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Abstract

The usage of cladocerans as non-model organisms in ecotoxicological and risk assessment

studies has intensified in recent years due to their ecological importance in aquatic ecosys-

tems. The molecular assessment such as gene expression analysis has been introduced in

ecotoxicological and risk assessment to link the expression of specific genes to a biological

process in the cladocerans. The validity and accuracy of gene expression analysis depends

on the quantity, quality and integrity of extracted ribonucleic acid (RNA) of the sample. How-

ever, the standard methods of RNA extraction from the cladocerans are still lacking. This

study evaluates the extraction of RNA from tropical freshwater cladocerans Moina micrura

using two methods: the phenol-chloroform extraction method (QIAzol) and a column-based

kit (Qiagen Micro Kit). Glycogen was introduced in both approaches to enhance the recov-

ery of extracted RNA and the extracted RNA was characterised using spectrophotometric

analysis (NanoDrop), capillary electrophoresis (Bioanalyzer). Then, the extracted RNA was

analysed with reverse transcription polymerase chain reaction (RT-PCR) to validate the

RNA extraction method towards downstream gene expression analysis. The results indicate

that the column-based kit is most suitable for the extraction of RNA from M. micrura, with the

quantity (RNA concentration = 26.90 ± 6.89 ng/μl), quality (A260:230 = 1.95 ± 0.15,

A280:230 = 1.85 ± 0.09) and integrity (RNA integrity number, RIN = 7.20 ± 0.16). The RT-

PCR analysis shows that the method successfully amplified both alpha tubulin and actin

gene at 33–35 cycles (i.e. Ct = 32.64 to 33.48). The results demonstrate that the addition of

glycogen is only suitable for the phenol-chloroform extraction method. RNA extraction with

high and comprehensive quality control assessment will increase the accuracy and reliability

of downstream gene expression, thus providing more ecotoxicological data at the molecular

biological level on other freshwater zooplankton species.
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Introduction

Comprehensive reports on the hazards, dose-response and exposure of chemicals are neces-

sary to establish a precise assessment of chemicals’ effects on humans and the ecosystem [1].

Conventional ecotoxicological assessment is highly costly, time-consuming and dependent on

testing animals as surrogates for exposure effects on humans [2]. Conventional assessments

only emphasise traditional apical endpoints rather than evaluating the specific pathway of the

chemicals. The pathway assessment is essential to assess the interactions of cells with tissues,

tissues with organs and organs with the individual [3]. Restriction on the use of animals in

ecotoxicological assessment is enforced by the European Union unless no other possible

method is applicable [4,5]. The National Institutes of Health (NIH) in the United States sug-

gested ecotoxicological testing using animal models should construct the assessment method-

ology using the Replacement, Reduction, and Refinement strategy [6]. Alternative

computerised analysis programs to regulate emerging chemicals instead of animal models

were established under the ‘Replacement’ strategy. The approach also encourages the usage of

cells and tissues, including the substitution from higher taxonomic rank animals (mammals

and primates) to lower taxonomic rank animals (invertebrates). Subsequently, the number of

animals used per test would be reduced via the ‘Reduction’ strategy by preventing any irrele-

vant replication for each assessment process. Efficient and accurate experimental design

through ‘Refinement’ would minimise test animals’ suffering.

Risk assessors have begun to utilise non-model organisms such as aquatic invertebrates as

bioindicators in ecotoxicological studies [7–10]. As a result, the amount of molecular assess-

ment of zooplankton in the ecotoxicity discipline has intensified in recent years [11–18].

Among the zooplankton species, cladocerans are the group most responsive to the miniscule

concentration of toxicants, as compared with copepods and rotifers [16]. Cladocerans are

located in the middle of the food chain and will act as a warning alarm towards any perturba-

tions in the aquatic ecosystem [19]. For example, cladocerans generate a vital connection

between primary production (diatom-rich phytoplankton) and higher trophic organisms

(fish). Inexpensive cladocerans species have reduced the cost of toxicity testing; for example,

laboratory sizes can be shrunk by 50% compared to those needed for fish/animal models [20].

However, most researchers used temperate cladocerans species such as Daphnia magna as a

species model, whereas tropical zooplankton species have not been thoroughly studied [21,22].

