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A B S T R A C T

Chemotherapy is one of the most extensively utilized cancer treatment strategies worldwide. It is
intended to eliminate fast-developing cancer cells in a patient’s body. The amount of chemother-
apeutic drug that must be administered precisely into a patient’s body determines the efficacy of
the treatment and governs the patient survival during chemotherapy. Therefore, controlling the
chemotherapeutic drug dose delivered to the patient is essential. This research aims to propose
a two-degree-of-freedom fractional order proportional–integral–derivative (2FOPID) controller
with a set point filter for implementing an automatic drug delivery control scheme during
chemotherapy. The Whale optimization algorithm (WOA) is used to tune the parameters of the
2FOPID controller, resulting in a WOA-tuned 2FOPID controller (W2FOPID). The performance of
the proposed W2FOPID is compared with the Integral–Proportional–Derivative (IPD), Internal
Model Control (IMC), and Fractional Order IMC (FOIMC) schemes. The experimental results
demonstrate that the proposed W2FOPID controller is effective, accurate, and robust for drug
concentration control during chemotherapy. W2FOPID outperforms IPD, IMC, and FOIMC
schemes in terms of Integral Absolute Error by 79.9%, 25.3%, and 23.36%, respectively. In
addition, W2FOPID exhibits excellent set-point tracking, noise suppression and uncertainty
handling capabilities.

1. Introduction

According to the Indian Council of Medical Research (ICMR), 1.39 million cancer cases were reported in India in the year 2020.
t is estimated that the number of cancer cases are likely to increase up to another 12% by 2025 [1]. However, in global scenario,
he new cancer cases are expected to rise by 80% in developing countries and by 40% in developed countries, with 13 million
ancer deaths predicted by 2030 [2]. This is an alarming situation which needs to be addressed via collaborative multi-disciplinary

efforts in order to foster the existing health care system. In general, cancers are a group of diseases categorized by uncontrolled
cell growth and division, consequently leading to irregular tissue development [3]. This involves the conversion of normal cells
into malignant cells in three stages: initiation, promotion and metastasis. Malignant tumor cells have the capability to breach
into nearby tissues and kill the normal (healthy) cells. These cells may extend to other body parts via lymphatic framework or
blood circulation system, resulting in the formation of new tumors. Acknowledging the increasing rates of cancer, oncologists are
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determined to develop competent treatment methods and therapeutic measures to restrict the tumor growth. Common treatment
methods for cancer include surgery, chemotherapy, radiation therapy, targeted therapy, immunotherapy, hormone therapy, and
stem cell transplantation [4]. Among these methods, chemotherapy has grabbed huge attention among the scientific and cancer
research communities. Chemotherapy works by targeting the fast growing and reproducing cells. However, the fundamental issue
with chemotherapeutic drugs (for e.g., Chlorambucil, Cyclophosphamide, Cisplatin, Carboplatin, etc.) is that they not only kill fast-
rowing malignant cells, but also extinguish the normal ones. Due to this reason, it becomes essential to maintain and regulate a
pecific level of the proper chemotherapeutic drug in the patient’s body.

.1. Literature survey

Previous research works indicate that different optimization techniques have been employed for the accurate estimation of
ptimum chemotherapeutic drug scheduling based on parameterization and analytical gradient [5], adaptive elitist population
ased genetic algorithm (GA) [6,7], memetic algorithm [8], and paladin-distributed evolutionary control algorithm [9]. When
rug concentration and toxicity deviate from their optimal values throughout the treatment process, the strategies discussed using
nalytical gradient to paladin-distributed evolutionary control algorithm were ineffective. Since the aforementioned schemes are
pen loop in nature, they are incapable of regulating the drug dose in precise manner. To curb this problem, researchers have
tilized the closed-loop control of drug concentration during chemotherapy. A cascaded PID (Proportional–Integral–Derivative)
ontrol scheme based on GA has been proposed to control the cancer growth in [10]. Further, its performance is compared
ith conventional PID and other drug scheduling methods. Moreover, multi-objective GA (MOGA) based PID, and I-PD (Integral–
roportional–Derivative) controllers have been implemented for single as well as multi-drug planning strategies to control cancer
rowth [11,12]. The reported results demonstrate that the proposed strategies are more robust towards parametric variations. In
nother pioneer work, three control schemes for optimal robust drug delivery control were designed and compared [13]. Also, 𝐻∞
ased new robust control arrangement has been employed to control the angio-genic inhibition of tumor growth [14]. The results
xhibit the efficiency of the recommended control scheme for different tumor volumes. Another work used an adaptive PI controller
ased on Lyapunov method to control the tumor size [15]. The results indicate that the system is globally stable and robust towards
ariations in model parameters. Further, Modified FOIMC [16], PID [17,18], 2-DOF-PID (2-Degree of Freedom-PID) [19], and
ptimal control schemes [20] have been put forward for the drug dose control at the tumor site. In addition, NASGA-II optimized
ontrol for multi-drug regime during chemotherapy are reported [21,22]. Other strategies include development of various types of
uzzy logic controllers for control of anti-cancer drug delivery systems [23,24]. Also, reinforcement-learning based control [25],
obust optimal control [26], and adaptive control [27] schemes have been implemented in this context.

