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Abstract

This paper proposes a video-based SlowFast model that combines the SlowFast deep learning model with a new boundary
box annotation algorithm. The new algorithm, namely the MTB (i.e., the ratio of the number of Moving object pixels To the
number of Bounding box pixels) algorithm, is devised to automatically annotate the bounding box that includes the smoke
with fuzzy boundaries. The model parameters of the MTB algorithm are examined by multifactor analysis of variance. To
demonstrate the validity of the proposed approach, a case study is provided that examines real video clips of incipient
forest fires with small amounts of smoke. The performance of the proposed approach is compared with those of existing
deep learning models, including convolutional neural network (CNN), faster region-based CNN (faster R-CNN), and SlowFast.
It is demonstrated that the proposed approach achieves enhanced detection accuracy, while reducing false negative rates.
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1. Introduction

Recently, forest fires have occurred more frequently; the in-
crease is the result of multiple factors, including anthropogenic
climate change (Williams et al., 2019). Forest fires have serious
ecological, societal, and economic impacts, including human
respiratory diseases and deforestation (Siscawati, 1998). Severe
forest fires can even damage forest ecosystem resilience (Coop
et al., 2020). If incipient forest fires can be detected, the potential
damage and economic loss of the fires can be reduced signif-
icantly. Therefore, early detection of forest fires is of great re-
search and societal importance (Alkhatib, 2014).

Without relying on the naked eye, which is vulnerable to hu-
man error and fatigue, forest fires can be monitored by using in-
frared, near-infrared, LiDAR, and CCD/CMOS sensors (Alkhatib,
2014). For example, infrared and near-infrared sensors have been
shown to be effective, since they are sensitive to small (less than
0.1 m?) and cool (less than 600 K) incipient forest fires (Thomas
& Nixon, 1993). However, infrared, near-infrared, and LiDAR sen-
sors have relatively short measuring distances and are expen-

sive (Starr & Lattimer, 2012). To overcome these shortcomings,
numerous studies have reported the development of forest fire
detection systems using CCD/CMOS sensors (i.e., using visible
images), which are inexpensive and versatile (Han & Lee, 2006).

Forest fires are characterized by flame and smoke. When a
forest fire occurs, smoke precedes the flame. Therefore, smoke
can be an early indicator for detecting incipient forest fires
(Li et al., 2013). Nevertheless, the detection of incipient forest
fires based on visible images is challenging due to the tem-
poral evolution of smoke. Likewise, when examining flames,
the appearance of flames can vary tremendously in terms of
colors, textures, shapes, and occlusions (Yuan et al., 2015). A
decade ago, automated forest fire smoke detection systems be-
gan to be developed (Xu & Xu, 2007). Handcrafted features of
these systems were designed by human experts (Lee et al., 2009;
Shukla & Pal, 2009). Then, machine learning methods, such as
Gaussian mixture model (GMM), support vector machine, his-
togram of oriented gradients, and histogram of optical flow,
were incorporated to determine the occurrence of incipient
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forest fires (Xiong et al., 2007; Chen et al., 2013; Park et al., 2013).
These machine-learning-based approaches are labor-intensive
and costly in their extraction of handcrafted features (Koo &
Shin, 2018). Their performance depends on the subjective com-
bination of handcrafted features (Oh et al., 2018). Deep learn-
ing, which has shown excellent performance in various research
fields, such as speech recognition (Devlin et al., 2019), natural
language processing (Vaswani et al., 2017), and image detection
(Tan & Le, 2019), has the potential to overcome the shortcom-
ings of the machine-learning-based approaches. Recently, exist-
ing deep learning models are evolving further to detect variants
of malicious code (Cui et al., 2018), to find the optimal architec-
ture of probabilistic neural network and extreme learning ma-
chines (Wang et al., 2016; Yi et al., 2016), and to improve the per-
formance of wavelet neural networks in target treat assessment
(Wang et al., 2013), etc. For forest fire detection, 2D-data-based
deep learning algorithms using forest fire visible images were
studied based on a convolutional neural network (CNN; Sun et
al., 2021). The CNN-based algorithm proposed by Sun et al. was
designed to extract complex features in a supervised manner
from a large number of visible images of smoke data.

To detect the initiation of forest fire by capturing the differ-
ence between two images, change detection algorithms were
proposed. Existing approaches for change detection can be
grouped into pixel-based and object-based. Liu et al. (Liu et al.,
2021) provided an excellent review of pixel-based and object-
based approaches for change detection. Pixel-based detection
approaches extract features from pixels and assign the different
classification label to the pixels. For example, small-scale forest
fires could be detected using a deep learning model trained us-
ing RGB images (Tang et al., 2020). These studies employed high-
resolution RGB images (e.g., 4K). In reality, it can be difficult to
obtain high-resolution images due to practical reasons. Ghali et
al. (Ghali et al., 2021) worked to detect wildfire using deep vision
transformers with low-resolution RGB images.

