomic structures.

Based on recent advances in deep learning, several DTI prediction methods have been developed using sim-
ple representations of drugs and  proteins14–16. Tsubaki et al.14 proposed an end-to-end representation learning 
approach to predict interactions between drugs and targets, where a graph neural network was used to present 
drug structures and a convolutional neural network was used to represent protein sequences. Öztürk et al.15 
reported a binding affinity prediction approach, called DeepDTA, based on convolutional neural networks using 
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simple inputs for drugs and proteins. Gao et al.16 also used low-level representations for drugs and proteins to 
directly predict DTIs and provided biological insights from their predictions.

Network-based methods have also been developed for predicting  DTIs2,17–20. These approaches incorporate 
complex relationships between heterogeneous drug and target information, such as drug-drug interactions 
(DDIs), protein-protein interactions (PPIs), drug or protein structure similarities, and relationships between 
drugs and side effects or diseases. Alaimo et al.17 used domain-dependent knowledge, including drug and target 
similarities, to predict DTIs. Kim et al.18 showed that DDIs and the side effects of drugs constitute useful infor-
mation for predicting DTIs. Wang et al.19 proposed a heterogeneous network model, which involves collecting 
omics information about diseases, drugs, and drug targets to obtain closeness scores between diseases and drugs. 
However, this model was susceptible to deviations caused by noise and the high dimensionality of the hetero-
geneous data. To overcome this issue, Luo et al.2 developed a method called DTINet, which not only integrates 
heterogeneous information but also compensates for the complexity of large-scale high-dimensional biological 
data by learning informative low-dimensional feature vectors of drugs and proteins. NeoDTI was developed by 
Wan et al.20 as a further improvement in DTI prediction accuracy by learning topology-preserving representa-
tions from neighbor information in heterogeneous networks.

Although drug- and protein-related data can help to accurately predict DTIs, the previous approaches sum-
marized above are only applicable to predictions for drugs with this information available. If there is insufficient 
information about a drug, as is often the case for newly developed drugs, these approaches are not helpful. To 
overcome this limitation, in this study, we aimed to develop an approach that can predict DTIs by learning feature 
vectors from heterogeneous information. Since additional information results in very large dimensions of feature 
vectors, it would not be suitable to use complex deep learning models, considering that the number of samples is 
insufficient. To solve these problems, we developed a new approach, termed heterogeneous information integra-
tion for DTI prediction (HIDTI), based on a residual network and classifier. First, we constructed deep neural 
network (DNN) models for feature generation, in which known heterogeneous information, including DDIs, 
PPIs, drug-side effect associations (DSIE), drug-disease associations (DDIS), and protein-disease associations 
(PDIS), were used to predict unknown heterogeneous information for unseen drugs. Second, we constructed 
a residual network-based model using skip connection to extract features from the heterogeneous information 
that was integrated to predict DTIs. The residual network is not complex, but was designed to extract features 
from high-dimensional vectors.

The performance of our model was tested using ten-fold cross-validation on drug-based folds for previously 
unseen drugs. The performance of previous approaches was also tested using cross-validations on DTI pair-based 
 folds2,19, where the drugs can appear in both the training and test sets. Although these existing approaches have 
shown some utility in repositioning previously known drugs, they have not yet been tested for unseen drugs. 
An overview of the proposed model is presented in Fig. 1).

Methods
Datasets. We collected data on drugs and proteins from a previous  study20 and removed duplicates. The 
details of the datasets are provided in Figs. S1–S4 in the Supplementary Materials. As a result, 707 drugs and 1489 
proteins were used in our experiments. We represented the 707 drugs according to their DrugBank IDs in the 
form of simplified molecular-input line-entry system (SMILES) strings that included chemical structure infor-
mation for molecules using short ASCII  strings21. Specifically, the DrugBank ID of each drug was converted to 
the PubChem Compound ID (CID) and SMILES strings of drugs were extracted from the PubChem  database22. 
We represented the 1489 proteins with UniProt IDs in the form of protein sequences that were extracted from 
the UniProtKB database (UniProt Consortium, 2019).

Because heterogeneous data related to proteins and drugs were included in the study by Wan et al.20, we also 
used these data to test the performance of our model for this specific context. Wan et al.20 extracted drug-protein 
interactions and DDIs from the DrugBank database (Version 3.0)23. PPIs were obtained from the Human Pro-
tein Reference Database (HPRD) (Release 9)24. Protein similarities were calculated using the pairwise Smith-
Waterman  scores25. Information associated with disease (drug-disease and protein-disease) and side effects 
(drug-side effects) was extracted from the Comparative Toxicogenomics Database (CTD)26 and SIDER database 
(Version 2)27, respectively.

