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Abstract: A mesopore-rich, hierarchically porous carbon monolith was prepared by carbonizing a poly-
isocyanurate network derived by thermal rearrangement of a polyurea network. The initial polyurea net-
work was synthesized by the cross-linking polymerization of tetrakis(4-aminophenyl)methane (TAPM)
and hexamethylene diisocyanate (HDI) in the sol-forming condition, followed by precipitation into
nanoparticulate solids in a nonsolvent. The powder was molded into a shape and then heated at
200–400 ◦C to obtain the porous carbon precursor composed of the rearranged network. The thermol-
ysis of urea bonds to amine and isocyanate groups, the subsequent cyclization of isocyanates to
isocyanurates, and the vaporization of volatiles caused sintering of the nanoparticles into a monolithic
network with micro-, meso-, and macropores. The rearranged network was carbonized to obtain
a carbon monolith. It was found that the rearranged network, with a high isocyanurate ratio, led
to a porous carbon with a high mesopore ratio. The electrical conductivity of the resulting carbon
monoliths exhibited a rapid response to carbon dioxide adsorption, indicating efficient gas transport
through the hierarchical pore structure.

Keywords: polyurea network; hierarchical pore; porous carbon; carbon monolith; moldable carbon

1. Introduction

Carbon is critical in catalysis, energy storage and conversion, and molecular separa-
tion. Fabricating carbon with a hierarchical pore structure is essential for rapid molecular
transport between the inner pore surface and the bulk medium [1–6]. The hierarchical pore
structure consists of macropores (>50 nm), mesopores (2 nm < d < 50 nm), and micropores
(<2 nm) that are three-dimensionally interconnected [7]. The microporous structure gives a
high specific surface area for the active sites, and the macropores are responsible for the
molecular transport of a larger volume. Meanwhile, it must contain a sufficient ratio of
mesopores to facilitate molecular diffusion between the macropores and micropores [8,9].
In general, the micropores are developed in typical carbonization processes, and the macro-
pores can be produced by employing the morphology of the carbon precursors that are
greater than tens of nanometers. In contrast, the formation of mesopores is often insuffi-
cient in the usual carbonization of organic materials [10,11]. New pre-carbon materials that
provide structures with mesopores, as well as micropores and macropores, should enable
the exploitation of valuable properties of carbon [12,13].

Many approaches to introduce mesopores into carbonaceous material employed inor-
ganic mesoporous templates [14,15]. However, this requires chemical etching processes to
remove the template [16–18], which often result in undesired chemical structure formation, or
the deformation or collapse of the pore structure. In addition, the problems in the uniformity
of the pore structure may become severe when the material synthesis is scaled up.
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Pore templates may be avoided if a carbon precursor forms a pore structure that is
sufficiently stable until carbonized at elevated temperatures. In this regard, thermally
rearrangeable polymers, consisting of a thermostable polymer matrix with thermally
decomposable segments, are ideal candidates [19–21]. The labile segments are dissociated
and evaporated, generating pores within the polymer matrix in the temperature range
before carbonization.

The polyurea network (UN) [22,23], prepared from cross-linking polymerization of
an aromatic tetra-amine and an aliphatic diamine, has been reported to show thermal
rearrangement chemistry, comprising the dissociation of the urea bonds to amines and
isocyanates, and the trimerization of isocyanates into cyclic isocyanurate rings [24–26].
During the process, micro- and mesopores are generated via the expulsion of aliphatic
moieties. The rearranged polyurea network (RUN) contains many isocyanurate nodes that
are resistant to high temperatures up to 500 ◦C.

In addition, the UN can be produced in a nanoparticulate form using its sol-gel
processability. Thanks to their thermal rearrangement chemistry, the powders may be
molded and sintered in a designed shape. The sintering processability of the UN and
RUN may allow carbon to be molded in a non-powdery form if they can be carbonized
successfully. This may allow binders or solvents to be avoided, which would cause pore
blockage and decrease the surface area [27,28], to produce a non-powdery carbon object.
The nanoparticulate morphology of the carbon precursors with thermal sintering ability
also provides a facile route to the macroporous structure in their carbonized product.