Different from the pixel-based detection approaches, object-
based detection approaches regard a group of homogeneous pix-
els as a unit. The unit can be generated by unsupervised algo-
rithms for image segmentation. As the object-based detection
approaches treat a single object as a unit for a given task, all
the pixels within the object are assigned with the same clas-
sification label. This leads to a considerable reduction of the
“salt-and-pepper” noise that is commonly observed from the
results of pixel-based detection approaches (Chen et al., 2012).
Owing to the potential advantages of the object-based detection
approaches over the pixel-based detection approaches, object-
based methods have been increasingly used for detecting land
cover changes in natural environments (Wang et al., 2018), as-
sessing disaster damages (Gong et al., 2012), and examining for-
est disturbance (Healey et al., 2018). The success of object-based
methods in detecting land cover changes led to its extensive
adoption in change detection applications. For example, three-
dimensional (3D) CNN and YOLOv3 were developed to detect for-
est fire and smoke in recent years (Jiao et al., 2019; Kim & Lee,
2019; Lin et al., 2019). These studies presented its superior per-
formance over existing methods, although forest fire detection
using deep learning techniques is still in its infancy.

The object detection algorithms developed required annota-
tions for locating the position of the smoke. To reduce the ef-
fort required to manually label fuzzy smoke boundaries, syn-
thetic images were generated to train the algorithms by overlap-
ping real and synthetic smoke images with forest backgrounds
(Zhang et al., 2018; Yuan et al., 2019). Synthetic images can be
useful to generate big datasets that emulate forest fires sub-

ject to various environmental conditions (Goncalves et al., 2020).
However, it is apparent that synthetic smoke images are differ-
ent from real smoke images in terms of the motion, density,
and nature of the background forest. For example, a deep CNN
trained using synthetic smoke images showed a significant per-
formance drop, mainly attributed to the discrepancy between
synthetic and real smoke images (Xu et al., 2019). In summary,
previous studies have not presented a robust approach to an-
notate a large amount of real smoke images for training object
detection algorithms.

The ultimate goal of detecting smoke accurately and pre-
cisely is to avoid and mitigate damage from forest fires. As pre-
sented earlier, deep-learning-based smoke detection methods
proposed previously have been trained and tested using images
in which most of the pixels in the images were occupied by
smoke. This is not the case for real camera images of incipient
forest fires. If a sufficient amount of smoke pixels is found from
the real camera images, it indicates that forest fires have already
led to significant damage. In general, incipient forest fire smoke
is difficult to detect since it is represented by a small number
of pixels in the overall camera images. While existing research
studies have sought approaches to detect smoke in forest back-
ground images, there is little research to date on the detection
of small amounts of smoke in these images.

To fill this research gap, this paper proposes a video-
sequence-based methodology that combines a novel algorithm
for positioning the annotation box with a SlowFast model for
detecting smoke from temporal video sequences. A novel algo-
rithm, called MTB (i.e., the ratio of the number of Moving ob-
ject pixels To the number of Bounding box pixels), is designed
to automatically annotate fuzzy smoke boundaries from forest
background images. The hyperparameters of the MTB algorithm
are selected using the analysis of variance (ANOVA). The Slow-
Fast model was originally developed to detect human action. In
this research, the MTB algorithm is substituted for the human
detection module in the SlowFast model. To evaluate the perfor-
mance of the proposed method, various existing methods are
compared. We also attempt to interpret the validity of the results
using the deep-learning visualization technique called gradient-
weighted class activation maps (Grad-CAM).

The contributions of this paper can be summarized in two
primary ways. First, the new MTB algorithm is proposed to au-
tomatically annotate smoke with fuzzy boundaries. The MTB
algorithm detects the moving object (i.e., smoke) in RGB video
images. Second, a new method, namely SlowFastMTB, is pro-
posed to detect the smoke from incipient forest fires. The origi-
nal SlowFast model developed for action recognition is modified
to detect small amounts of smoke by incorporating the MTB al-
gorithm.

The remainder of the paper is organized as follows: Section 2
provides an overview of the theoretical background of the meth-
ods used in this study. Section 3 proposes the video-sequence
methodology that combines the MTB algorithm with the Slow-
Fast model for early forest fire smoke detection. In Section 4,
the experimental setup is presented. Section 5 shows the per-
formance of the proposed methodology. Finally, Section 6 offers
the conclusions of the paper and discusses future work.

This section describes the theoretical background of the pro-
posed approach. In this study, residual networks (ResNet) are
used to extract relevant features from visible images. Compared
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Figure 1: Residual network architecture.

to previous networks, including AlexNet, VGG, and GoogleNet,
ResNet was proposed to address the gradient vanishing and ex-
ploding problems (He et al., 2016a). Gradient vanishing is a phe-
nomenon in which the gradient gets smaller as it reaches the in-
put during back propagation. The deeper the neural network, the
more the gradient vanishes. In contrast, in the case of a gradient
explosion, the gradient grows abnormally as it reaches the input
layer. Gradient vanishing and exploding are reasons why learn-
ing effectiveness is reduced in a neural network. The ResNet ar-
chitecture innovatively includes the residual block and the bot-
tleneck architecture to overcome the problems.