.2. Problem statement

A large body of literature shows that various control algorithms for closed-loop drug concentration control have been developed.
owever, every control algorithm has its own merits and demerits. For instance, PID control is simple in implementation, but it

s unable to address servo and regulatory problem simultaneously, due to its single closed loop structure. Also, the design and
mplementation of an IMC requires the accurate transfer function model of a system. In case of intelligent controllers (such as fuzzy
ontrol schemes), it is required to develop a well-defined rule base, which is intricate and computationally exhaustive. Reinforcement
earning, on the other hand, can result in an overload of states, which can dilute the results. Further, an accurate control law is
equired to implement the adaptive control scheme.

Under the viewpoint of above discussion, a two degree-of-freedom fractional order PID (2FOPID) with a set point filter is proposed
or drug concertation control. The preceding setpoint filter in this control algorithm helps to improves the transient response, thereby
mproving the setpoint tracking. On the other hand, the traditional closed loop will improve the disturbance rejection capability
f the control algorithm. Furthermore, fractional order integral and derivative terms provide additional tuning parameters for the
ontrol engineer to improve the system’s transient and steady-state performance. Further, in order to estimate the optimum values of
ontroller parameters, Whale Optimization Algorithm (WOA), a nature-inspired optimization technique which replicates the actions
f humpback whales, has been utilized [28]. The key features of this work are summarized below:

1. Design of a 2FOPID controller with a set point filter for an automatic drug delivery control scheme.
2. Estimation of the Gain and fractional powers of Integral and Derivative terms of 2FOPID controller using WOA.
3. Comparison of WOA (towards controller design) with other algorithms, including Genetic Algorithms (GA), Simulated

Annealing (SA), Grey Wolf Optimization (GWO), and Krill herd (KH).
4. Comparison of the proposed WOA-tuned 2FOPID (W2FOPID) controller with IPD, IMC, and FOIMC control techniques.
5. Investigation of the robustness of the proposed W2FOPID controller pertaining to set-point tracking, noise suppression and

parametric uncertainty.

The remainder of this article is organized as follows: In Section 2, the cancer patient mathematical model is discussed. Section 3
hen discusses the two degree-of-freedom fractional order PID (2FOPID) with set point filter control strategy. Section 4 provides a
rief overview of the WOA. Section 5 presents the simulation results, followed by the discussions in Section 6. Finally, Section 7

resents the concluding remarks.
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Fig. 1. Different phases of cell cycle for P and Q cells.

2. Mathematical model

Latest therapeutic studies have focused on emerging forms of treatment, such as personalized therapy and patient-specific clinical
intervention [29,30]. The presence of multiple tumors, as well as cancer drug tolerance, are the key barriers to the medical
interpretation of such methods [31,32]. If the dosage of the cytotoxic drug infused is minimal, there is no need for a planned
and coordinated medication intervention to reduce the adverse consequences and the level of toxic effect throughout the patient’s
body. On the other hand, it is important to break a medication regime for a high initial dosage. With a heavy preliminary drug dose,
there may be resurgence in the population of cancer cells, which can endanger the patient’s life. The selection of the initial dose of
prescribed medication is, therefore, quite challenging. Thus, the estimation of an appropriate initial dose of cytotoxic drug, to avoid
undesirable side effects while optimizing the ability to kill cancer cells, is a difficult task. In addition, testing all possible medications
and procedures during clinical studies is unethical and exhaustive; therefore very few tests on a participant are permitted. Usually,
experimental and clinical investigations can be fostered by using mathematical models to obtain better insights of the effect of
drug infusion routine [4]. The use of mathematical models unquestionably accelerates cancer research and improves healthcare.
It establishes a link between the medications, the tumor, and the normal body cells. This makes it easier to examine dozens of
new medication methods and drug regimes. It is feasible to pick the right one that increases the likelihood of patient survival
[33,34]. Previous literature supports a number of chemotherapy-based mathematical models for cancer treatment [35,36], in which
the chemotherapeutic intervention activities are based on the cell cycle frameworks. These models are utilized in the design and
implementation of appropriate control schemes for automatic drug delivery systems.

This work utilizes a two-compartment cell-cycle specific cancer patient model for studying the impact of chemotherapeutic drug
on cancer cell growth. The model under consideration also demonstrates the effect of the toxic drug on normal cells. First-order
linear ordinary differential equations are used to represent this model [11]. This limits the mathematical model towards exponential
progression and decline without intermediate balance. Nevertheless, it is an appropriate effort, since a successful chemotherapy
regimen would prevent the development of the tumor near its carrying capacity. Nonlinearity due to logistic or Gompertz growth
can be neglected, which allows to use a simpler model [14,35]. Fig. 1 demonstrates cell cycle phases for proliferating (P) and
quiescent (Q) cancer cells [11].

P cells are the rapid-splitting cancer cells which are entirely sensitive initial cell population and Q cells are the non-cyclic cancer
cell at the start of the treatment. The rate of change of P and Q cells are given by Eqs. (1)–(2).