We report the synthetic methods for mesopore-rich, hierarchical porous carbon mono-
liths from polyurea networks. First, the thermal treatment conditions for the UN were
varied to obtain the RUN. Next, the chemical structural details and the pore characteristics
of the RUN were investigated. The RUNs were then carbonized, and the porosities of the
resultant carbon were analyzed. As a result, the carbon monoliths exhibited a higher meso-
pore ratio when obtained from the RUN with a high isocyanurate content, suggesting that
the presence of thermostable isocyanurate nodes is crucial for the generation of mesopores
in the carbonized RUN (CRUN). Lastly, the carbon monolith exhibited significant electrical
conductivity, which responded rapidly to the carbon dioxide adsorption and desorption
on its pore surface. The rapid conductivity response to switching the atmospheric gas
molecules was ascribed to the hierarchical porosity of the carbon monolith.

2. Materials and Methods
2.1. Materials

TAPM was prepared by the previously reported method [29]. HDI (99%, Sigma-
Aldrich, St. Louis, MO, USA) was freshly distilled under reduced pressure. Anhydrous
N, N-dimethylformamide (DMF) (99.8%, Sigma-Aldrich, St. Louis, MO, USA) was used
without further purification.

2.2. Synthesis of CRUNs

In a typical run for the synthesis of CRUN, TAPM (0.17 mmol and 0.064 g) and the
HDI (0.34 mmol and 0.056 g) were dissolved in 1.59 mL and 1.41 mL of DMF, respectively.
The TAPM solution was drop-wisely added to the HDI solution at room temperature under
a nitrogen atmosphere. The mixture was stirred for 60 h to yield UN sol. The UN sol was
precipitated in copious amounts of acetone. The precipitate was washed three times with
acetone. The powdery solid was isolated by filtration and dried for 48 h at 150 ◦C in a
vacuum oven (VOS-310C, Sunil Eyela, Sungnam, Korea). A UN monolith was prepared
by pressing 100 mg of the UN powder. The UN monolith was thermally treated in a
programmable muffle furnace (Daihan FX-27, Daihan Scientific, Wonju, Korea), yielding
the RUN monolith. Each UN monolith was heated to 300, 320, 340, and 360 ◦C at a rate
of 2 ◦C min−1 under a nitrogen atmosphere, kept at the final temperature for 12 h, and
then cooled rapidly to room temperature. The resulting RUN monoliths were denoted as
RUN300, RUN320, RUN340, and RUN360, depending on the final temperature. The RUN
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monoliths were further carbonized in a programmable tube furnace (Daihan FT830, Daihan
Scientific, Wonju, Korea), yielding the CRUN monoliths. All RUN monoliths were heated
to 800 ◦C at a rate of 2 ◦C min−1 under a nitrogen atmosphere, kept at the final temperature
for 1 h, and then cooled rapidly to room temperature. The resulting CRUN monoliths were
denoted as CRUN300, CRUN320, CRUN340, and CRUN360.

2.3. Characterizations

Scanning electron microscope (SEM) images were collected on SU 70 (Hitachi, Tokyo,
Japan). The SEM samples were dried in a vacuum for 24 h and sputtered with platinum for
60 s using the ion sputter (E-1030, Hitachi, Tokyo, Japan). Transmission electron microscope
(TEM) images were collected on Tecnai F20 ST (FEI, Hillsboro, OR, USA) for the 100 nm-
thick sections prepared by the focused ion beam (FIB) using Versa 3D DualBeam (FEI,
Hillsboro, OR, USA). X-ray photoelectron spectroscopy (XPS) experiment was conducted
with ESCALAB 250XI (Thermo Fisher Scientific, Waltham, MA, USA), equipped with a
14.5 kV energy source in an ultrahigh vacuum condition. Nitrogen adsorption–desorption
isotherms were recorded on an ASAP 2020 volumetric adsorption apparatus (Micromeritics,
Norcross, GA, USA) at 77 K. Before analysis, the samples were degassed in the degassing
port of the adsorption analyzer at 473 K for at least 12 h. The surface area, pore volume, and
pore size distribution were calculated using ASAP 2020 v3.00 software. Fourier transform
infrared (FT-IR) spectroscopy was carried out on a Nicolet iS10 (Thermo Fisher Scientific,
Waltham, MA, USA) for the samples in KBr pellets. The electrical conductivity of the
carbon, in response to CO2 adsorption, was measured on a homemade apparatus, as shown
in the Supplementary Information (Figure S1).