ResNet realizes residual mapping by adding a skip connec-
tion to the existinglayer, as shown in Fig. 1. A module with a skip
connection added is called a residual block. The feature output
of a single residual block (y;) can be expressed as

y1 = X1+ F(x1, Wy)
xi11 = f(y1) (1)

where x; is the feature output of the 1" residual unit; W, is the
weights of the I-th residual unit; F is the residual function; and
fis the activation function of the rectified linear unit. If f is as-
sumed to be identity, the output of the residual block can be ex-
pressed as (He et al., 2016b)

L-1

XL =X]+ZF(X1',W1') (2)

i=l
where x; is the output of the L"neural unit. x; is expressed as
the summation of the output of the shallow layer (i.e., x;) and
the output of the residual function between units L and I. The
summation notation in equation (2) prevents gradient vanishing
from occurring during the backward propagation. To understand
this, the gradient of the loss function ¢ is calculated through the
chain rule.
de de 0Xp _ de

— =t G1+G
ox ~ axp ax — oxg (G162
9 L-1
where Gy=1, Gp=_— > F(xi, W) ®3)

Ix1 43

The gradient of the loss function is composed of two terms,
G1 and Gy. The G; term guarantees that the gradient directly
propagates, regardless of the neural layer. For a mini-batch sam-
ple, if the G, term is minus one, the gradient can be vanishing
(i.e., the gradient is zero). However, in general, it is unlikely that
all mini-batch samples will be minus one. In other words, the
possibility of gradient vanishing is low (He et al., 2016b).

Deep neural networks go deeper; thus, additional calcula-
tion is required to train the networks. ResNet uses a bottle-

Preprocess data from video clips

Generate video segments
= = g .
Determine hyperparameters of Load pre-trained model
the MTB algorithm )
= ¥
e 3
Train the SlowFastMTB model Fine tune SlowFastMTB
J
= ¥

Test and evaluate

Optimize hyperparameters

Figure 2: Overall procedure for forest fire smoke detection.

neck architecture that significantly reduces the number of oper-
ations while maintaining performance. The bottleneck architec-
ture was proposed in Inception v1 (Szegedy et al., 2015). A one-
by-one convolution is put into both ends of the existing resid-
ual block as shown in Fig. 1. The depth of the feature is reduced
and then increased again through the one-by-one convolution
operation. This reduces the computational costs significantly as
ResNet goes deeper.

This section presents a new model that is capable of detecting
small-scale early forest fire smoke. The proposed model com-
bines the new MTB algorithm with the SlowFast network. Sec-
tion 3.1 provides an overview of the procedure for developing
the proposed model. Section 3.2 describes the MTB algorithm,
which automatically annotates the smoke. Section 3.3 explains
how the MTB algorithm is integrated with the SlowFast network.

The overall procedure of this study is shown in Fig. 2. First, the
dataset is preprocessed to enhance the quality of images from
video clips. For example, a Gaussian blur filter can be imposed
on the video clip images to reduce detail and noise. Second, the
preprocessed video clip images are divided into segments of spe-
cific time increments. Segments of specific time increments are
used for training and evaluation of deep learning models with
k-fold cross-validation. Third, the hyperparameters of the MTB
algorithm are selected through ANOVA. At this step, metaheuris-
tic algorithms such as genetic algorithms can be incorporated.
Fourth, the SlowFastMTB model is trained. During training, the
weights of the pretrained model are loaded, the classifier for the
smoke is initialized, the SlowFastMTB model is fine-tuned, and
the hyperparameters of the SlowFastMTB model are optimized.
Finally, the trained SlowFastMTB model is tested and analysed
via visualization.

Some object detection targets (e.g., humans) have clear bound-
aries. In these cases, the ground truth can be labeled based on
the boundaries. For example, see GMM (Buric¢ et al., 2018). How-
ever, smoke has no clear boundaries. It is not possible to label the
bounding box of smoke with existing object detection criteria. To
address this problem, this study proposes the MTB algorithm.
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The MTB algorithm finds moving objects through pixels that
exceed the threshold in the difference between frames, whose
concept is similar to that of GMM. However, GMM has limitations
when detecting moving objects with fuzzy boundaries. A partic-
ular area of the smoke is dense enough to cover the background
or less dense and semitransparent. Due to the characteristics,
the GMM method can be problematic when detecting a specific
area of smoke rather than finding the entire smoke, and is sen-
sitive to threshold.

The MTB algorithm relaxes the bounding box that includes
the entire smoke even when a specific part of a fuzzy moving
objectis detected. The key idea of the MTB algorithm is to adjust
the size of the detected area (i.e., bounding box) using the index,
called ryrs:

T™TB = %]: (4)
where Ny is the number of moving object pixels in a particu-
lar bounding box and N is the total number of pixels in the
identical bounding box. ryrs for the bounding box detected is ex-
pressed as ryrs dt, Whereas ryrg for the bounding box desired is
described as ryrg ds- The bounding box detected is resized to that
with a desired target value. Then, within the resized bounding
box, an object detection task is conducted with a deep learn-
ing model. With the development of the ryrs index, it became
feasible to detect the entire area of a moving object with fuzzy
boundaries even if a hard threshold is used.

The pseudocode for the detailed procedure is specified in Al-
gorithm 1. The MTB algorithm outputs smoke’s resized bound-
ing box (B,) when video sequences (V) are the inputs. To initiate
the MTB algorithm, three hyperparameters including time inter-
val (At), threshold (T), and desired MTB value (ryrg,ds) should be
determined by the user. Once inputs are prepared with a set of
hyperparameters, the MTB algorithm can be initiated to locate
bounding boxes for individual visual images from video clips.
The algorithm is comprised of four detailed steps: (i) pixel-wise
subtraction between consecutive frames, (ii) threshold-based
classification, (iii) bounding box acquisition, and (iv) bounding
box scaling. First, the pixel-wise subtraction between two con-
secutive frames is conducted using V(t) and V(t + At). When the
time is t seconds, the video frame is recorded as V(t). When the
time elapsed by At seconds, the video frame is recorded as V(t
+ At). Second, when the pixel-wise difference between the two
frames exceeds the threshold, the color of the pixel is changed to
white. Otherwise, it is changed to black. White-colored pixels in-
dicate a moving object, whereas black-colored pixels correspond
to the background. Third, the smallest bounding box containing
all of the white-colored pixels can be obtained. Fourth, the size
of the bonding box is scaled. The ryrpg: is calculated by divid-
ing the number of white pixels in the smallest bounding box (B)
by the number of total pixels in the identical box. It is resized
through rurgas and rursa: so that B has rurg gs. The final output
is obtained: resized bounding box of smoke (B).