Moina micrura is a native cladoceran that is highly abundant in tropical countries including

Malaysia, Thailand, the Philippines, China, Sri Lanka, India, Mexico and Brazil [23–29]. Due

to their high ecological relevance, native species should be utilised in ecotoxicological studies

to show the actual potential risks posed to tropical freshwater life [30]. There are fewer logisti-

cal restraints due to the high availability of this species in the wild, thus prohibiting another

foreign species from being introduced into the native ecosystems [31]. Numerous study uti-

lised M. micrura as a bioindicator in ecotoxicological and risk assessment due to the sensitivity

of the species. For example, M. micrura is the most sensitive species towards cyanobacteria

compared to tropical cladocerans Daphnia laevis and temperate cladocerans Daphnia similis
[32]. Furthermore, M. micrura was the most sensitive species towards chlorpyrifos with the

LC50 value 0.08 μg/L compared with Ceriodaphnia dubia, D. magna and Daphnia duplex with

the LC50 value of 0.117 μg/L, 0.30 μg/L and 1.0 μg/L respectively [33]. Similar with other cla-

docerans, M. micrura possess a rapid life cycle and significant offspring due to the partheno-

genesis reproduction system [34]. These characteristics permit a large number of assessments,

including multigenerational experiments, with shorter time frames and minimised costs [35].

The organism’s transparent carapace allows novel organ endpoints such as eggs in the brood

chamber, gut and heart to indicate specific mechanistic responses [3]. Cladocerans’ unique

PLOS ONE Assessment of RNA extraction from cladocerans

PLOS ONE | https://doi.org/10.1371/journal.pone.0264989 April 26, 2022 2 / 20

Gwangju Institute of Science and Technology

(GIST) in 2021.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0264989


characteristics allow the prospect of more comprehensive ecotoxicological studies at different

organizational levels such as molecular, organ, individual, and population level.

Despite the advantages of cladocerans as a bioindicator in the ecotoxicity discipline, the

absence of established protocols to extract nucleic acids from cladocerans have interrupted the

assessment at molecular levels. Gene expression is an example of a molecular assessment used

by molecular biologists and environmental toxicologists to link the expression of specific

genes to a biological process [36]. This assessment can assist scientists in recognising biological

pathways and identifying the genes that regulate cell behaviour, development and disease [37].

However, the consistent and comprehensive analysis of gene expression depends on the quan-

tity, quality and integrity of extracted RNA of the sample [38]. Subsequently, RNA extraction

methods can be divided into two primary categories: conventional phenol-chloroform meth-

ods and silica-based kits [39]. The methods have been modified with several reagents to

enhance the quantity, quality and integrity of RNA. For example, glycogen was added during

the RNA extraction process to increase the RNA quantity and quality in different types of sam-

ples such as human [40,41] and rat [42] and insects [43,44]. Glycogen contain a highly purified

polysaccharide and commonly used as an inert carrier and acts as a free host to RNA [45]. Due

to the insoluble characteristics of an ethanol solution, glycogen produces a precipitate that

holds nucleic acids [46]. This precipitate will form a visible pallet, which will ease the handling

of nucleic acids.

Most zooplankton, including cladoceran species, consists of 18S and 28S rRNA. High- integ-

rity RNA will show distinguished 18S and 28S rRNA peaks, with no smearing towards a smaller

nucleotide (nt) [43]. Agarose gels are the conventional method to assess 18S and 28S rRNA

bands. However, this method has several drawbacks; for example, the rRNA bands can be influ-

enced by the electrophoresis conditions, the volume of loaded RNA and the saturation of ethid-

ium bromide fluorescence [47]. Table 1 shows the summary of the study’s analysis to

characterise the RNA quantity, quality and integrity. As the table indicates, this study conducted

the analysis using the bioanalyzer instrument, which combines fluorescence, microfluidics and

capillary electrophoresis to minimise errors during the evaluation of RNA integrity. The bioana-

lyzer utilised automatic microfluidics-based electrophoretic techniques that determine the RNA

quality value based on the analysis of digitalised electropherograms by proprietary algorithms

[48]. Additionally, the minimal input as low as 50 pg/μl of RNA sample permitted the character-

isation of RNA integrity [49]. This feature is critical for determining RNA integrity in small

samples like cladocerans because the quantity of extracted RNA is not high.