𝑑𝑃
𝑑𝑡

= (𝑎 − 𝑚 − 𝑛)𝑃 (𝑡) + 𝑏𝑄 (𝑡) − 𝑔 (𝑡)𝑃 (𝑡) (1)
𝑑𝑄
𝑑𝑡

= 𝑚𝑃 (𝑡) − 𝑏𝑄 (𝑡) , 𝑄 (0) = 𝑄0 (2)

The administration of chemotherapeutics not only affect the growth rate of P and Q cells but also the growth rate of normal (Y )
cells. The rate of change in the population of Y cells and the drug effect are expressed using Eqs. (3)–(4).

𝑑𝑌
𝑑𝑡

= 𝜃𝑌 (𝑡)
(

1 −
𝑌 (𝑡)
𝐽

)

− 𝑔 (𝑡) 𝑌 (𝑡) , 𝑌 (0) = 𝑌0 (3)

𝑔 (𝑡) = 𝑓1𝐷𝑐 (𝑡) (4)

Here, 𝜃 and J are growth rate and carrying capacity of the normal cell. g(t) is the rate of cancerous cell killing per unit drug
and 𝑓1 is a constant that relates the cell kill rate and drug concentration. Also, the relationship between the drug dose (that is to be
infused to the patient intravenously, u(t)) and the rate of change in drug concentration (𝐷𝑐) at the tumor site is given by Eq. (5). 𝜆
is the drug decay which is associated with the metabolism of the drug inside the patient’s body. In addition to this, adverse effect
of chemo drug in terms of toxicity (T ) is given by Eq. (6).

𝑑𝐷𝑐 = 𝑢 (𝑡) − 𝜆𝐷 (𝑡) , 𝐷 (0) = 𝐷 (5)

𝑑𝑡 𝑐 𝑐 0

3
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Table 1
Description of Cancer model parameters.

Parameters Description Values

𝑎 Rate of growth of P cells 0.5 day−1

𝑚 Mutation rate of P cells to Q cells 0.218 day−1

𝑛 The natural end of cycling cells 0.477 day−1

𝑏 Mutation rate of Q cells to P cells 0.05 day−1

𝜃 The rate of normal cell growth 0.1 day−1

𝜌 Drug toxicity elimination rate constant 0.38
𝐽 The carrying capacity of normal cell 109

P The proliferating cells population 2 × 1011

Q The quiescent cells population 8 × 1011

Y The normal cell population 109

𝑌𝑚𝑖𝑛 The limitation of normal cell 108

𝑑𝑇
𝑑𝑡

= 𝐷𝑐 (𝑡) − 𝜌𝑇 (𝑡) , 𝑇 (0) = 𝑇0 (6)

During chemotherapy, the chosen drugs reduce the cancer cells and also produce adverse effects on the other body parts, if the
oncentration levels are not properly chosen. Hence, a set of constraints are imposed in the model to maintain appropriate levels
f drugs during treatment as given in Eqs. (7)–(8).

10 < 𝐷𝑐 (𝑡) ≤ 50 (7)

𝑇 (𝑡) ≤ 100 (8)

Further, the proportion of normal cells should also be kept inside some bounds throughout the treatment in order to increase
he life span of the patient under treatment as expressed by Eq. (9).

𝑌𝑚𝑖𝑛 ≤ 𝑌 (𝑡) ≤ 𝐽 ,∀𝑡 ∈ [0, 𝑇 ] (9)

The interpretation of the underlying model variables and their initial values were taken from previous literature [11] and their
escription is given in Table 1. Further, the model is simulated on MATLAB 2018a, in order to develop closed loop control scheme for
he estimation of optimum drug scheduling during chemotherapy. In real time, closed loop control is implemented using a biosensor
or continuous monitoring of the drug concentration directly from the blood plasma. Also, a programmable infusion pump can be
sed to inject the amount of drug dose as per the requirement [37,38].

. 2FOPID control scheme

During the treatment process, an efficient control algorithm is essential to maintain and regulate the drug concentration at its
eference value. Here, a 2FOPID control scheme with a set point filter is proposed to select the quantity of drug to be infused into
he patient’s blood stream. The 2FOPID controller has 8 parameters: proportional gain 𝐾𝑃 , integral gain 𝐾𝐼 , derivative gain 𝐾𝐷,

fractional power of integrator 𝜓 , fractional power of derivative 𝜐, set point weighting variables (𝑐1 and 𝑐2) and derivative filter
oefficient (N). The drug level is continuously measured at the tumor site (i.e., y(t)) and is fed back to the controller. The controller
ompares the measured value (i.e., y(t)) with the prescribed reference value (i.e., r(t)) and computes the error. The reference step
ignal with explicit value is taken into account, which confirms the constant level of medication at the tumor location during the
herapy. Based on the difference between the reference and measured drug concentrations, the 2FOPID controller infuses appropriate
rug dose into the patient’s body. When the error is zero, cancer cell eradication is high. On the other hand, for non-zero error, the
radication is comparatively low. For the 2FOPID controller, the relationship between the error and the controller output (i.e., u(t))
s given by Eq. (10). It is the generalized time domain representation of the two degree of freedom controller.