An example of the MTB algorithm is shown in Fig. 3. The
MTB algorithm starts with a frame when the time is 10 seconds.
When the time interval is 5 seconds, a frame of 15 seconds is
selected. The absolute value of the difference between the ele-
ments of two frames is calculated. When the difference exceeds
the threshold of 19, the value is changed to 255; otherwise, it
is changed to zero. The value of 255 is shown in white and the
value of zero is shown in black. The value of 255 is considered
to be the moving object and the value of zero is considered to be
the background. In this example, ryrg gt is 0.5 and ryrg gs is 0.05.
Therefore, B, is obtained by magnification 10 times that of B.

V(10s+5s)

Pixel-wise subtraction

Moving object

Background

| e, de = 0-5, Fure, as = 0.05 |

| B, =B x (rvmg,ai/ v ) = B x 10 |

Figure 3: An example for implementing the MTB algorithm.
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Figure 4: Original SlowFast model for human action detection.

The SlowFast network is a two-way, end-to-end network for hu-
man action recognition (Feichtenhofer et al., 2019). As illustrated
in Fig. 4, it consists of two main parts: (i) slow and fast pathways
with lateral connections and (ii) a human detection network.
The slow and fast pathways are the main component to rec-
ognize human action. The slow pathway is a 3D CNN model
(e.g., ResNet) with a spatiotemporal volume. The slow pathway
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Algorithm 1: MTB algorithm

Input: Smoke video frames (V)
Output: Resized bounding box of smoke (B;)
Require: Time interval (At), threshold (T), desired MTB value (ryrs,ds)

Initialize the time-step: t < 0
Initialize the pixel-wise difference between frames: e < 0
Initialize the detected bounding box MTB: ryrs at < O

while all video frames are performed do
// Step 1. pixel-wise subtraction between consecutive frames
Pixel-wise subtraction of the video frame att from that att + At: e < V(t + At) - V(t)
// Step 2. threshold-based classification
If at least one pixel from e is greater than T:
Change the pixel whose e is greater than T into a white pixel
Else:
Change the pixel whose e is equal to or smaller than T into a black pixel
// Step 3. bounding box acquisition
Assign the smallest box that contains all the white pixels: B
// Step 4. bounding box scaling
Compute the ratio: ryrgq: < number of white pixels/number of smallest box pixels
Resize the bounding box of V(t): By <— B x Iyrp,dt/TmTB,ds
t—t+1
End
return B,

SlowFast for classification

captures spatial semantics using low-speed frames. The fast Low fiame rate
pathway is a 3D CNN model (e.g., ResNet) with the same struc- e ]
ture as the slow pathway but with a reduced number of chan- ROI
nels. The fast pathway captures human action using high-speed iz
frames. Both the slow and fast pathways use two hyperparam- AAA
eters. First, the temporal ratio between slow and fast pathway High frame rate
(@) is used to downsample the input data. Second, the chan- /|
1

Q
B
2
iz
=
8
=8
o
B

A Rror
align

nel scaling ratio (B) is to control the number of channels in the
deep learning model. The frame rate ratio of the fast and slow
pathways is determined with the temporal ratio. The amount of
computation of the fast pathway is reduced through the use of
a channel scaling ratio for low channel capacity. The slow and
fast pathways extract different spatiotemporal information. The e
lateral connection is a one-way connection that merges infor- @ - Scaling
mation from the slow pathway and the fast pathway. The fea- Q |:|
tures of the fast pathway are connected directionally to those of
the slow pathway. Since the outputs of the fast pathway and the Threshold(F(4-MerA0D
slow pathway are different, it is necessary to match the shape
of the feature to merge information.

A human detection network is for the detection of an object. Figure 5: Proposed SlowFastMTB model for the early detection of forest fire
In the task of detecting a person in a video and classifying the smoke.
person’s action, an algorithm is required to detect the person.
SlowFast uses faster R-CNN'’s (faster region-based CNN) region
proposal network (RPN) to detect people (Ren et al., 2015). The
RPN searches the entire image based on k anchor boxes in the ex-
tracted feature map. Next, the RPN predicts the object’s bound-
ingbox and class. After sorting the results into the order of high-
est classification probability, the nonmaximum suppression is
used to anchor boxes so that the region of interest is obtained.