A summary of the datasets used in our experiments is presented in Tables 1 and  2. For drugs, the minimum, 
maximum, and average lengths of SMILES strings were 3, 416, and 58, respectively. For proteins, the minimum, 
maximum, and average lengths were 38, 3608, and 371 amino acids, respectively. The details of drugs and proteins 
are described in Supplementary Materials and Figs. S1–S4.

Generating features of heterogeneous information. We constructed feature vectors for drug- and 
protein-related information. In previous studies, drug chemical and protein sequence feature vectors were con-
structed from SMILES strings and protein sequences,  respectively14–16. Thus, we extracted drug chemical and 
protein sequence feature vectors from pre-trained  Mol2vec28 and  ProtVec29 models. These feature vectors can 
remove the length limitation of the drug and protein strings in the deep learning approach. We define drug 
chemical features as Drug for nd drugs and protein sequence features as Protein for np proteins.

(1)Drug =
[

Drug1
⊺ Drug2

⊺ . . . Drugnd
⊺
]

⊺
,

(2)Protein =
[

Protein1
⊺ Protein2

⊺ . . . Proteinnp
⊺
]

⊺
,
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Figure 1.  Architecture of the HIDTI model for predicting drug-target interactions (DTIs). Drug-related 
features include SMILES strings, drug-drug interactions (DDIs), drug-side effect associations (DSIE), and drug-
disease associations (DDIS). Protein-related features include protein sequences, protein-protein similarities, 
protein–protein interactions (PPIs), and protein–disease interactions (PDIS). These are concatenated and fed 
into the neural network with a residual block. For unseen drugs, deep neural network (DNN) models are used 
to predict each item of heterogeneous information to obtain the input vectors of drug-target pairs. Ultimately, 
our model provides a binary output (1 or 0), considering the interaction between the drug and protein.

Table 1.  Dataset statistics.

# of drugs # of proteins # of side effects # of diseases Total

707 1489 4192 5603 11,991

Table 2.  Positive interactions in our datasets.

Type of interaction # of positives

Drug–protein 1909

Drug–drug 10,024

Drug-side effect 80,160

Drug-disease 199,022

Protein–protein 7133

Protein–disease 1,572,157
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where Drugi is a drug chemical feature vector of size 300 obtained using Mol2vec for the i-th drug, and proteini 
is a protein sequence feature vector of size 100 obtained using ProtVec for the i-th protein.

Interactions between drugs and other drugs/side effects/disease are represented using one-hot vectors as 
follows:

where DDIi is a DDI feature vector of size 707, DSIEi is a DSIE feature vector of size 4192, and DDISi is a DDIS 
feature vector of size 5603 for each drug i. For training data, these features were obtained using the datasets as 
described in the preceding subsection. In addition, interactions between proteins and other proteins/diseases 
and protein similarities were represented using one-hot vectors as follows:

where PPIi is a PPI feature vector of size 1489, PSIMi is a PSIM feature vector of size 1489, and PDISi is a PDIS 
feature vector of size 5603 for each protein i. We obtained the PPIi and PSIMi vectors from the HPRD and Smith-
Waterman scores, respectively. In addition, for the PDISi vector, we obtained a feature vector from the CTD.

For unknown features in testing unseen drugs, we constructed DNN models to predict each feature vector 
for DDIs, DSIE, and DDIS, which are similar to the prediction model proposed by Wang et al.30. The details of 
our model are described in the Supplementary Materials. Wang et al.30 proposed a DNN model for predicting 
the adverse reactions of drugs using biological, biomedical, and drug chemical information. In this study, we 
modified this DNN model to predict various drug features as Fv(x) , v ∈ {DDI ,DSIE,DDIS, PDIS} , in which the 
input x is the concatenated vector of the drug or protein and each item of heterogeneous information.

Each of the DNN models for predicting each vector of heterogeneous information, FDDI , FDSIE , and FDDIS , 
consists of three fully connected layers with dimensions 1024, 512, and 128 for FDDI , and dimensions 4096, 2048, 
and 1024 for FDSIE and FDDIS . Input vectors are the drug chemical feature and each feature vector for DDIs, DSIE, 
and DDIS, and the outputs are each feature vector as follows:

Similarly, to predict PDIS, we also constructed a DNN model FPDIS consisting of three fully connected layers 
with dimensions 4096, 2048, and 1024 as follows:

To avoid overfitting in the training step, unique drugs and proteins were used for training, and we added a drop-
out layer with the dropout rate set to 0.5. The size of the last layer nodes for each model to predict DDI, DSIE, 
DDIS, and PDIS was 707, 4192, 5603, and 5603, respectively, which corresponded to the size of each feature 
vector in our dataset. In the training step, the values of the input feature vectors of DDI, DSIE, DDIS, and PDIS 
were based on one hot vector, and the models were trained to have the same output values as those of the input. 
In the testing step, the values of the input feature vectors of DDI, DSIE, DDIS, and PDIS were set to zero, and the 
predicted output feature vectors were used as feature vectors for unseen drugs in predicting DTIs.