In this study, a comprehensive assessment of RNA extracted from Cladocerans M. micrura
with the addition of glycogen was reported for both the phenol-chloroform extraction method

and the column-based kit method. This study provides a reliable and simple method for the

molecular assessment of M. micrura for downstream applications such as reverse transcription

polymerase chain reaction (RT-PCR) and next-generation sequencing (NGS) for potential

application in functional genomic research such as gene expression profiling.

Material and methods

Chemicals and reagents

The chemicals, reagents, micropipette tips and micropestles used were molecular grade and

certified Rnase-free. Chloroform, isopropanol, ethanol, β mercaptoethanol were purchased

from Merck (Steinheim, Germany). RNase- QIAzol reagents, free water and Qiagen Micro kits

were acquired from Qiagen (Hilden, Germany). RNA-grade glycogen was obtained from

Thermo Fisher Scientific (MA, United States). To ensure a high quality of RNA extraction,

workspaces such as lab benches and laminar flows were cleaned using 100% ethanol each time
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to ensure their cleanliness and to remove all contaminants. During handling of the reagent

and RNA samples, gloves are utilised at all times and changed regularly as the protocol pro-

gresses from crude extract to more purified material.

M. micrura culture specifications

Live samples of Cladocerans M. micrura were obtained from the culture in the Aquatic Animal

Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra

Malaysia. The culture was cultivated based on the International Organization for Standardiza-

tion (ISO) method (ISO 6341:2012). The culture specifications were regulated to the light/dark

cycle of 12: 12 h and 27 ± 1˚C. The media was changed every two days with the daily supple-

mentation of a green microalga species, Chlorella vulgaris (1.0 × 106~8 cells/ ml, 1 ml/day), as

the food supply.

M. micrura controlled samples collection

The standardization of sample collection to ensure the M. micrura in controlled condition

throughout the RNA extraction process. Live M. micrura females were sorted from the culture

sample under a Zeiss Axioskop 2 microscope (Zeiss, Germany). Females of M. micrura were

collected similarly from the controlled culture prior to the RNA extraction. All experiments

were performed in accordance with UK legislation under the Animals (Scientific Procedures)

Act 1986 Amendment Regulations (SI 2012/3039).

Table 1. Summary of analysis to characterise RNA quantity, quality and integrity.

Characterization

of RNA analysis

Concentration Purity Integrity Linear Range of Detection Utilisation

of Toxic

Reagent

Equipment/

Supplies Required

Relative

Cost per

Assay

Assay

Time

Hands-

On

Time

Ability to

Automate

Absorbance Y Y N NanoDrop

Spectrophotometer:

2–12,000 ng/μl

No Spectrophotometer Low <1

minutes

<1

minutes

Yes

Dye-Based

Quantification

Y N N QuantiFlour RNA system:

0.1–500 ng

Quant-iT RiboGreen

RNA Assay Kit: 0.2–200 ng

Qubit RNA BR Assay Kit:

20–1,000 ng

Yes Fluorometer, Dye

Kits

Medium 15–30

minutes

15–30

minutes

Yes

Agarose and

Acrylamide Gels

Y/N1 N Y Ethidium bromide: > 34 ng

SYBR Green II: >14ng

SYBR Gold: >4.3 ng

Yes Gel Box, Stain Low 10–120

minutes

5–15

minutes

No

Agilent 2100

Bioanalyzer

Y N Y Agilent RNA 6000 Nano Kit:

5–500 ng/μl

Agilent RNA 6000 Pico Kit:

50–5,000 pg/μl

No Bioanalyzer, Chips High ~1

hours

~30

minutes

No

qPCR and RT-

qPCR

Y Y/N2 Y/N3 Depends on many factors

including target, reaction

conditions, RNA quality and

Primer design

No Real-Time

Instrument

High 1–2

hours

15–30

minutes

Yes

Y = Can be determined, N = Cannot be Determined.
1Qualitative, or by densitometry, quantitative.
2Delayed Cq values may be indicative of low purity or contamination.
3Delayed Cq values may be indicative of poor integrity.
4Depends on dye or system used.
5Using nucleic acid-specific dyes.

https://doi.org/10.1371/journal.pone.0264989.t001
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RNA extraction

QIAzol (Method A).