𝑢 (𝑡) = 𝐾𝑃

{

(

𝑐1𝑟 (𝑡) − 𝑦 (𝑡)
)

+ 1
𝑇𝑖 ∫

(𝑟 (𝑡) − 𝑦 (𝑡)) (𝑑𝑡)−𝜓 + 𝑇𝑑
𝑑𝜐

𝑑𝑡𝜐
(

𝑐2𝑟 (𝑡) − 𝑦 (𝑡)
)

}

(10)

In general, derivative term improves the transient behavior of the closed loop system [39] as well as make the system susceptible
owards noise. To curb this issue, the derivative term will be written in terms of a first order filter with coefficient N. This will
elp the controller to further improve its performance under the influence of noise and parametric uncertainty. Eq. (10) may be
ransformed into the Laplace domain as presented in Eq. (11).

𝑈 (𝑠) = 𝐾𝑃

{

(

𝑐1𝑅 (𝑠) − 𝑌 (𝑠)
)

+
{

1
𝑇𝐼𝑠𝛹

}

(𝑅 (𝑠) − 𝑌 (𝑠)) +
{

𝑇𝐷𝑠𝜈

𝑁𝑠𝜈 + 1

}

(𝑐2𝑅 (𝑠) − 𝑌 (𝑠))
}

(11)

Usually, one of the most challenging tasks in controller design is to achieve a fair balance between tracking and disturbance
ejection capabilities. The use of a two-degree-of-freedom control scheme, with an appropriate set point filter to retrieve the set
oint independently from the feedback controller, is an effective solution to this problem. This study makes a contribution by
esigning a fractional set-point filter that can be used in a normal two-degree-of-freedom control scheme. The designed strategy
chieves great results in terms of low settling time and reduced overshoot simultaneously. This differs from the traditional set-point
4
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Fig. 2. Block diagram for set point filter type 2FOPID based closed loop drug concentration control.

ilter design, which employs a low-pass filtering strategy to reduce overshoot at the cost of rise time [40]. Fig. 2 illustrates the set
oint filter type 2FOPID control scheme for closed loop drug concentration control.

In Fig. 2, 𝑅𝐷(s) is the reference drug concentration which is to be maintained at the tumor site for the whole period of treatment
rocess. The configuration and magnitude of 𝑅𝐷(s) is critical, as the eradication of malignant cells depends on the amount of drug

infused at the tumor site. Also, F(s) is the set point filter which will improve the set point tracking capability and C(s) improves the
isturbance rejection capability of the overall closed loop system.

𝐹 (𝑠) =
1 +

(

1 − 𝑐1
)

𝑇𝐼𝑠𝛹 +
(

1 − 𝑐2
)

𝑇𝐼𝑇𝐷𝑠𝛹
{

𝑠𝜈

𝑁𝑠𝜈+1

}

1 + 𝑇𝐼𝑠𝛹 + 𝑇𝐼𝑇𝐷𝑠𝛹
{

𝑠𝜈
𝑁𝑠𝜈+1

} (12)

𝐶 (𝑠) = 𝐾𝑃

{

1 + 1
𝑇𝐼𝑠𝛹

+ 𝑇𝐷
{ 𝑠𝜈

𝑁𝑠𝜈 + 1

}

}

(13)

Further, fractional order integral and differential operator is implemented using ‘‘Oustaloup approximation’’. This approach
employs the 2M +1 order filter that suits inside the defined frequency band

[

𝛼𝐿, 𝛼𝐻
]

. The fractional order transfer function of
power 𝜇 is expressed by Eq. (14) [41].

𝑠𝜇 = 𝐺
𝑀
∏

𝑘=−𝑀

(

𝑠 + 𝛼𝑧𝑘
)

(

𝑠 + 𝛼𝑝𝑘
) (14)

Here, G is the gain, 𝛼𝑧𝑘 and 𝛼𝑝𝑘 represents the zero and pole frequencies. These zero and pole frequencies are mathematically
xpressed by Eqs. (15) and (16).

𝛼𝑧𝑘 = 𝛼𝐿

(

𝛼𝐻
𝛼𝐿

)

𝑘+𝑀+ 1
2 (1−𝜇)

2𝑀+1
(15)

𝛼𝑝𝑘 = 𝛼𝐿

(

𝛼𝐻
𝛼𝐿

)

𝑘+𝑀+ 1
2 (1+𝜇)

2𝑀+1
(16)

It is worth mentioning that researchers endorse the design of chemotherapy drug scheduling for a treatment period of 84
ays (i.e., 12 weeks) [11]. Therefore, in order to demonstrate the efficiency of the proposed W2FOPID controller for optimal
hemotherapeutic drug scheduling, the treatment period of 84 days is considered in the present work.

. Whale Optimization Algorithm (WOA)

Recent advancements in optimization techniques provide an adequate scope for solving the problems of controller tuning.
everal nature-inspired approaches are becoming increasingly prevalent in optimization [42–44] and controller tuning applications
45,46]. WOA has received widespread attention among the research communities across multiple disciplines due to its simplicity,
daptability, computational efficiency, and intermittent nature [28]. It is relatively easy to apply and effective when compared to
ther swarm intelligence methods, making it a good choice over other nature-inspired algorithms. The algorithm necessitates fewer
ontrol parameters; in practice, only one parameter (time interval) must be fine-tuned.