Residual network. Skip connections are helpful in improving the performance of DNNs by propagating 
a linear  component31.  ResNet32, using skip connection, was proposed to efficiently extract features of image 
data, and its huge success has led this architecture to become a basic and powerful concept.  Transformer33 has 
achieved great performance in the field of natural language processing using DNNs with skip connections and 
attention without using recurrent or convolutional neural  networks34. In the field of bioinformatics, Xia et al.35 
used a skip connection approach by adding features in previous layers to the subsequent features for predicting 
growth rates of given cell lines and drug characteristics.

The skip connections in ResNet simply perform identity mapping, y = F(x)+ x . Thus, there is no requirement 
for feature  reduction32. However, a linear projection can be used to match the dimensions, y = F(x, {Wi})+Wsx , 
making it possible for shortcut connections to be used for feature  selection32. There are several variants of the 
residual  unit33,36,37. Srivastava et al.36 scaled x differently from F(x) in the residual block, y = F(x)+ �x , where � 
is usually greater than one. However, He et al.37 insisted that scaling causes difficulty for the gradient of the skip 

(3)DDI =
[

DDI1
⊺ DDI2

⊺ . . . DDInd
⊺
]

⊺
,

(4)DSIE =
[

DSIE1
⊺ DSIE2

⊺ . . . DSIEnd
⊺
]

⊺
,

(5)DDIS =
[

DDIS1
⊺ DDIS2

⊺ . . . DDISnd
⊺
]

⊺
,

(6)PPI =
[

PPI1
⊺ PPI2

⊺ . . . PPInp
⊺
]

⊺
,

(7)PSIM =
[

PSIM1
⊺ PSIM2

⊺ . . . PSIMnp
⊺
]

⊺
,

(8)PDIS =
[

PDIS1
⊺ PDIS2

⊺ . . . PDISnp
⊺
]

⊺
,

(9)DDI = FDDI ([Drug;DDI])

(10)DSIE = FDSIE([Drug;DSIE])

(11)DDIS = FDDIS([Drug;DDIS])

(12)PDIS = FPDIS([Protein;PDIS])
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with respect to an exploding or vanishing gradient problem.  Transformer33 uses layer  normalization38, but with 
� set to 1, y = LayerNorm(F(x)+ x) . Liu et al.31 experimented with various residual unit forms and concluded 
that layer normalization could help to stabilize the optimization, and that setting � to 1 was preferable.

Considering this prior research, we built a residual network for feature selection, defined as follows:

where x is an M × 1 feature vector, and W1,W2, and W3 are the M1 ×M , M2 ×M1 , and M2 ×M weight matrices, 
respectively. ReLu =max(0,x) is a rectified linear unit. In our experiment, the input vector had a large dimen-
sion. Thus, after each matrix multiplication for feature reduction, normalization was essential to stabilize the 
optimization.

Prediction of DTIs. We constructed a residual network-based model for predicting DTIs using various fea-
ture vectors that contain heterogeneous information. The drug-related feature vector D and the protein-related 
feature vector P are defined as follows:

For a set of DTI pairs I = {(idrug , iprotein)} , we concatenated Didrug and Piprotein (i.e., [ Didrug ; Piprotein]), and fed 
them into the residual network. Then, a classifier with a single hidden layer predicts whether a drug and target 
interact. The hyperparameters of HIDTI included the number of residual blocks ∈[1,2,3], number of hidden layers 
∈[1,2,3] for the classifier, and learning rate ∈[1× 10−5 , 1× 10−4 , 1× 10−3 , 0.01, 0.05, 0.1]. For hyperparameter 
optimization, we adopted a grid search algorithm, and the hyperparameters were determined using validation 
sets (for details, see Table S1 in the Supplementary Materials).

We used an early stopping strategy to avoid overfitting in the training  step39,40. We used the ReLu function as 
the activation function. For the last layer, the sigmoid function S(x)= 1

1+e−x  was used. Because DTI prediction 
is a binary prediction task (with both positive and negative interactions possible), binary cross entropy (BCE) 
was used as the loss function:

where ti is the ground truth and S(x) is the predicted probability of a DTI.
The Adam algorithm was used to train the networks with the initial learning rate set to 1× 10−5 . In addition, 

a mini-batch size of 512 was used to update the weights of the network.