3. Results and Discussion

The carbon monolith was prepared by the procedure illustrated in Figure 1. The
polymerization of TAPM and HDI in DMF (Figure 1a) maintained homogeneous sol until
the polymerization mixture reached the gelation time (tg) (~80 h) [30–32]. The UN was
obtained in nanoparticulate forms, by precipitating the polymerization mixture into acetone
approximately 60 h after starting the polymerization. The SEM image of the UN powder
shows the nanoparticulate morphology (Figure 1a).

The powder was pelletized into a disk shape under pressure and treated thermally
in two steps, for rearrangement and carbonization, respectively (see Experimental section
for details). Optical photographs of the powdery UN and the disk-shaped UN, RUN,
and CRUN are shown in Figure 1a. The initial UN disk was brittle, but hardened after
rearrangement by heating at 200 to 400 ◦C. It is known that the urea bonds dissociate
into amines and isocyanates, and the isocyanates cyclize to form isocyanurate (Figure 1b)
in this temperature range [33,34]. We varied the rearrangement temperature and time,
and then analyzed the chemical structure and porosity of the resultant RUNs. Once the
rearrangement process finished, the resultant network was heated slowly to a carbonization
temperature to obtain the CRUNs.

The thermogravimetric analysis (TGA) curve of the UN shows about 40% weight loss,
corresponding to the weight fraction of the hexamethylene moiety, in the range of 300 to
400 ◦C (Figure S2). FT-IR confirmed the chemical transformation from the UN into the RUN.
The isocyanurate peak appeared near 1710 cm−1 in the RUNs, with the intensity varying
with the rearranging temperature (Figure 2a) [25]. Alkyl moieties were removed nearly
entirely in the samples treated above 340 ◦C, as indicated by the disappearance of C-H
stretching bands at 2930 and 2860 cm−1. Nevertheless, the intensities of the isocyanurate
peak at 1710 cm−1, relative to a phenyl C=C stretching peak at 1605 cm−1, varied with the
rearrangement temperature, indicating that the thermal conditions determine the ratio of
isocyanurate rings in the rearranged network. As judged from the IR spectra, RUN340,
obtained by heating the UN at 340 ◦C for 12 h, contained the highest ratio of isocyanurate,
while completely removing the alkyl moieties.
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Figure 1. Schematic illustration of the preparation of the UN and its transformation into RUN and
CRUN. (a) The polymerization of TAPM and HDI to obtain the UN in the sol state. Optical pho-
tographs of the powdery UN were obtained by precipitating the UN sol into acetone, the disk-shaped
UN (diameter 1.3 cm and thickness 0.5 cm), RUN (diameter 1.1 cm and thickness 0.4 cm), and CRUN
(diameter 0.9 cm and thickness 0.3 cm). The SEM image shows the nanoparticulate morphology
of the UN powder. (b) A major change in chemical structure occurs with the rearrangement of
urea networks.

XPS for the RUN gave consistent results with FT-IR. The N1’s peak appeared as a
single peak at 400.1 eV in the UN, corresponding to the urea nitrogens. In contrast, an
additional N1 peak appeared at 398.4 eV in RUN340, corresponding to the isocyanurate
nitrogens (Figures 2b and S3–S6) [35]. A quantitative analysis was performed to investigate
the ratio of isocyanurate in the RUN, according to the rearrangement temperature and time
(Figure 2c and Table S1). The UN sample was heated to a final temperature of 300, 320, 340,
or 360 ◦C, and then remained there for 1, 12, or 24 h. Figure 2c,d show that the isocyanurate
nitrogen ratio of the RUN reached the maximum when obtained by heating at 340 ◦C for
12 h. Heating below 340 ◦C resulted in a low isocyanurate ratio, with incomplete removal
of the alkyl moieties. Heating higher than 340 ◦C also reduced the isocyanurate content,
likely caused by the facilitated removal of isocyanate-bearing groups at temperatures that
were too high [36].
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Figure 2. Chemical compositions of the RUNs varying with the thermal treatment conditions.
(a) FT-IR spectra of the RUNs treated at different final temperatures for 12 h. (b) XPS N1’s spectra of
the UN and RUN340. (c) Isocyanurate ratio of RUNs prepared with different final temperatures for
durations of 1, 12, and 24 h. (d) Isocyanurate ratio of RUN samples prepared for different durations
at 340 ◦C.