The architecture of the proposed SlowFastMTB model is
shown in Fig. 5. The original SlowFast network incorporated

|
v
.
Y

aAGEY)

MTB algorithm

not require the classification of the movement. Only the detec-
tion of smoke is necessary. It is not appropriate to implement
the original SlowFast network for smoke detection. To this end,
the faster R-CNN of the original SlowFast network was replaced
with the newly proposed MTB algorithm.

faster R-CNN to locate a person. Then, the image captured by the
bounding box is used to classify various human actions. Thus,
SlowFast detects people and categorizes their actions. For the
detection of smoke from the background images, smoke does

This section presents the experimental setup. Section 4.1 shows
four datasets that were used to determine the hyperparameters
of the proposed MTB algorithms and evaluate the performance
of the proposed SlowFastMTB model. Section 4.2 describes how
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(b)

Figure 6: Representative visual image from Video A: (a) incipient smoke and (b)
the smoke occupies 1.02% out of the image.

to determine the optimal values of the hyperparameters. Section
4.3 depicts the implementation details of the proposed model for
the detection of incipient forest fires.

4.1 Dataset

Visual images of evolving incipient forest fires were captured
from a dataset of Video A (46). As shown in Fig. 6, the smoke
in the visual images evolves from nonsmoke to smoke that oc-
cupies 1.02% out of the image, while the position of the fire does
not change. A Gaussian blur filter is used to remove noise from
the video. The number of frames that contained smoke and the
number that did not contain smoke were 1000 and 1000, respec-
tively. From the dataset of Video A, the number of video seg-
ments was 2000 in total (i.e., 1000 with smoke and 1000 without
smoke). The size of the original images was 352 by 288 pixels
(width by height). In this study, the original images were resized
to 224 by 224 pixels. This dataset was used to determine hyper-
parameters of the proposed MTB algorithm.

The second dataset, from Video B (46), is more complicated
than that from Video A. As shown in Fig. 7, Video B starts with
no smoke. Then, smoke evolves to smoke that occupies 0.48%
out of the image. The background images from Video B include
smoke-like objects, such as earth, rocks, and roads. It should
be noted that all images from Video B have an identical back-
ground, whether there is smoke or not. The size of the original
images was 720 by 516 pixels (width by height). In this study,
the original images were resized to 224 by 224 pixels. To avoid a
data imbalance problem, a balanced amount of data was used.
The number of frames that contained smoke and the number
that did not contain smoke were 4050 and 4050, respectively.
When the frame rate was assumed to be 25 frames per sec-
ond, the 4050 frames correspond to 162 seconds with one sec-

Figure 7: Representative visual image from Video B: (a) nonexistence of smoke
and (b) the smoke occupies 0.48%.

Figure 8: Representative visual image from Video C; the smoke occupies 15.74%.

ond window. Then, video clips of one second in length were re-
garded as a single input data for training the video-based deep
learning models, including SlowFast and SlowFastMTB. These
one-second-long video clips (i.e., 4050 video segments) were ran-
domly divided into five datasets for fivefold cross-validation. In
summary, from the dataset of Video B, the number of video seg-
ments was 8100 in total (i.e., 4050 with smoke and 4050 without
smoke).

Additional datasets of wildfire video clips (i.e., videos C and
D) (47) were used to evaluate the performance of the trained
SlowFastMTB model. As presented in Fig. 8, smoke is located
on the background of the mountain, where the smoke occupies
15.74% of the image. The original video clips with the size of 320
by 240 pixels (width by height) were resized to 224 by 224 pix-
els. To increase the amount of data, the video segments of 200
were generated using one second window. The Video D dataset
is different from the Video C dataset in that smoke is located on
the background of moving clouds. As shown in Fig. 9, the smoke
occupies 1.92% of the image.
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Figure 9: Representative visual image from Video D; the smoke occupies 1.92%.

Table 1: Setting for multifactor ANOVA.

Factor (model parameter of the MTB algorithm) Level

Time interval (seconds) 5 10 15
Threshold 17 19 21
TMTB,ds 0.01 0.05 0.1

The hyperparameters of the proposed SlowFastMTB model
should be selected by the user. In this study, the hyperparame-
ters can be divided into two groups: SlowFast model-related and
MTB-related. The SlowFast model-related hyperparameters in-
clude batch size, dropout rate, momentum, weight decay, and
learning rate. The MTB-related hyperparameters are time inter-
val, threshold, and ryrs4s. An optimal set of the hyperparame-
ters can be searched for using either swarm-based algorithms or
evolutionary algorithms. There are numerous swarm-based al-
gorithms and their variants inspired by the swarm behavior of
honey bees, bats, and chickens (Feng et al., 2021; Li et al., 2021).
Representative examples of the evolutionary algorithms are ge-
netic algorithms, evolutionary programming, and differential
evolution (Eiben & Smith, 2015; Gao et al., 2020). Simple meta-
heuristic algorithms offer the best performance for large-scale
problems, whereas a particular metaheuristic algorithm with
an optimal set of model parameters can provide better perfor-
mance for mid-scale or small-scale problems (Kim et al., 2021). A
tradeoff between the accuracy and the computational cost must
be considered for the optimization problem to be solved. A com-
prehensive analysis of the exact hyperparameters is out of the
scope of this paper. Thus, in this study, one of simple statistical
tools, ANOVA, was employed.

A parametric study was performed to understand the effect
of model parameters of the MTB algorithm on the accuracy of
object detection. A three-factor, three-level ANOVA was con-
ducted, as shown in Table 1. The default values were set to be the
time interval of 10 seconds, the threshold of 19, and the ryrg ds
value of 0.05. The multifactor ANOVA was also designed to ex-
amine the interaction between the model parameters of the MTB
algorithms. Faster R-CNN models with a VGG16 backbone were
used as an object detection model. The faster R-CNN model was
trained with the given combinations of model parameters. The
detection threshold was set to be 0.8.