Ten‑fold cross‑validation. In cross-validation, both training and test sets can contain the same drug if the 
sets are split based on drug-protein pairs. To evaluate the DTI prediction performance of the model for unseen 
drugs, we split the dataset into ten subsets based on the drugs. First, we counted the number of positive interac-
tions between each drug and protein and sorted the drugs in descending order of counts. Second, we assigned 
the drugs to each fold so that the number of positive interactions was similar in each fold. To obtain negative 
samples in each fold, we randomly chose negative interactions between each drug and protein until the number 
of negative interactions was the same, three times, and five times that of the positive interactions. We randomly 
selected three negative interactions for certain drugs that did not exhibit any positive interactions because each 
drug interacted with an average of 2.7 proteins. Here, a negative interaction indicates any previously unreported 
interactions. In the ten-fold cross-validation, 85%, 5%, and 10% of the data were used for training, validation, 
and testing, respectively. The validation set was used for early stopping of the training.

Method evaluation. We used the area under the receiver operating characteristic curve (AUC) between 
the true positive (TP) and false positive (FP) rates to evaluate the performance of our model. Three additional 
metrics were also used as performance measures: precision, recall, and F1-score. These metrics are calculated to 
evaluate predictive power according to four parameters, TP, true negative (TN), FP, and false negative (FN) rates, 
using the following equations:

(13)f (x, {W1,W2}) = W2ReLu(LayerNorm(W1x))

(14)y = ReLu(LayerNorm(f (x, {W1,W2})+W3x),

(15)D = [Drug;DDI;DSIE;DDIS]

(16)P = [Protein;PPI; PSIM; PDIS]

(17)BCE = −ti log (S(x))− (1− ti) log (1− S(x)),

(18)Precision =
TP

TP + FP

(19)Recall =
TP

TP + FN

(20)F1score =
2 ∗ Precision ∗ Recall

Precision+ Recall
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Results
The performance of HIDTI was evaluated for both cases when heterogeneous information was available for 
the unseen drugs and when heterogeneous information could only be predicted for the unseen drugs. Because 
real-world DTIs are ordinarily imbalanced, we designed and conducted experiments for both balanced 
(positive:negative = 1:1) and imbalanced (positive:negative = 1:3 and 1:5) cases. The performance of the HIDTI 
model was then compared with that of other models according to the AUC value.

Performance of HIDTI with available heterogeneous information for unseen drugs. We first 
consider the case in which existing (heterogeneous) drug- and protein-related information is available and used 
to predict unseen drugs. Table 3 shows the performance of the HIDTI model with available heterogeneous infor-
mation for unseen drugs. First, as a baseline model, we predicted DTIs using only drug chemical and protein 
sequence feature vectors of drug-target pairs with a classifier consisting of two hidden layers. Using the balanced 
(positive:negative = 1:1) datasets, the average AUC value was 0.789, whereas the AUC values with unbalanced 
datasets (positive:negative = 1:3 and 1:5) were 0.879 and 0.853, respectively. Next, we conducted experiments 
for variants of HIDTI, where each drug- and protein-related feature was integrated with the features used in the 
baseline model. Each model predicted DTIs with a classifier consisting of two hidden layers, as in the baseline 
model. All variants of HIDTI were based on common drug chemical and protein sequence feature vectors. 
When each of the additional feature vectors of DDIs, DSIEs, DDIS, PPIs, PSIM, and PDIS were integrated, the 
prediction performance increased compared with that obtained when only drug chemical and protein sequence 
feature vectors were used. Among them, the PDIS features were the most informative, with the highest average 
AUC for the 1:3 dataset, followed by the 1:5 and 1:1 cases, respectively. When all of these features were inte-
grated, HIDTI achieved the best and equal performance for the unbalanced (1:3 and 1:5) dataset cases, closely 
followed by the balanced (1:1) case.

Furthermore, we analyzed whether the number of targets for each drug was related to the performance of 
HIDTI when using a balanced dataset. In other words, for each unseen drug in the test datasets, we examined the 
AUC value according to the number of targets. We excluded drugs with a single target because the AUC values 
for these drugs could not be calculated. As a result, drugs with a large number of targets tended to have higher 
AUC values than those with fewer targets (Fig. 2A). In addition, the absolute value of the difference between the 
mean probabilities of positively and negatively predicted interactions, which is denoted as a distance in Fig. 2B, 
was measured for each drug. These distances were found to increase with an increase in the number of drug 
targets. Figure S5 shows that the mean probability values of positively predicted interactions become larger and 
those of negatively predicted interactions become smaller with an increasing number of targets. Also, the average 
standard deviation in probability values for positive and negative interactions of drugs has a decreasing trend 
with an increase in the number of targets (Fig. S5). Given the increase in distance values and trends in statistic 
values of probabilities, we could confirm that as the number of targets increases, the positive interactions tend 
to cluster well with other positives and negative interactions tend to cluster well with other negatives. Overall, 
these results showed that our HIDTI method could predict DTI pairs more accurately and stably when more 
targets interact with a given drug.