In general, a single optimization method is incapable of answering all optimization problems, in view of the ‘no free-lunch’
heorem [19,47]. Taking this into account, various optimization techniques were employed in this work to select the most
ppropriate technique for optimum 2FOPID controller tuning. Specifically, the WOA was used for fine-tuning of 2FOPID controller
arameters, and its performance was compared with GA, SA, GWO, and KH. Whale Optimization Algorithm (WOA) is an optimization
pproach, enthused by the ‘‘bubble-net’’ hunting strategy of humpback whales [28]. The humpback whales hunt schools of krill or
mall fishes near the surface. They swim nearby the prey, inside a shrinking circle and along a spiral-shaped track, at once. This in
urn creates distinct bubbles along a circle or ‘‘9’’-shaped path. To mimic this performance in WOA, a probability of 50% is provided
5
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to select among the shrinking encircling phenomena and the spiral-shaped pathway for updating the whale’s position. The encircling
prey behavior is demonstrated by Eqs. (17) and (18).

�⃗� = |

|

|

𝐶. ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋∗ (𝑡) − ⃖⃖⃖⃖⃖⃖⃖⃗𝑋 (𝑡)||
|

(17)

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋 (𝑡 + 1) = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋∗ (𝑡) − 𝐴.�⃗� (18)

Here, the notations are

t : Current iteration
𝐴, 𝐶 : Coefficient vectors
�⃗� : Position vector
𝑋∗ : Position vector of the best solution obtained so far

Furthermore, 𝐴 and 𝐶 are given by

𝐴 = 2.𝑎.𝑟 − 𝑎 (19)

𝐶 = 2.𝑟 (20)

Here, 𝑎 is linearly decreased from 2 to 0 over the course of iterations (in both exploration and exploitation phases) and 𝑟 is a
random vector in [0, 1]. Generally, 𝐴 is a random value in the interval [−𝑎, 𝑎] where 𝑎 is decreased from 2 to 0 over the course of
iterations. The Bubble-net attacking mode (or the exploitation phase) is demonstrated by Eqs. (21) and (22).

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋 (𝑡 + 1) = �⃗�′.𝑒𝑏𝑙 . cos (2𝜋𝑙) + ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋∗ (𝑡) (21)

Here, the notations are as follows:
�⃗�′ = |

|

|

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋∗ (𝑡) − ⃖⃖⃖⃖⃖⃖⃖⃗𝑋 (𝑡)||
|

= Distance of the 𝑖th whale to the prey (best solution obtained so far),
b = a constant for defining the shape of the logarithmic spiral,
l = random number in [−1, 1].
It is to be noted that the ‘‘.’’ in the above equations represents element-by-element multiplication. Assuming a probability of 0.5
for selecting among either the shrinking encircling mechanism or the spiral model for position update, we take the following
mathematical model:

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋 (𝑡 + 1) =

{

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋∗ (𝑡) − 𝐴.�⃗� 𝑖𝑓𝑝 < 0.5
�⃗�′.𝑒𝑏𝑙 . cos (2𝜋𝑙) + ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋∗ (𝑡) 𝑖𝑓𝑝 ≥ 0.5

}

(22)

where p = a random number in [0, 1].
The exploration phase (or the searching phase) is demonstrated by Eqs. (23) and (24).

�⃗� = |

|

|

𝐶.⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋𝑟𝑎𝑛𝑑 − �⃗�
|

|

|

(23)

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋 (𝑡 + 1) = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋𝑟𝑎𝑛𝑑 − 𝐴.�⃗� (24)

Here, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋𝑟𝑎𝑛𝑑 is a random position vector (i.e., a random whale) chosen from current population.
The flow chart in Fig. 3 shows the methodology of WOA. Further, there are certain objectives that need to be satisfied while

evaluating the optimum values of 2FOPID parameters [17]. These objectives are enlisted below:

1. The population of cancer cells should be as low as possible, at the end of the treatment. Prior to the initiation of the treatment
process, the population size for P cells is equal to 2 × 1011. However, while designing the closed loop scheme, the reference
value for reduction in the population of P cells is considered to be greater than or equal to 65%.

2. Like P cells, the population of the Q cells also reduce at the end of the treatment. The initial population size for Q cells is
8 × 1011. The reference value for reduction in the population of Q cells is considered to be greater than or equal to 55%.

3. The population of normal cells indicates the patient’s physiological condition during treatment. The minimum value
considered in this work is 1 × 108.

4. The value of toxicity should be less than 100, as given in Eq. (8).

5. The value of drug concentration at the tumor site should be maintained between 10 to 50 mg/ml.
In the present work, the population size is set to 30. The maximum number of iterations (set to 100) is chosen as the stopping

criteria. The population is initialized randomly using uniform distribution.

5. Simulation results

Here, W2FOPID based scheduling mechanism has been proposed to hold the dosage of the drug to its required level. The
W2FOPID controller is built with the help of approximation of Oustaloup fifth-order filter with range of frequencies

[

10−3, 103
]

rad/s. The block diagram representation of WOA tuned 2FOPID based drug scheduling during chemotherapy is illustrated in Fig. 4.
6
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P

c
F

Fig. 3. Flowchart for Whale Optimization Algorithm.