1. Ten (10) and thirty (30) individuals of female M. micrura were transferred into a microcen-

trifuge tube.

2. Deionised water (1 ml) was added and the samples were gently rinsed using a micropipette

to wash away any impurities attached to them. The samples were transferred into a new

microcentrifuge tube.

3. QIAzol (100 μl) was added into the microcentrifuge tubes.

4. The samples were homogenised using a cordless microtube homogeniser (Bel-Art, NJ,

USA) attached to the disposable plastic micropestle (Bel-Art, NJ, USA). The homogeniser

was rotated 30 to 50 times under pressure until no large particles were visible under direct

light.

5. The micropestle was rinsed with fresh QIAzol (900 μl) of reagent added into the microcen-

trifuge. The samples were vortexed briefly and incubated for 5 minutes at room

temperature.

6. Chloroform (200 μl) was added to the samples, vortexed briefly and incubated at room tem-

perature for 3 minutes.

7. The samples were centrifuged at>12,000 rpm, 4˚C for 15 min. The supernatant (upper

layer) was transferred to a clean microcentrifuge tube.

8. Isopropanol (500 μl) was added, and then the samples were vortexed briefly and incubated

for 10 minutes at room temperature.

9. The samples were centrifuged at>12,000 rpm in 4˚C for 20 minutes and the supernatant

was removed.

10. The pellet was washed with 1000 μl of 75% ethanol (diluted with RNase-free water). Then,

the samples were centrifuged at 7500 rpm at 4˚C for 2 min.

11. The supernatant was carefully removed and the washing process was repeated once more

(step 10). The supernatant was completely removed and air-dried for 10 min

12. The pallet was dissolved with 20 μl of RNase-free water. The samples were placed in the

water bath at 45˚C for 5 minutes and immediately held in ice for 2 minutes.

13. The extracted RNA was stored at -80˚C prior to characterisation analysis. Fig 1 illustrates

the QIAzol (Method A) method and the QIAzol + glycogen (Method B) method.

QIAzol + glycogen (Method B).

1. Use a similar method with Method A but with the addition of 2 μl of RNA-grade glycogen

during the RNA precipitation process.

Qiagen Micro Kit (Method C).

1. Ten (10) and thirty (30) individuals of female M. micrura were transferred into a microcen-

trifuge tube.

2. The samples were homogenised in of RLT buffer (350 μl) and β mercaptoethanol (4 μl) by

using a similar procedure to that of the previous method.
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3. The Qiagen Micro Kit was used according to the manufacturer’s protocol.

4. To avoid RNA degradation, all centrifugations were carried out at 4˚C and samples were

kept on ice during the entire procedure

5. The RNA was eluted in RNase-free water (20 μl).

6. The extracted RNA was stored at -80˚C prior to characterisation analysis. Fig 2 illustrates

the Qiagen Micro Kit (method C) method and the Qiagen Micro Kit + glycogen (Method

D) method.

Qiagen Micro Kit + glycogen (Method D).

1. Use a similar method with Method C but with the addition of 2 μl of RNA-grade glycogen

(Thermo Fisher Scientific, MA, United States) during the RNA precipitation process.

RNA characterisation

The quantity (RNA yield) and quality (A260/230 and A260/280 ratios) of total RNA were mea-

sured by the Genova Nano spectrophotometer Jenway (OSA, UK). The integrity of RNA (RIN

value) was measured by Agilent 2100 Bioanalyzer Agilent Technologies (Waldbronn, Ger-

many). The bioanalyzer instrument used the Agilent RNA 6000 Pico Kit and was supplied by

Agilent Technologies (Waldbronn, Germany).

First-strand complementary DNA (cDNA) Synthesis and Reverse-

Transcription Polymerase Chain Reaction (RT-PCR)

Two (2) replicate of RNA extraction samples from the best extraction method were used for

cDNA synthesis and subsequent RT-PCR using primers based on previous literature [50].