Performance of HIDTI with predicted heterogeneous information for unseen drugs. We next 
assessed the prediction of DTIs when drug- and protein-related information was not available, and thus had to 
be predicted for unseen drugs. In cases where the relationship between diseases and proteins was also unknown, 
we extracted protein-disease feature vectors using the predictive model. To generate predicted feature vectors, 
we trained DNN models for DDIs, DSIEs, DDIS, and PDIS with each dataset as described in the Datasets subsec-
tion of the Methods.

Table 3.  Performance evaluation of HIDTI and other models for when heterogeneous information was 
available for unseen drugs. The baseline model represents the prediction of DTIs using only drug chemical and 
protein sequence feature vectors. The best performance values are in [bold].

Methods

Ratio of positive and negative interactions

1:1 1:3 1:5

AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1

Baseline 0.789 0.693 0.816 0.741 0.879 0.732 0.708 0.716 0.853 0.670 0.607 0.630

Single info

 +DDI 0.832 0.720 0.804 0.758 0.890 0.734 0.741 0.734 0.873 0.669 0.637 0.649

 +DSIE 0.816 0.719 0.792 0.752 0.881 0.675 0.772 0.714 0.867 0.639 0.616 0.621

 +DDIS 0.834 0.723 0.817 0.766 0.876 0.668 0.760 0.707 0.866 0.602 0.635 0.615

 +PPI 0.832 0.721 0.837 0.767 0.893 0.745 0.752 0.747 0.891 0.732 0.659 0.690

 +PSIM 0.872 0.750 0.848 0.795 0.911 0.802 0.758 0.778 0.901 0.730 0.694 0.709

 +PDIS 0.892 0.811 0.821 0.815 0.921 0.811 0.767 0.786 0.913 0.749 0.720 0.733

Multiple info

 HIDTI (Ours) 0.919 0.852 0.849 0.850 0.936 0.834 0.793 0.810 0.936 0.800 0.759 0.778
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Table 4 shows that even when predicted vectors were used, the prediction performances were similar to those 
obtained using existing known features. Consistently, when each feature was integrated with drug chemical and 
protein sequence feature vectors, the prediction performance increased. When all features were integrated, HIDTI 
achieved the highest average AUCs for the unbalanced datasets (1:5 and 1:3), closely followed by the balanced 
dataset (1:1 positives:negatives) with available PDIS features, and a similar pattern was found with all predicted 
features, although the AUCs were slightly lower for all dataset cases. The performance under this scenario was 
0.021, 0.035, and 0.032 lower for the 1:1, 1:3, and 1:5 case, respectively, with available PDIS features, and was 
0.030, 0.042, and 0.044 lower, respectively, with all predicted features, compared with that obtained when all 
existing features were used. These results demonstrated that the prediction performances of DTIs based on 
integrating each feature tended to decrease slightly when using predicted features rather than existing features in 
the case of balanced positive and negative interactions. In unbalanced cases, although the results were generally 
similar, predicted PDIS features seemed to have a critical impact on the decrease of DTI prediction performance 
(from 0.921 to 0.889 for the 1:3 case and from 0.913 to 0.881 for the 1:5 case) compared with the use of existing 
PDIS features. Thus, the decreased performance of HIDTI with predicted features might be mostly driven by 
predicted protein-disease relationships.

We also compared HIDTI with  NeoDTI20, a graph-based method that uses heterogeneous information for 
DTI predictions, as NeoDTI has been proven to outperform several other methods. We also used the drug-based 
folds described in the “Ten-fold cross-validation” section to run this experiment under the same conditions 
as those used for evaluation of the performance of HIDTI itself. In this performance assessment of NeoDTI 

Figure 2.  Performance evaluation of the HIDTI method for unseen drugs based on the number of targets. (A) 
The area under the receiver operating characteristic curve (AUC) values based on the number of targets for each 
drug. The shading intensity indicates the degree of the number of drugs with the corresponding AUC value. (B) 
Absolute values of the difference between the mean probabilities of positive and negative predicted interactions 
for each drug. This difference is denoted as the distance along the y-axis. Each dot represents the average 
distance of the drug for each number of targets.