Optimizing the controller parameters involves choosing a suitable cost function to be optimized. In this study, a combination of
cells and average toxicity is taken as the cost function (H) to be minimized, expressed by Eq. (25) where n signifies the number

of design constraints.

𝐻 =
(

𝑤1 × 𝑃
(

𝑡𝑓
))

+
(

𝑤2 ×
{

1
𝑡𝑓 ∫

𝑡𝑓

0
𝑇 (𝑡) 𝑑𝑡

})

(25)

where the sum of the weights 𝑤1 and 𝑤2 should be equal to 1 [16] and given by Eq. (26).
𝑛
∑

𝑗=1
𝑤𝑗 = 1 (26)

WOA has been employed to estimate the 2FOPID design variables, i.e., to tune the 2FOPID controller parameters. In addition, a
omparative analysis has been carried out to compare the tuning of the 2FOPID parameters via WOA with GA, SA, GWO, and KH.

ig. 5 shows the convergence graphs of various techniques employed for controller tuning. Here, the bounds of the design variables

7
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Fig. 4. WOA tuned 2FOPID based drug scheduling during chemotherapy.

Table 2
Quantitative comparison of all the optimization techniques.

Algorithm Fitness value (×1010) NFEsa

SA 2.8221651 300
GA 2.8189952 800
KH 2.8190643 2000
GWO 2.8189949 200
WOA 2.8189946 60

aNFEs represent Number of Function Evaluations.

i.e., tuning parameters), population size, stopping condition and cost function are assumed to be the same. As per the literature
13,17–19], there is no thumb rule for determining the lower and upper bounds. In this study, rigorous experimentation is performed
sing the trial and error method for deciding the bounds. Firstly, the critical values of the gain parameters and fractional power are
valuated for which the system will give a stable response. Thereafter, based on these critical values, the bounds are decided. The
ounds considered for the tuning purpose are 𝐾𝑃 ∈ [1, 5] , 𝐾𝐼 ∈ [1, 5] , 𝐾𝐷 ∈ [0, 1],𝜓 ∈ [0, 1],𝜐 ∈ [0, 1] , 𝑐1 ∈ [0, 1] , 𝑐2 ∈ [0, 1], N∈ [0,
].

In Fig. 5, the curves represent the plot of the fitness value of the cost function (H) versus the number of iterations. The plots reveal
hat WOA is very competitive and exhibits good convergence behavior compared to other state-of-the-art optimizers. Three different
onvergence behaviors can be observed from Fig. 5. Firstly, it is observed that the convergence speeds up with the increasing number
f iterations for all the optimization algorithms. Secondly, we observe rapid convergence from the early stages of iterations for
OA and GWO. The convergence curves of WOA and GWO demonstrate that the favorable areas of the solution space are exploited

uickly and easily. Thirdly, we observe convergence towards the global optima only in the final iterations for KH optimizer. This
ehavior is most likely because KH is unable to find a good solution in the early iterations, and hence it continues searching in
he solution space to converge at the global optimum. It is revealed that KH (Fig. 5(c)) is unable to estimate the optimal region
ven after the fulfillment of the specified stopping criterion. On the other hand, GA (Fig. 5(b)) converges around 70th iteration; the
robable reason might be the inconsistent parametric settings of GA. SA (Fig. 5(a)) converges to its minimum value of cost function
ithin 15 iterations, but the fitness value is higher than that of GA. This may be due to the improper selection of an appropriate

ooling schedule. However, WOA (Fig. 5(e)) manages to estimate the optimum region and is relatively efficient, as it takes only 3
enerations to find the optimum solution. WOA provides a high convergence rate with considerable precision as compared to GWO
Fig. 5(d)).

Further, Table 2 shows the quantitative comparison of all the optimization techniques in terms of fitness values and Number of
unction Evaluations (NFEs). From Table 2, it is quite evident that WOA beats other algorithms in terms of fitness value and NFEs.
ence, it may be concluded that for the present application, WOA is the most appropriate optimization technique among others.

Usually, the concentration of the drug must be maintained at the specified level for effective anticancer therapy. This is
ccomplished by utilizing pre-set nature of step signal, defined as step input. As mentioned earlier, the value of drug concentration
hould be taken between 10 to 50 mg/ml. For this purpose, three different reference points S1 = 12.08, S2 = 12.17, and S3 = 11.66
re considered for drug concentration [24]. The value of drug concentration is relatively low, as researchers are investigating the
ffect of ‘comparatively lower doses with longer period’ (called Metronomic therapy) instead of the traditional ‘comparatively higher
ose for shorter period’ [17]. Initially, the W2FOPID controller is optimized for set-point value of S1 = 12.08. After obtaining the
ptimum controller parameters, these parameters can be used for different set points, without any re-tuning. Inspecting the controller
or various set points verifies its capability to handle process uncertainties. The performance comparison of the proposed W2FOPID
ontroller (for 12.08 reference point) with IPD, IMC and FOIMC [24] is illustrated in Fig. 6. Also, Table 3 shows the parametric values
8
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Fig. 5. Convergence graphs of various optimization techniques for tuning of 2FOPID: (a) SA (b) GA (c) KH (d) GWO (e) WOA.

Table 3
Parametric values of designed controllers for drug concentration control.