The porosities of the UN and RUN were measured from the nitrogen adsorption–
desorption isotherms shown in Figure 3a. The desorption isotherms showed different
hysteresis types for the UN and RUN; the UN showed H1 hysteresis at high relative pres-
sure, and the RUNs (except for RUN300) showed H4 hysteresis, indicating that the thermal
rearrangement process developed micropores and mesopores. The non-linear density
functional theory (NLDFT)-based pore distribution curves are shown in Figure 3b. The UN
mainly possessed pores in the macropore range, likely resulting from the nanoparticulate
morphology. RUN300 lacked porosity, which may be accounted for by the loss of the
gaps between the particles via particle sintering, through reversible dissociation and refor-
mation of urea bonds. The formation of isocyanurate rings and the evaporation of alkyl
moieties must have been too slow to fix the initial morphology at the low rearrangement
temperature. RUN320, RUN340, and RUN360 exhibited nitrogen adsorption in the range
of low relative pressures (<0.1 P P0

−1). This result and the data in Figure 2a show evidence
that the microporosity is developed by the urea bond rearrangement, accompanied by
the evaporation of hexamethylene moieties [25,37,38]. The RUN340 and RUN360 have
exceptionally high volumes of mesopores lower than 10 nm and micropores near 2 nm than
other samples (Figure 3b).
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Figure 3. The change in pore characteristics in the transformation of RUNs to CRUNs. (a) N2

adsorption–desorption isotherms of the RUNs and a UN. (b) NLDFT pore distribution curves of the
RUNs and a UN. (c) N2 adsorption–desorption isotherms of the CRUNs and a directly carbonized
UN. (d) NLDFT pore distribution curves of the CRUNs and a directly carbonized UN.

The RUNs were carbonized by heating to the final temperature of 600, 700, 800, or
900 ◦C, and remained for 1 h. The mesopore ratio of the CRUN from RUN340 reached
the maximum when carbonized at 800 ◦C. In the meantime, the electrical conductivity
increased with the carbonization temperature (Figure S7a,b). Since we aimed to produce
carbon with a high mesopore volume, we set the carbonization condition to 800 ◦C (see
Supporting Information for the porosity and electrical conductivity of the CRUNs in
different carbonization conditions).

Figure 3c,d show the nitrogen adsorption–desorption isotherms and the NLDFT
pore distribution curves for the CRUNs from RUNs 300, 320, 340, and 360. The sorption
isotherms of CRUNs showed type H4 hysteresis, similar to the RUNs. The pore size of the
CRUNs is distributed over a wide range between subnanometer to 100 nm, suggesting
that the carbon monoliths possessed hierarchical porosity. Direct carbonization of the UN
without the rearranging step resulted in negligible porosity in the micro- and mesopore
range, demonstrating that the formation of a stable pore structure of the carbon precursor in
the intermediate temperature range was critical. CRUN340 showed the highest mesopore
volume (0.065 cm3/g) and surface area ratio (11%) among the CRUNs (Table S2). CRUN360
showed a lower micro- and mesopore volume than CRUN340, which contrasts with the
higher microporosity in its precursor RUN360. This result indicates that the higher content
of thermo-resistant isocyanurate nodes in RUN340 than in RUN360 prevented the collapse
of pore structure during the carbonization process.
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The electron microscopic images (Figure 4) show that the hierarchical pore structures
developed in the transformation of the UN to RUN, and then to CRUN, consistently with
the porosity analysis. The images also show that the CRUN is a monolithic solid. The
SEM images of the UN, RUN, and CRUN clearly show the gap between the nanopartic-
ulate UNs developed to the macropores in the RUN and CRUN through sintering of the
particles (Figure 4a–c). The TEM images for the ultrathin sections of the RUN and CRUN
show macropores with shapes reminiscent of the gap between spherical nanoparticles. The
development of mesopores is also visible in the TEM image of the RUN340 and CRUN340
(Figure 4d,e insets), which are distinct from the image of non-porous UN (Figure S8). RUN340
and CRUN340 showed irregular, but interconnected, pores of a few nanometers in size.

Figure 4. Structural characterization of UN, RUN340, and CRUN340. SEM images of the cross-section
of (a) UN, (b) RUN340, and (c) CRUN340. TEM image of the cross-section of (d) RUN340 and
(e) CRUN340.

Based on the above results, the mechanism for creating hierarchical pores in CRUN
is proposed, as depicted in Figure 5. The molded UN only has macropores in the gaps
between the particles (Figure 5a). The macropores are maintained in the sintering and
carbonization processes. Micropores and mesopores are developed via the evaporation of
alkyl moieties during the thermal rearrangement into RUN (Figure 5b). The rearrangement
process generates the RUN rich in thermo-stable isocyanurate nodes. The isocyanurate-rich
RUN sustains the high carbonization temperature, although the pore sizes increased via
further loss of weak organic moieties, giving the CRUN. The micropores are additionally
generated via the formation of amorphous carbon [36].