Table 4.  Performance evaluation of HIDTI and other models when heterogeneous information was 
predicted for unseen drugs. The case of ‘HIDTI (available PDIS)’ refers to the use of existing protein-disease 
relationship (PDIS) features from our dataset, and the case of ‘HIDTI (predicted all)’ refers to the use of all 
predicted features from each deep neural network model described in “Generating features of heterogeneous 
information” section. The best performance values are in [bold].

Methods

Ratio of positive and negative interactions

1:1 1:3 1:5

AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1

Baseline 0.789 0.693 0.816 0.741 0.879 0.732 0.708 0.716 0.853 0.670 0.607 0.630

Single info

 +DDI 0.812 0.695 0.814 0.746 0.878 0.716 0.727 0.718 0.868 0.701 0.617 0.655

 +DSIE 0.824 0.740 0.780 0.757 0.866 0.728 0.703 0.712 0.854 0.650 0.627 0.635

 +DDIS 0.808 0.704 0.784 0.740 0.853 0.664 0.725 0.691 0.844 0.641 0.609 0.623

 +PPI 0.849 0.766 0.801 0.780 0.896 0.750 0.751 0.747 0.890 0.733 0.654 0.689

 +PSIM 0.863 0.798 0.791 0.793 0.911 0.798 0.761 0.775 0.901 0.736 0.675 0.701

 +PDIS 0.888 0.733 0.802 0.762 0.889 0.744 0.739 0.738 0.881 0.667 0.659 0.657

Multiple info

 HIDTI (predicted all) 0.889 0.831 0.818 0.823 0.894 0.797 0.771 0.781 0.892 0.765 0.697 0.727

 HIDTI (available PDIS) 0.898 0.856 0.820 0.837 0.901 0.799 0.781 0.787 0.904 0.770 0.717 0.740

 NeoDTI 0.828 0.566 0.651 0.758 0.809 0.622 0.646 0.629 0.841 0.497 0.583 0.605
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(see the Supplementary Materials for further details), the interacting edges of the test drugs, which represent 
heterogeneous drug-related information in the network, were set to zeroes in the training process, and the pre-
dicted values between proteins and test drugs were used for performance evaluation. For the HIDTI model, the 
predicted drug-related heterogeneous information was used for testing. As shown in Table 4, the average AUC 
value for NeoDTI was the highest for the 1:5 unbalanced dataset, followed by the balanced (1:1) dataset, and 
the lowest value was obtained for the unbalanced 1:3 case. HIDTI significantly outperformed NeoDTI for DTI 
prediction using predicted drug-related vectors for unseen drugs, with a p-value of 1.13× 10−4 , 2.55× 10−4 , 
and 2.69× 10−3 for the 1:1, 1:3, and 1:5 cases, respectively, based on the t-test of AUC values of the ten folds.

To investigate the reason for this superior performance of HIDTI compared with that of NeoDTI, we fur-
ther compared the prediction performance of the two models with drug-related heterogeneous information. 
HIDTI showed significantly better prediction ability than NeoDTI for all features, except for DDIs (Table 5). 
The prediction performance of each model for the cases using imbalanced datasets (1:3 and 1:5) was similar to 
that obtained using balanced datasets (Table 5). This result clarified that the superior performance of HIDTI 
in predicting drug-related heterogeneous information contributed to its better DTI prediction performance 
compared with that of NeoDTI.

Comparison of HIDTI and machine learning algorithms. We also compared our model with other 
machine learning models, including SVM and RF classifiers (Tables S2–S5). For SVM, heterogeneous informa-
tion helped to improve the prediction of DTIs in the case of available heterogeneous information for the unseen 
drugs although the prediction of DTIs was not significantly affected by predicted heterogeneous information. As 
a result, HIDTI outperformed the SVM models in all cases. For the RF models, the performance improvement 
by heterogeneous information was very small even though the prediction performance of the RF model was 
slightly higher than that of the HIDTI model. Thus, it is necessary to investiagte whether these results are due 
to the high performance of the baseline RF model or whether the RF model did not efficiently incorporate the 
relevant information when heterogeneous information was added.

Performance evaluation after removing redundant DTIs. To examine the effect of redundant DTIs 
that could potentially inflate prediction performance, we evaluated the prediction performance again after 
removing similar drugs in test datasets so that the chemical structural similarities between drugs in the training 
and test datasets were all less than 0.6 (Table S6). After removing redundant DTIs, heterogeneous information 
was helpful for DTI predictions compared with the baseline, and the performance of HIDTI was still superior 
to that of NeoDTI. Moreover, after removing redundant DTIs, HIDTI still outperformed SVM for all cases and 
showed better AUC values compared to the RF model when heterogeneous information was available (Table S7).