Using the trained faster R-CNN models, the test accuracy
of Video A was evaluated. In ANOVA, the null hypothesis
was that the model parameter does not have significant im-
pact on the object detection accuracy. The boundary of the P-
value for rejecting the null hypothesis was 0.01. As shown in

Table 2: ANOVA results of model parameters of the MTB algorithm.

Levels Average accuracy (%) P-value

Time interval > 894

(seconds) 10 91.4 0.524
15 92.4
17 92.2

Threshold 19 91.2 0.656
21 89.8
0.01 94.9

TMTB.ds 0.05 91.5 0.000
0.1 86.8

Table 3: ANOVA results for interaction between model parameters.

Interaction P-value
Time interval x ryrgds 0.003
Time interval x threshold 0.583
Threshold x ryrs,ds 0.240
0.10
0.09 Accuracy
0.08 <84
0.07 B 84-86
5 0.06 W 86-88
e B 88-90
= 005 W 90-92
0.04 92-94
e
>
0.02
0.01

5.0 7.5 10.0 125 15.0
Time interval (s)

Figure 10: Interaction between the time interval and ryrs,gs. .

Table 2, only the P-value of ryrsgs Was less than 0.01. It was
indicated that the effect of ryrpgs on the accuracy of the deep
learning model cannot be ignored. Therefore, a value of 0.01
rure,as With the highest accuracy can be adopted. Interaction ef-
fects between model parameters were analysed. As depicted in
Table 3, only the P-value of the interaction between the time in-
terval and ryrs s Was less than 0.01. With the observations, as
presented in Fig. 10, rurs4s and time interval values that corre-
spond to the location with the highest accuracy were 0.01 and
5, respectively. From the parametric study using ANOVA, a set of
model parameter values were determined, specifically the time
interval of 5 seconds, the threshold of 19, and the ryvrg gs value
of 0.01.

As discussed in Section 3, a pretrained ResNet50 was used as
the backbone of the deep learning models. Image-based deep
learning models, such as CNN and faster R-CNN, employed 2D
ResNet50 pretrained using the ImageNet image datasets. The
implementation of the pretrained ResNet50 model to the deep
learning models was conducted in three steps. The first step
was to randomly initialize the weights and biases of the fully
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Table 4: Hyperparameter setting for fine-tuning the pretrained
ResNet50 model.

Model Hyperparameter Value
Batch size 200
Dropout rate 0.5
Optimizer Stochastic gradient descent
ResNet50 Momentum 0.9
Weight decay 1077
Learning rate 0.01

Loss function Binary cross-entropy

Table 5: Hyperparameter setting for training the SlowFast model.

Model Hyperparameter Value
SlowFast Temporal ratio («) 4
Channel scaling ratio (g) 0.125

connected layers of the pretrained model. The second step was
to train the weights and biases by freezing the convolutional
layers of the pretrained model. The final step was to conduct
fine-tuning of all of the layers. The values of the hyperparam-
eters used for fine-tuning the ResNet50 models are specified in
Table 4.

Video-based deep learning models incorporated 3D ResNet50
pretrained using the AVA v2.2 video datasets. The pretrained 3D
ResNet models were implemented with the identical three steps.
The values of the hyperparameters of the SlowFast models are
described in Table 5.

The deep learning models were coded using Python 3.8.8 and
Pytorch 1.4.0 on the operating system of Linux 16.04 LTS. A desk-
top computer was used with an Intel Core i7-9800X (3.80 GHz)
processor, 128 gigabytes of RAM (DDR4), and an NVIDIA GeForce
RTX 2080 Ti graphics card. The training of the deep learning
models was conducted with an NVIDIA graphics card, while the
training results were visualized with an Intel processor.

5. Results and Discussion

The proposed MTB algorithm was designed to determine bound-
ing boxes of smoke in frames from video clips. As presented in
Fig. 11, it was observed that the bounding boxes of the smoke
were located correctly. The proposed model (i.e., SlowFastMTB)
was used to determine the occurrence of forest fires from the
video clips by calculating the probability of the presence of
smoke. For the situation shown in Fig. 11a, smoke was detected;
the probability of smoke was determined to be 0.99 and the prob-
ability of there not being smoke was 0.01. Based on the analy-
sis of the video clip, it was determined that a forest fire had oc-
curred, since the probability of there being smoke in the image
(i-e., 0.99) was higher than the detection threshold of 0.8. When
the shape of the smoke evolved over time, the forest fire was de-
tected in a robust manner. However, for the scenario shown in
Fig. 11b, it was determined that a forest fire did not occur, since
the probability of there being smoke in the image of 0.72 was
lower than the detection threshold of 0.8. If the threshold is ad-
justed, smoke would be detected. Thus, the value of the thresh-
old must be determined carefully. A low threshold value will in-
crease the false positive (FP) rate, while decreasing the false neg-
ative (FN) rate, and vice versa.

(b)

Figure 11: Representative results of the proposed SlowFastMTB model using the
Video B dataset; (a) the small amount of smoke was detected correctly and (b)
it was determined that the smoke was not detected since the probability of the
smoke of “0.72” was less than the threshold of 0.8. Nonetheless, the Grad-CAM
result presented that the location of actual smoke is correctly detected. It should
be noted that the location of the actual smoke is indicated by the black arrow;
the red box implies that the bounding box is predicted by SlowFastMTB; and the
number above the bounding box corresponds to the probability of the presence
of smoke predicted by SlowFastMTB.