The bulk density of CRUN340 was 0.53 g/mL, as measured by mercury intrusion
porosimetry. The CRUNs exhibited high-capacity carbon dioxide adsorption of 4~5 mmol/g
(Figure S9). The high affinity to carbon dioxide may be attributed to the large pore volume
and the highly developed hierarchical porosity. In addition, elemental analyses indicated
the presence of nitrogen and oxygen in significant weight fractions in the CRUNs (Table S3),
which should enhance the materials’ affinity to carbon dioxide. Despite the high heteroatom
contents, the carbon monoliths exhibited electrical conductivity of about 1 S/cm.
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Figure 5. Schematic illustration of pore formation and structural change in the transformation from
UN to RUN to CRUN. (a) Macropore formation in UN, RUN, and CRUN. (b) The formation of the
mesopore and micropore with the change in network structure in the UN, RUN, and CRUN.

The CRUN monoliths’ excellent carbon dioxide adsorption and electrical conductivity
were utilized to investigate how their porosity affects their gas transport rates. We moni-
tored the current change in the carbon monolith occurring with carbon dioxide adsorption
and desorption [39]. The experimental setup is given in Figure S1. As shown in Figure 6, the
current increased upon purging carbon dioxide into the cell and decreased upon purging
nitrogen. Three CRUN samples, with different porosities (Table S2), were employed in the
test. CRUN 340 exhibited the biggest and fastest current change in response to the change
in atmosphere. While the amount of current change should reflect the total surface area of
the CRUN, the rate of current change must be related to the rate of gas transport through
the pore structure. It appeared that the average times to current saturation after switching
to carbon dioxide were 143, 108, and 278 s for the CRUN320, CRUN340, and CRUN360,
respectively. The results indicate that the hierarchical porosity, with a high mesopore ratio,
of the CRUN340 facilitated gas diffusion.

Figure 6. The current change in CRUNs occurred by switching the purge gas between carbon dioxide
and nitrogen. See Supplementary Information for the experiment details.
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4. Conclusions

In summary, we synthesized a mesopore-rich, hierarchical porous carbon monolith by
carbonizing thermally stable polyisocyanurate networks prepared by the rearrangement
of polyurea networks. The initial polyurea network was synthesized by cross-linking
polymerization of TAPM and HDI in the sol-forming condition, followed by isolation as
powders of nanoparticulate solids. The UN was pressure molded and then heated between
200 and 400 ◦C, yielding the RUN as a monolith containing isocyanurate nodes, micropores,
and macropores. The rearranged network with a high isocyanurate ratio was heated further
to transform it into a hierarchically porous monolith of CRUN, with a high mesopore
ratio. The electrical conductivity of the CRUN monoliths exhibited a rapid response
to carbon dioxide adsorption, indicating facile gas transport through the hierarchical
pore structure. The current method, developed to prepare hierarchically porous carbon
from a thermally rearrangeable polyurea network, is promising for synthesizing various
carbonaceous materials with molecular adsorption, separation, and catalytic functionalities.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ijms23084271/s1.

Author Contributions: Writing the manuscript, material synthesis and characterization, data analysis,
J.N.; writing the manuscript, data analysis, funding acquisition, J.-W.P.; gas sensing setup, Y.P. and
G.Y.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by a grant from the National Research Foundation of Korea
(NRF), funded by the Korean government, NRF-2021R1A2C2011530.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to acknowledge the facilities and the scientific and technical assistance
of the Korea Basic Science Institute (KBSI) Gwangju Center for multi-TEM and HR-SEM analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jun, S.; Joo, S.H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. Synthesis of New, Nanoporous Carbon with

Hexagonally Ordered Mesostructure. J. Am. Chem. Soc. 2000, 122, 10712–10713. [CrossRef]
2. Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Li, Z.; Yu, C.; Tu, B.; Zhao, D. Ordered Mesoporous Polymers and Homologous

Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation. Angew. Chem. Int. Ed. 2005, 44, 7053–7059.
[CrossRef] [PubMed]

3. Roberts, A.D.; Li, X.; Zhang, H. Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications
as Li-ion battery anode materials. Chem. Soc. Rev. 2014, 43, 4341–4356. [CrossRef] [PubMed]