Ablation models of HIDTI to examine the impact of heterogeneous information. Given the 
apparent influence of heterogeneous information on model performance, we performed ablation studies to iden-
tify the specific influence of heterogeneous features on HIDTI in which input features were used after excluding 
heterogeneous information from the HIDTI. We also evaluated the performance of the models in which all 
drug-related or protein-related information was removed. The results showed that all protein-related informa-
tion had the highest impact on HIDTI performance, and DDIs had the lowest impact on performance (Tables S9 
and S10). This finding suggests that protein-related information is more useful in predicting DTIs in drug-based 
folds than drug-related information.

Performance of models using randomly divided DTI pairs. We additionally performed experiments 
using randomly divided folds for ten-fold cross-validation based on DTI pairs, which is the same cross-valida-
tion approach used in the NeoDTI method. All positive DTI pairs and the same number of randomly selected 
negative DTI pairs were used to divide each fold. For the test sets, existing heterogeneous features were used for 
both NeoDTI and HIDTI, as this was the condition used in the original NeoDTI  study20. This case represents a 
situation in which a drug in the training set can be included in the test set.

Both methods showed high performance in ten-fold cross-validation. The average AUCs for HIDTI were 
0.99916, 0.99804, and 0.99771 for the 1:1, 1:3, and 1:5 datasets, respectively. Similarly, the AUCs of NeoDTI were 
0.99971, 0.99430, and 0.99588 for the 1:1, 1:3, and 1:5 datasets, respectively. This similarity appears to be related 

Table 5.  Prediction performance with drug-related heterogeneous information for NeoDTI and HIDTI. The 
best performance values are in [bold].

Drug related information

Ratio of positive and negative interactions

1:1 1:3 1:5

AUC 

NeoDTI HIDTI NeoDTI HIDTI NeoDTI HIDTI

DDI 0.979 0.678 0.982 0.678 0.980 0.679

DSIE 0.494 0.845 0.495 0.845 0.538 0.845

DDIS 0.525 0.830 0.508 0.830 0.499 0.831
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to the fact that many drugs overlap each fold. This implies that both models can accurately predict DTIs when 
some drug targets are previously known in the training model.

Model predictability. Many false positives were found to be involved in the proteins interacting with sev-
eral drugs among DTI pairs in the test datasets. Thus, we suspected that the high performance of HIDTI might 
be attributed to the fact that proteins interacting with many drugs in the training set were predicted to interact 
with drugs in the test dataset. To test this possibility, we measured the baseline performance when a protein is 
predicted to interact with any drug in the test dataset if the ratio of positive interactions of a given protein in the 
training dataset is greater than or equal to 25%, 50%, or 75%, respectively. We refer to these three baseline cases 
as THR_25%, THR_50%, and THR_75%. For this evaluation, we compared the performance of HIDTI with that 
of NeoDTI based on the area under the precision recall curve (AUCPR), precision, recall, and F1-score. These 
measures were selected because they are considered to be useful metrics for imbalanced datasets.

Figure 3 shows the performance evaluation of each case where the ratio of positive and negative interactions is 
balanced (1:1) and imbalanced (1:3 and 1:5). For the balanced dataset, the average (± standard deviation) AUCPR 
scores for HIDTI, HIDTI_available PDIS, HIDTI_predicted all, and those for NeoDTI were 0.903 (± 0.02), 0.798 
(± 0.03), 0.792 (± 0.04), and 0.787 (± 0.03), respectively. Although the overall performance decreased gradually 
with more predicted information, similar patterns were obtained for imbalanced datasets, with AUPRC scores 
of 0.863 (± 0.04), 0.756 (± 0.03), 0.733 (± 0.05), and 0.649 (± 0.11) in the case of the 1:3 dataset, and 0.818 (± 
0.04), 0.629 (± 0.05), 0.670 (± 0.05), and 0.604 (± 0.07) in the case of the 1:5 dataset, respectively. The average 
precision and recall values for THR_25%, THR_50%, and THR_75% are also shown in Fig. 3. In the case of the 
balanced dataset, the best F1-scores of 86.93%, 77.23%, and 77.75% were achieved by HIDTI, HIDTI_available 
PDIS, and HIDTI_predicted all, respectively, and the best F1-score obtained for NeoDTI was 79.22%. How-
ever, the scenarios of THR_25%, THR_50%, and THR_75% resulted in significantly inferior performance with 
F1-scores of 42.11%, 40.08%, and 30.45%, respectively. For imbalanced cases, HIDTI, HIDTI_available PDIS, and 
HIDTI_predicted all achieved 86.55%, 77.65%, 76.26% F1-scores for the 1:3 dataset, and 80.58%, 71.15%, 73.10% 
for the 1:5 dataset, respectively. NeoDTI obtained an F1-score of 76.98% for the 1:3 dataset and an F1-score 
of 72.22% for the 1:5 dataset. Similar to the results above, under the scenarios of THR_25%, THR_50%, and 
THR_75% the F1-scores were markedly reduced to 38.17%, 30.83%, 22.41% for the 1:3 dataset, and to 24.83%, 
19.53%, and 11.24% for the 1:5 dataset, respectively. Thus, the performances of all models decreased in imbal-
anced cases. However, through these results, we confirmed that our three models generally predicted unknown 
DTI pairs better than the existing model.