Controller 𝐾𝑃 𝐾𝐼 𝐾𝐷 𝜓 𝜐 𝑐1 𝑐2 N Filter coefficient

𝜂 (for IMC) 𝛽 (for FOIMC)

IPD [17] 0.34 0.162 0.273 – – – – – – –
IMC [24] – – – – – – – – 0.72 –
FOIMC [24] – – – – – – – – – 0.97
W2FOPID (proposed) 4.25 4.95 0.105 0.9978 0.9773 0.058 0.000512 0.13 – –
9
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Fig. 6. Performance assessment of W2FOPID controller for drug control.

Table 4
Performance comparison of controllers on the basis of time response specifications.

Controllers % O.S. (Overshoot) 𝑇𝑠 (Settling time in days) 𝑇𝑟 (Rise time in days)

IPD [17] 5.9571 14.5691 4.8116
IMC [24] 8.1525 9.2951 1.8367
FOIMC [24] 3.5046 7.3769 1.9540
W2FOPID (proposed) 0 2.6938 1.5497

for all the controllers designed for drug concentration control. In addition, Table 4 shows the comparison of different controllers
with reference to various time response specifications.

From Table 4, it is quite obvious that the proposed W2FOPID controller improves the settling time and rise time with 0%
vershoot among other controllers. This validates that the proposed controller exhibits satisfactory behavior in the steady and
ransient states. Moreover, an implementation of the proposed W2FOPID for three different step inputs [24] is shown in Fig. 7.
nitially the error (difference between the measured and desired drug concentrations) is high, so a high drug dose is infused to the
atient at the beginning of the treatment. Such an action will initiate the killing of the P cells and Q cells. When the error is small,

the infused drug dose is also reduced and it settles down to a minimum value for the entire treatment period as shown in Fig. 7.
10
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Fig. 7. Performance analysis of W2FOPID for set points S1, S2 and S3.
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Table 5
Quantitative analysis of proposed controller for uncertainty in model parameters (a, m, n and 𝜌).

Model parameters % Reduction in P cells % Reduction in Q cells Remaining Y (normal) cells

Optimum values 70.17% 57.13% 1.2263 × 108

Parameters vary by ±5% 70.15% 57.10% 1.2264 × 108

Parameters vary by ±10% 70.10% 57.09% 1.2266 × 108

Parameters vary by ±20% 70.05% 57.00% 1.2267 × 108

Further, the efficiency of the designed W2FOPID controller is inspected by comparing its performance with IPD, IMC and
OIMC [24] for servo problem. As the variations in set-point value will totally change the process dynamics, an exhaustive study of
et-point monitoring is conducted by acknowledging three reference values. Fig. 8(a) demonstrates a comparison of all the controllers
or set-point monitoring. It is evident that W2FOPID greatly reduces overshoot and settling time and, hence, performs better than
ther controllers. Fig. 8(b) shows the corresponding control signals. Further, deviations for P, Q and Normal (Y ) cells are presented

in Fig. 8(c), (d) and (e). The value of Integral Absolute Error (IAE) for W2FOPID is 13.266, which is less as compared to IPD (64.9),
IMC (17.71), and FOIMC (17.30).

Fig. 9 demonstrates the comparison of all the controllers based on the left-over cell populace. From Fig. 9, it is evident that in
case of W2FOPID, the remaining cancerous cells are less in number and the number of normal cells is comparatively high.

In addition, the robustness of the proposed W2FOPID controller is investigated for parametric uncertainty and noise suppression.
The articulated cancer model is utilized to evaluate the optimal medication scheduling procedure. The model parameter values are
dependent on the person’s metabolic conditions as well as on the tumor’s traits. For the duration of therapy, these values are deemed
to be same. However, the controller should work efficiently against parametric uncertainties. So, uncertainties of ±5%, ±10%, and
±20% are considered in the model parameters (a, m, n and 𝜌). The quantitative analysis of proposed controller against parametric
uncertainty for S3 = 11.66 is given in Table 5. From Table 5, it can be concluded that the proposed W2FOPID controller is able
to handle the parametric uncertainty efficiently. Furthermore, the variations of ±5%, ±10%, and ±20% are also considered in the
model parameter 𝜆 (i.e., drug decay) for S3 = 11.66. The performance of the proposed controller in order to handle this uncertainty
is recorded in Fig. 10. From the figure it can be observed that W2FOPID efficiently manages the variations in model parameter
𝜆. The remaining population of Y cells for ±5%, ±10%, and ±20% uncertainties are 1.2265 × 108, 1.2268 × 108, and 1.2270 × 108

espectively. It is evident from Table 5 and Fig. 10 that the proposed W2FOPID control strategy is favorably stable and robust despite
he uncertainties in various model parameters on account of its closed-loop behavior. We observe that despite variations in model
arameters, the number of normal (Y ) cells is nearly same as computed with optimal model parameters (without any uncertainty).
n addition, parametric uncertainties have no significant impact on the reduction in P cells and Q cells, thereby exhibiting a robust
ehavior of the proposed W2FOPID controller.