4. Dutta, S.; Bhaumik, A.; Wu, K.C.W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected
pores on energy applications. Energy Environ. Sci. 2014, 7, 3574–3592. [CrossRef]

5. Zhao, X.; Li, W.; Chen, H.; Wang, S.; Kong, F.; Liu, S. Facile Control of the Porous Structure of Larch-Derived Mesoporous Carbons
via Self-Assembly for Supercapacitors. Materials 2017, 10, 1330. [CrossRef]

6. Uriburu-Gray, M.; Pinar-Serrano, A.; Cavus, G.; Knipping, E.; Aucher, C.; Conesa-Cabeza, A.; Satti, A.; Amantia, D.;
Martínez-Crespiera, S. Mesoporous Carbons from Polysaccharides and Their Use in Li-O2 Batteries. Nanomaterials 2020, 10, 2036.
[CrossRef]

7. Schlumberger, C.; Thommes, M. Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury
Porosimetry—A Tutorial Review. Adv. Mater. Interfaces 2021, 8, 2002181. [CrossRef]

8. Nakanishi, K.; Tanaka, N. Sol–Gel with Phase Separation. Hierarchically Porous Materials Optimized for High-Performance
Liquid Chromatography Separations. Acc. Chem. Res. 2007, 40, 863–873. [CrossRef]

9. Ko, Y.G.; Lee, H.J.; Kim, J.Y.; Choi, U.S. Hierarchically Porous Aminosilica Monolith as a CO2 Adsorbent. ACS Appl. Mater.
Interfaces 2014, 6, 12988–12996. [CrossRef]

10. Daud, W.M.A.W.; Ali, W.S.W.; Sulaiman, M.Z. The effects of carbonization temperature on pore development in palm-shell-based
activated carbon. Carbon 2000, 38, 1925–1932. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms23084271/s1
https://www.mdpi.com/article/10.3390/ijms23084271/s1
http://doi.org/10.1021/ja002261e
http://doi.org/10.1002/anie.200501561
http://www.ncbi.nlm.nih.gov/pubmed/16222652
http://doi.org/10.1039/C4CS00071D
http://www.ncbi.nlm.nih.gov/pubmed/24705734
http://doi.org/10.1039/C4EE01075B
http://doi.org/10.3390/ma10111330
http://doi.org/10.3390/nano10102036
http://doi.org/10.1002/admi.202002181
http://doi.org/10.1021/ar600034p
http://doi.org/10.1021/am5029022
http://doi.org/10.1016/S0008-6223(00)00028-2


Int. J. Mol. Sci. 2022, 23, 4271 10 of 11

11. Liang, D.; Xie, Q.; Liu, J.; Xie, F.; Liu, D.; Wan, C. Mechanism of the evolution of pore structure during the preparation of activated
carbon from Zhundong high-alkali coal based on gas–solid diffusion and activation reactions. RSC Adv. 2020, 10, 33566–33575.
[CrossRef]

12. Kim, T.W.; Park, I.S.; Ryoo, R. A Synthetic Route to Ordered Mesoporous Carbon Materials with Graphitic Pore Walls. Angew.
Chem. Int. Ed. 2003, 42, 4375–4379. [CrossRef] [PubMed]

13. Altay, E.; Nykypanchuk, D.; Rzayev, J. Mesoporous Polymer Frameworks from End-Reactive Bottlebrush Copolymers. ACS Nano
2017, 11, 8207–8214. [CrossRef] [PubMed]

14. Wu, C.G.; Bein, T. Conducting Carbon Wires in Ordered, Nanometer-Sized Channels. Science 1994, 266, 1013–1015. [CrossRef]
15. Kim, J.Y.; Yoon, S.B.; Yu, J.S. Template Synthesis of a New Mesostructured Silica from Highly Ordered Mesoporous Carbon

Molecular Sieves. Chem. Mater. 2003, 15, 1932–1934. [CrossRef]
16. Wei, H.; Lv, Y.; Han, L.; Tu, B.; Zhao, D. Facile Synthesis of Transparent Mesostructured Composites and Corresponding Crack-free

Mesoporous Carbon/Silica Monoliths. Chem. Mater. 2011, 23, 2353–2360. [CrossRef]
17. Feng, D.; Lv, Y.; Wu, Z.; Dou, Y.; Han, L.; Sun, Z.; Xia, Y.; Zheng, G.; Zhao, D. Free-Standing Mesoporous Carbon Thin Films with