Finally, we investigated whether false positive interactions with high probabilities predicted by our model were 
potential true interactions. As an example, we focused on the dopamine receptor proteins D1A, D2, D3, D4, and 
D1B with 23, 36, 17, 14, and 12 interacting drugs, respectively, in the dataset. Table 6 shows the top 10 dopamine 
receptor protein-related DTI pairs with high prediction probabilities in the test datasets, along with the original 
labels in the dataset. Among these, only one was a negative interaction (orphenadrine). Cheng et al.41 analyzed 
the interaction mechanisms of various drugs (including cocaine, dopamine, amphetamine, and orphenadrine) 
with human dopamine transporters through computational and experimental methods. Since we could not find 
any report on the direct interaction between orphenadrine, which is used for the treatment of musculoskeletal 
pain and discomfort, and dopamine d1 receptor, further investigation might be needed to clarify their potential 
indirect relationship. Additionally, we divided DTI pairs based on protein classes, including Enzyme, Transporter, 
G-protein coupled receptor, Voltage-gated ion channel, and Transcription factor, from The Human Protein  Atlas42 
for unseen drugs. Table S11 shows the top 10 probabilities of false positive DTIs for unseen drugs according to 
the protein classes. Since there is a possibility that there may be new DTIs, we searched the literature for these 
10 pairs of false positives. There is no reported evidence on direct interactions of these pairs; however, we expect 
that these false positive DTI pairs with high probabilities could be potential candidates for DTIs.

Discussion and conclusion
Predicting DTIs is an essential task in drug discovery and development, and can further help in elucidating the 
mechanisms of biological processes related to drugs. In this study, we developed the HIDTI model to predict DTIs 
using diverse information related to drugs and proteins. In contrast to the majority of previous DTI prediction 
studies that measured the performance of their models by randomly selecting interacting pairs between drugs 
and targets, we measured model performance for interactions between unseen drugs and targets. The trained 
HIDTI model could accurately predict DTI pairs for unseen drugs based only on drug SMILES strings and 
protein sequences, as our model enables predicting drug- and protein-related heterogeneous features. Thus, the 
accuracy of the predicted feature vectors is important. Accordingly, the performance of HIDTI will be further 
improved if the predicted feature vectors contain more accurate information on drugs or proteins.

Although we did not perform an experiment for unseen proteins, the proposed model can also predict DTIs 
for such a case. These findings will also be useful for repurposing drugs for lesser-known proteins.

Our study focused on the use of binary classification to predict DTIs because we obtained DTI and heteroge-
neous data from network-based research, where edges between drugs and target interactions are represented in 
binary form. Other heterogeneous information related to drugs or proteins is also typically represented in binary 
form. Accordingly, many methods for DTI prediction have been developed for binary  classification2,3,11,12,14,16,20. 
However, in the actual datasets, the number of positive interactions between drugs and targets was much smaller 
than the number of negative interactions, because the negatives included non-interacting pairs and unseen 
pairs of drugs and targets. Such imbalance in the data causes several problems such as overfitting. Thus, many 
approaches have been proposed to handle these problems, such as undersampling or oversampling. As an alter-
native to binary classification, DTIs can be predicted according to the binding strength between a drug and its 
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targets using datasets such as Davis, Metz, and Kinase Inhibitor Bioactivty  datasets43–45. However, it is difficult 
to determine a threshold for strong interactions, and the thresholds might depend on the specific drugs and 
datasets considered. We plan to apply the HIDTI model to binding strength-based DTI datasets in future work 
to address these questions.

In conclusion, our study suggests that HIDTI has the potential to advance the field of drug development by 
predicting the targets of new drugs.

Data availability
The datasets analyzed in the current study are available in the HIDTI repository: http:// github. com/ DMCB- 
GIST/ HIDTI.
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