The performance of the proposed model was evaluated with
the Video B dataset. As shown in Table 6, the confusion matrix
presents that the true positive (TP), FP (type I error), FN (type II
error), and true negative (TN) were 43.3%, 0%, 6.7%, and 50%, re-
spectively. It is worth noting that the false alarm rate was zero.
All errors were attributed to FN. The observed misclassification
occurred when the size of smoke was smaller than 0.04% out
of the image. When the amounts of the smoke become large,
the proposed algorithm did not fail to detect the smoke. Three
different metrics, including accuracy, recall, and precision, were
used to further understand the performance of the proposed
model. The accuracy is defined as (TP + TN)/(TP + TN + FP + FN).
The recall is defined as TP/(TP + FN). The precision is defined as
TP/(TP + FP). The overall accuracy was found to be 93.3% in its
ability to detect forest fires. The recall was 86.5%, while the pre-
cision was 100%.

Three existing deep learning models, including CNN, faster
R-CNN, and SlowFast, were used for the purpose of compari-
son with the Video B dataset. The accuracy of CNN for detecting
smoke was 50%. The visual images classified as “smoke” were
further examined using Grad-CAM to identify whether smoke
was really detected. The location of the smoke was visualized on
a heat map. As depicted in Fig. 12a, CNN correctly classified the
image as smoke. However, the Grad-CAM result indicates smoke
in a wrong place. The same result was observed in another im-
age that contains both smoke and the background mountain, as
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Table 6: Confusion matrix of the proposed SlowFastMTB method.

Actual result

True (smoke)

False (nonexistence of smoke)

True (smoke)

Predicted result .
False (nonexistence of smoke)

3504 (TP; 43.3%)
546 (FN; 6.7%)

0 (FP; 0%)
4050 (TN; 50.0%)

(b)

Figure 12: Representative results of CNN using the Video B dataset; (a) CNN clas-
sified the image as a smoke correctly. However, the Grad-CAM result showed
that the smoke is in a wrong place and (b) CNN classified the image as a smoke
correctly. However, the Grad-CAM result indicates the mountain are smoke.

presented in Fig. 12b. Therefore, it can be concluded that the ac-
tual accuracy of CNN is lower than 50%.

The accuracy of faster R-CNN for detecting smoke was 44.7%,
which was lower than that of CNN. Nonetheless, it cannot be
concluded that the performance of faster R-CNN was inferior to
that of CNN. Faster R-CNN presents a bounding box. As shown
in Fig. 13a, smoke was detected correctly with the correct place-
ment of heat map. Another experiment in Fig. 13b showed that
smoke was correctly detected. However, the heat map indicates
the smoke as well as the road. This indicated that bounding box
of faster R-CNN was not effective.

The accuracy of SlowFast for detecting smoke was 84.8%,
which is much higher than both CNN and faster R-CNN. How-
ever, SlowFast often showed unstable results. As represented in
Fig. 14, the smoke was detected correctly in Fig. 14a. However,
as presented in Fig. 14b, it still shows the problem of focusing
on the road side. This shows that the SlowFast method was not
robust.

The performance results of the deep learning models with
the Video B dataset are summarized in Table 7. The accuracy

of CNN, faster R-CNN, SlowFast, and SlowFastMTB was 50.0%,
44.7%, 84.8%, and 93.3%, respectively. It was observed that the

(b)

Figure 13: Representative results of faster R-CNN using the Video B dataset; (a)
the smoke was detected correctly, and (b) the road in the bounding box is pre-
dicted as smoke incorrectly. The Grad-CAM also indicates the location of the
actual smoke incorrectly.

accuracy of SlowFastMTB was the highest (i.e., 93.3%), whereas
that of faster R-CNN was the lowest (44.7%). As expected, the er-
ror rate (= 1 — Accuracy) of faster R-CNN is the highest (55.3%),
whereas that of SlowFastMTB is the lowest (6.7%). The errors can
be divided into the FP rate and the FN rate. In particular, the FN
rate is critical for evaluating the performance, since a missing
alarm can lead to an evolution of a trivial forest fire to serious
one. The FN rate of SlowFastMTB was only 6.7%, whereas the FN
rates of CNN, faster R-CNN, and SlowFast were 40.0%, 13.9%, and
14.8%, respectively. F1 score was used to evaluate performance
of the proposed model. The F1 score of CNN, faster R-CNN, Slow-
Fast, and SlowFastMTB was 0.286, 0.566, 0.822, and 0.928, respec-
tively. It was observed that the F1 score of SlowFastMTB was the
highest (i.e., 0.928), whereas that of CNN was the lowest (i.e.,
0.286). To verify the performance of object detection, the val-
ues of intersection over union (IOU) were incorporated. The IOU
value of faster R-CNN, SlowFast, and SlowFastMTB was 0.440,
0.573, and 0.865, respectively. In the case of CNN, IOU values
cannot be calculated since objective detection tasks cannot be
carried out. It was observed that the IOU value of SlowFastMTB
was the highest (i.e., 0.865), whereas that of faster R-CNN was
the lowest (i.e., 0.440).
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(b)

Figure 14: Representative results of SlowFast using the Video B dataset; (a) the
smoke was detected correctly and (b) the road was incorrectly detected as smoke.
The Grad-CAM also indicates a wrong place.