Highly Ordered Pore Architectures for Nanodevices. J. Am. Chem. Soc. 2011, 133, 15148–15156. [CrossRef]
18. An, Z.; Kong, S.; Zhang, W.; Yuan, M.; An, Z.; Chen, D. Synthesis and Adsorption Performance of a Hierarchical Micro-Mesoporous

Carbon for Toluene Removal under Ambient Conditions. Materials 2020, 13, 716. [CrossRef]
19. Park, H.B.; Jung, C.H.; Lee, Y.M.; Hill, A.J.; Pas, S.J.; Mudie, S.T.; Van Wagner, E.; Freeman, B.D.; Cookson, D.J. Polymers with

Cavities Tuned for Fast Selective Transport of Small Molecules and Ions. Science 2007, 318, 254–258. [CrossRef]
20. Liaw, D.J.; Wang, K.L.; Huang, Y.C.; Lee, K.R.; Lai, J.Y.; Ha, C.S. Advanced polyimide materials: Syntheses, physical properties

and applications. Prog. Polym. Sci. 2012, 37, 907–974. [CrossRef]
21. Jung, Y.; Byun, S.; Park, S.; Lee, H. Polyimide–Organosilicate Hybrids with Improved Thermal and Optical Properties. ACS Appl.

Mater. Interfaces 2014, 6, 6054–6061. [CrossRef] [PubMed]
22. Moon, S.Y.; Bae, J.S.; Jeon, E.; Park, J.W. Organic Sol–Gel Synthesis: Solution-Processable Microporous Organic Networks. Angew.

Chem. Int. Ed. 2010, 49, 9504–9508. [CrossRef]
23. Oh, W.; Bae, J.S.; Park, J.W. The Interplay between Phase Separation and Gelation Controlling the Morphologies of the Reactive

Covalent Network/Polymer Blends. Macromolecules 2021, 54, 1192–1202. [CrossRef]
24. Zhang, Y.; Riduan, S.N.; Ying, J.Y. Microporous Polyisocyanurate and Its Application in Heterogeneous Catalysis. Chem. Eur. J.

2009, 15, 1077–1081. [CrossRef]
25. Moon, S.Y.; Jeon, E.; Bae, J.S.; Park, M.K.; Kim, C.; Noh, D.Y.; Lee, E.; Park, J.W. Thermo-processable covalent scaffolds with

reticular hierarchical porosity and their high efficiency capture of carbon dioxide. J. Mater. Chem. A 2015, 3, 14871–14875.
[CrossRef]

26. Nam, J.; Jeon, E.; Moon, S.Y.; Park, J.W. Rearranged Copolyurea Networks for Selective Carbon Dioxide Adsorption at Room
Temperature. Polymers 2021, 13, 4004. [CrossRef] [PubMed]

27. Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of
activated carbon: A review. Environ. Chem. Lett. 2020, 18, 393–415. [CrossRef]

28. Patawat, C.; Silakate, K.; Chuan-Udom, S.; Supanchaiyamat, N.; Hunt, A.J.; Ngernyen, Y. Preparation of activated carbon from
Dipterocarpus alatus fruit and its application for methylene blue adsorption. RSC Adxv. 2020, 10, 21082–21091. [CrossRef]

29. Ganesan, P.; Yang, X.; Loos, J.; Savenije, T.J.; Abellon, R.D.; Zuilhof, H.; Sudhölter, E.J.R. Tetrahedral n-Type Materials: Efficient
Quenching of the Excitation of p-Type Polymers in Amorphous Films. J. Am. Chem. Soc. 2005, 127, 14530–14531. [CrossRef]

30. Moon, S.Y.; Mo, H.R.; Ahn, M.K.; Bae, J.S.; Jeon, E.; Park, J.W. Organic sol–gel synthesis of microporous molecular networks
containing spirobifluorene and tetraphenylmethane nodes. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 1758–1766. [CrossRef]

31. Moon, S.Y.; Jeon, E.; Bae, J.S.; Byeon, M.; Park, J.W. Polyurea networks via organic sol–gel crosslinking polymerization of
tetrafunctional amines and diisocyanates and their selective adsorption and filtration of carbon dioxide. Polym. Chem. 2014, 5,
1124–1131. [CrossRef]