Further, in order to test the robustness of the proposed controller towards noise suppression, a sensor noise of amplitude −0.06 to
0.06 is introduced in the feedback path of the closed-loop chemotherapeutic system. Fig. 11 shows the drug concentration control
y various control schemes with reference to noise. It is evident from the simulation results that W2FOPID rejects the sensor noise
ffectively. Also, from the Integral Square of Errors (ISE) values (Fig. 12), it is validated that W2FOPID has superior ability for noise
uppression, in contrast to IMC and FOIMC.

. Discussion

Cancer cell eradication depends on the medicine dosage delivered to the patient at the tumor location. A high medicine dosage
liminates tumor cells more quickly, but it also raises the level of toxicity in the patient’s body. If the degree of toxicity exceeds
particular barrier, the number of normal cells rapidly declines, endangering the person’s life. In this work, we proposed a

ombination of fractional calculus and integer order two-degree-of-freedom PID (2FOPID) for precise concentration control of
ytotoxic chemotherapeutic drug at the tumor location. The WOA was chosen to determine the optimal values of the controller
ettings after a thorough quantitative evaluation with GA, SA, KH, and WOA. It has been observed that WOA needs 3 iterations to
onverge and also has a lower objective function value in comparison to other algorithms.

Moreover, the performance of W2FOPID controller is compared with previously designed controllers [17,24]. The results reveal
hat the W2FOPID controller precisely controls the drug concentration when compared to IPD, IMC and FOIMC controllers. The
oncentration reaches to its threshold value in 1.4633 days and settles to its final value in 3.7107 days. It is also noticed that
he population of P cells decreases to its minimum value with less value of toxicity. Moreover, the efficiency of the proposed
ontroller has been confirmed by comparing its performance with other controllers (IMC and FOIMC) for set-point tracking and
oise suppression. It is shown that W2FOPID accurately tracks the variation in set-point (as verified from the values of IAE) and
ffectively suppresses noise (as evident from the ISE values). In addition, it is worth mentioning that the proposed control strategy
s substantially stable and effective even with huge uncertainties in the model. The simulation results demonstrate that regardless
f the model uncertainties (from small range of ±5% to large range of ±20%), the % reduction in cancer cells is nearly same as
btained with optimum model parameters with no uncertainty.

Nonetheless, this research is subject to several limitations. In real-time scenario, the chemotherapeutic treatment also depends on
he patient’s metabolism. Therefore, there may be significant deviations between simulation results and real-time data. Uncovering

f metabolic alterations and analyzing disruptive metabolic interventions are paradigms to advance our knowledge of cancer growth
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Fig. 8. Comparison of various controllers for set-point tracking.
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Fig. 9. Comparative analysis of controllers with respect to left over population of cells.

Fig. 10. Variations in P cells and Q cells for uncertainty in model parameter 𝜆.

and develop robust control policies for treatment. In addition, the mathematical model examined in this work is semi-rigorous since
it did not incorporate the protein binding limitations for drug delivery. The suggested controller efficacy might also be assessed
on a rigorous cancer patient model that incorporates all genetic and morphological variables of the patient. Previous research has
indicated that discoveries based on mathematical models may be clinically evaluated with good outcomes. However, mathematical
14
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Fig. 11. Drug concentration.

Fig. 12. ISE comparison for noise suppression.

models have the following drawbacks: (1) Inconsistency in the effectiveness of a mathematical model-based research against real-
time therapy and, (2) The prediction potential of a mathematical model is determined by its correctness, physiological assumptions,
and availability of dataset. Because of technological advancements, increasingly intricate discoveries into tumor biology are being
made, such as unicellular genetics, chromosomal diversity, micro-environment, and so on. To fill the space between the precise
mathematical model and real patient, all these elements must be included into model equations. Moreover, in chemotherapy, there
are high chances for a specific volume of cancer cells to be resistant and/or build resistances during treatment. Therefore, future
works may integrate the cancer patient model with these resistances to obtain more realistic results.

7. Conclusion

In this article, a two-degree-of-freedom fractional order PID controller (2FOPID) with a set point filter is proposed for drug
concentration control during chemotherapy. The introduction of the set point filter has improved the set point tracking performance
of the proposed control scheme. The optimum values of the design parameters of 2FOPID are estimated using WOA, leading to
W2FOPID. The convergence behavior of WOA is compared with that of GA, SA, KH, and GWO. Furthermore, the performance of
the W2FOPID is compared with that of the IMC, IPD, and FOIMC controllers for set point tracking. The proposed method effectively
determines the suitable drug concentrations in every interval without violating the constraints. A robustness analysis by varying
model parameters in the range of ±5% to ±20% is performed. Results indicate that the variation in reduction in P cells, Q cells, and
Y cells is minimal in the entire deviation range. It shows the stable performance of the proposed W2FOPID controller in single-drug
scheduling for cancer treatment. Furthermore, the proposed controller also exhibits better noise suppression capabilities (with a
minimum ISE) as compared to IMC and FOIMC controllers. On the whole, it can be established that the W2FOPID controller is
effective, accurate, and robust for drug concentration control. These results will assist oncologists and therapists to enhance the
drug delivery process via optimal control of drug dosage. In future, we will try to apply the proposed control scheme on real-time
data with a more rigorous mathematical model of a cancer patient. Further, the performance of the proposed W2FOPID control
scheme for multi-drug scheduling is worth researching.
15
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