The SlowFastMTB model and CNN, faster R-CNN, and Slow-
Fast trained with the Video B dataset were tested using videos
C and D datasets. The performance of the models for Video C
is summarized with the evaluation metrics including accuracy
and IOU in Table 8. The accuracy of CNN, faster R-CNN, SlowFast,
and SlowFastMTB was 52.0%, 85.0%, 97.5%, and 98.0%, respec-
tively. It was observed that the accuracy of SlowFastMTB was the
highest (i.e., 98.0%), whereas that of CNN was the lowest (52.0%).
The IOU value of faster R-CNN, SlowFast, and SlowFastMTB was
0.739, 0.821, and 0.980, respectively. It was also observed that the
I0OU value of SlowFastMTB was the highest (i.e., 0.980), whereas
that of faster R-CNN was the lowest (0.739). The difference be-
tween SlowFastMTB and SlowFast was small (i.e., only 0.5%) with

the evaluation metric of accuracy. However, with that of IOU, the
proposed SlowFastMTB outperformed SlowFast by 0.159.

The performance of the models for Video D is described in
Table 9. The proposed SlowFastMTB model outperformed ex-
isting models in terms of accuracy and IOU. Therefore, it was
concluded that the proposed SlowFastMTB model achieves en-
hanced detection accuracy, while reducing FN rates.

6. Conclusions and Future Work

This paper proposed a new deep learning model that detects
smoke in forest fire videos for early forest fire detection. The
proposed model combined the SlowFast method with a new
annotation algorithm, namely MTB. In this study, the MTB
algorithm was devised to isolate smoke with fuzzy bound-
aries from a background image. The performance of the pro-
posed SlowFastMTB model was evaluated with a real forest
fire video dataset recorded from the field. The accuracy, recall,
and precision of the proposed model for the Video B dataset
were 93.3%, 86.5%, and 100%, respectively. The proposed Slow-
FastMTB model outperformed existing models, including CNN,
faster R-CNN, and SlowFast. The accuracy of SlowFastMTB was
higher than CNN, faster R-CNN, and SlowFast by 43.3%, 48.6%,
and 8.5%, respectively. The proposed model showed a signifi-
cant reduction of FN rates. With additional datasets of videos
C and D, it was demonstrated that the proposed SlowFastMTB
model outperformed the existing models. The accuracy of Slow-
FastMTB with the Video C dataset was higher than CNN, faster
R-CNN, and SlowFast by 46.0%, 13.0%, and 0.5%, respectively. The
accuracy of SlowFastMTB with the Video D dataset was higher
than CNN, faster R-CNN, and SlowFast by 17.0%, 9.0%, and 5.5%,
respectively.

The outperformance of the proposed SlowFastMTB model
over existing models is mainly attributed to the nature of video
data. The SlowFastMTB approach captures the evolution of
smoke over time from consecutive images of video clips. In con-
trast, image-based deep learning models extract information
from a single image and ignore the correlation between consecu-
tive images. The proposed SlowFastMTB also outperformed an-
other video-based deep learning model (i.e., the original Slow-
Fast model). Thus, it was concluded that the new MTB algo-
rithm was effective for locating small amounts of smoke with
fuzzy boundaries from background images. The MTB algorithm
can also be used for automated annotation of other objects with
ambiguous boundaries, such as flames and clouds. It should be

Table 7: Comparison of the proposed method with existing methods (Video B dataset).

Metric CNN Faster R-CNN SlowFast SlowFastMTB (Proposed)
Accuracy (%) 50.0 447 84.8 93.3
FP rate (%) 10.0 415 0.4 0
Error
FN rate (%) 40.0 13.9 14.8 6.7
F1 score 0.286 0.566 0.822 0.928
10U N/A 0.440 0.573 0.865
Table 8: Comparison of the proposed method with existing methods (Video C dataset).
Metric CNN Faster R-CNN SlowFast SlowFastMTB (Proposed)
Accuracy (%) 52.0 85.0 97.5 98.0
10U N/A 0.739 0.821 0.980
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Table 9: Comparison of the proposed method with existing methods (Video D dataset).

Metric CNN Faster R-CNN
Accuracy (%) 60.5 68.5
j(e]8) N/A 0.578

noted that the SlowFastMTB model does not require human ef-
fort to annotate bounding boxes.

Two limitations of this study are presented for future work.
First, the SlowFastMTB model for detecting small amounts of
smoke from incipient forest fires can be used only when the
movement of the smoke is faster than other objects in the back-
ground images. Further, if a moving smoke-like object (e.g., a
white-colored train) also appears in the images studied, the ac-
curacy of the SlowFastMTB model may be reduced. The Slow-
FastMTB model should be improved by incorporating a rele-
vant algorithm (e.g., optical flow) to address this challenge. Sec-
ond, the hyperparameters of the SlowFastMTB model should
be optimized by leveraging advanced metaheuristic algorithms
such as monarch butterfly optimization, earthworm optimiza-
tion algorithm, elephant herding optimization, moth search al-
gorithm, slime mould algorithm, and Harris hawks optimiza-
tion. In this study, one of simple statistical tools, analysis of
variance (ANOVA), was employed. This may not be desirable. If
the hyperparameters are optimized in a systematic way, it is
expected that the performance of the proposed SlowFastMTB
model can be increased for detecting small amounts of smokes
from incipient forest fires.
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