32. Oh, W.; Park, J.W. Facile Synthesis of Robust and Pore-Size-Tunable Nanoporous Covalent Framework Membrane by Simultane-
ous Gelation and Phase Separation of Covalent Network/Poly(methyl methacrylate) Mixture. ACS Appl. Mater. Interfaces 2019,
11, 32398–32407. [CrossRef]

33. Schaber, P.M.; Colson, J.; Higgins, S.; Thielen, D.; Anspach, B.; Brauer, J. Thermal decomposition (pyrolysis) of urea in an open
reaction vessel. Thermochim. Acta 2004, 424, 131–142. [CrossRef]

34. Jeon, E.; Moon, S.Y.; Bae, J.S.; Park, J.W. In situ Generation of Reticulate Micropores through Covalent Network/Polymer
Nanocomposite Membranes for Reverse-Selective Separation of Carbon Dioxide. Angew. Chem. Int. Ed. 2016, 55, 1318–1323.
[CrossRef] [PubMed]

35. Rolph, M.S.; Markowska, A.L.J.; Warriner, C.N.; O’Reilly, R.K. Blocked isocyanates: From analytical and experimental considera-
tions to non-polyurethane applications. Polym. Chem. 2016, 7, 7351–7364. [CrossRef]

36. Zhang, Y.; Cui, Y.; Chen, P.; Liu, S.; Zhou, N.; Ding, K.; Fan, L.; Peng, P.; Min, M.; Cheng, Y.; et al. Chapter 14—Gasification
Technologies and Their Energy Potentials. In Sustainable Resource Recovery and Zero Waste Approaches; Taherzadeh, M.J., Bolton, K.,
Wong, J., Pandey, A., Eds.; Elsevier: Berlin/Heidelberg, Germany, 2019; pp. 193–206.

37. Caruso, S.; Foti, S.; Maravigna, P.; Montaudo, G. Mass spectral characterization of polymers. Primary thermal fragmentation
processes in polyureas. J. Polym. Sci. Polym. Chem. Ed. 1982, 20, 1685–1696. [CrossRef]

http://doi.org/10.1039/D0RA06105K
http://doi.org/10.1002/anie.200352224
http://www.ncbi.nlm.nih.gov/pubmed/14502716
http://doi.org/10.1021/acsnano.7b03214
http://www.ncbi.nlm.nih.gov/pubmed/28782926
http://doi.org/10.1126/science.266.5187.1013
http://doi.org/10.1021/cm025751+
http://doi.org/10.1021/cm2000182
http://doi.org/10.1021/ja2056227
http://doi.org/10.3390/ma13030716
http://doi.org/10.1126/science.1146744
http://doi.org/10.1016/j.progpolymsci.2012.02.005
http://doi.org/10.1021/am405099r
http://www.ncbi.nlm.nih.gov/pubmed/24506532
http://doi.org/10.1002/anie.201002609
http://doi.org/10.1021/acs.macromol.0c02520
http://doi.org/10.1002/chem.200801570
http://doi.org/10.1039/C5TA02938D
http://doi.org/10.3390/polym13224004
http://www.ncbi.nlm.nih.gov/pubmed/34833301
http://doi.org/10.1007/s10311-019-00955-0
http://doi.org/10.1039/D0RA03427D
http://doi.org/10.1021/ja053689m
http://doi.org/10.1002/pola.26552
http://doi.org/10.1039/c3py01593a
http://doi.org/10.1021/acsami.9b10175
http://doi.org/10.1016/j.tca.2004.05.018
http://doi.org/10.1002/anie.201508367
http://www.ncbi.nlm.nih.gov/pubmed/26663348
http://doi.org/10.1039/C6PY01776B
http://doi.org/10.1002/pol.1982.170200703


Int. J. Mol. Sci. 2022, 23, 4271 11 of 11

38. Delebecq, E.; Pascault, J.P.; Boutevin, B.; Ganachaud, F. On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked
Isocyanate, and Non-isocyanate Polyurethane. Chem. Rev. 2013, 113, 80–118. [CrossRef]

39. Star, A.; Han, T.R.; Joshi, V.; Gabriel, J.C.P.; Grüner, G. Nanoelectronic Carbon Dioxide Sensors. Adv. Mater. 2004, 16, 2049–2052.
[CrossRef]

http://doi.org/10.1021/cr300195n
http://doi.org/10.1002/adma.200400322

	Introduction 
	Materials and Methods 
	Materials 
	Synthesis of CRUNs 
	Characterizations 

	Results and Discussion 
	Conclusions 
	References