Fig 1. Method of extraction by using QIAzol (Method A) and QIAzol + glycogen (Method B).

https://doi.org/10.1371/journal.pone.0264989.g001
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Tetro cDNA Synthesis Kit (Bioline, USA) was utilised to synthesis complementary DNA

(cDNA) by mixing 2 μg/μl of total RNA, 8 μl of Reverse Transcriptase Buffer, 2 μl of 10 mM

dNTP mix, 2 μl of Oligo (dT)18 Primer, 2 μl of Ribosafe RNase Inhibitor, 2 μl of Tetro

Reverse Transcriptase and RNase free Water to make up to 40 μl. The reaction mixture was

homogenised by pipetting gently and incubated inside T100™ thermal cycler (Bio-Rad,

USA) at 45˚C for 30 minutes. This was followed by an incubation at 85˚C for 5 minutes to

stop the reverse transcriptase reaction and the holding temperature was finally held at 4˚C.

The cDNA was kept at -20˚C before RT-PCR analysis.

Two (2) genes (Table 2) will be validated using SensiFAST™ SYBR No-ROX Kit (Bioline,

USA). 0.3 μg of cDNA template will be mixed with 0.4 μl of 10 μM forward qPCR primer,

0.4 μl of 10 μM reverse qPCRprimer, 10 μl of 2 x SensiFast SYBR No-ROX Mix (containing

10 μM of dNTP mixture, 3 mM of MgCl2, SYBR1 Green I dye, Taq Polymerase buffer, Taq

DNA Polymerase, stabilisers and enhancers) and 8.2 μl of PCR grade distilled water. Each

mixture will be pipetted into a 0.2 ml PCR tube, vortexed and centrifuged for a short spin

prior to placing it into the Rotor-Gene Q thermocycler (QIAGEN, Germany). Two step

RT-PCR will be performed with the cycling conditions consisting of an initial denaturation

step at 95˚C for 2 minutes, 40 cycles of denaturation (95˚C for 5 seconds) and 65˚C of

annealing reaction.

Fig 2. Method of extraction by using Qiagen Micro Kit (method C) and Qiagen Micro Kit + glycogen (Method D).

https://doi.org/10.1371/journal.pone.0264989.g002

Table 2. Genes and primers used in the present study for Moina micrura [50].

Gene Function Sequences

Alpha Tubulin, aTub Make up the cell’s structural framework Forward: TGGAGGTGGTGACGACT
Reverse: CCAAGTCGACAAAGACAGCA

Actin, Act Makes up the structural framework inside cells. Forward: CCACACTGTCCCCATTTATGAA
Reverse: CGCGACCAGCCAAATCC

https://doi.org/10.1371/journal.pone.0264989.t002
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Statistical analysis

Data analysis was performed using statistical software IBM SPSS (Version 25). One-way analy-

sis of variance (ANOVA) and Tukey’s post hoc pair-wise comparison test were employed to

assess the effect of different RNA extraction methods on RNA quantity, quality (A260/280 and

A260/230 ratios) and integrity (RIN values).

Results and discussion

RNA quantity

The efficacy of total RNA extraction methods should be validated by examining the quantity,

quality and integrity of RNA to avoid repeated experiments, utilisation of toxic reagents,

labour costs and instrumentation [51]. The comparison of the quantity (ng/individual), purity

(A260/230 and A260/280 ratios) and integrity (RIN values) of the total RNA extracted from

zooplankton using different extraction and preservation methods (Table 3 and S1 File). The

current study utilised different sample pools of 10 individuals and 30 individuals for both

extraction methods. For both extraction methods, RNA concentration was higher in sample

pools of 30 individuals than in sample pools of 10 individuals. A similar result was observed by

Roy et. al. (2020), suggesting that when the initial sample size or mass is increased, the RNA

concentration will also increase. Moreover, the Individual contents of RNA in Artemia salina
were increased exponentially with the life stages and number of incubation days as observed

Table 3. The comparison of quantity (ng/individual), purity (A260/230 and A260/280 ratios) and integrity (RIN values), of total RNA extracted from zooplankton

using different extraction and preservation methods.

Extraction method Preservation

method

Species N n RNA concentration

(ng/μl)

A260/230 A260/280 Gel

profile

RIN References

18s 28s

Phenol-chloroform extraction

TRIzol None Calanus
helgolandicus

5–

15

9 54.62 ± 24.9 1.27 ± 0.48 1.81 ± 0.13 + - 3.90 ± 1.13 [51]

QIAzol None Moina micrura 10 6 35.61 ± 20.9 1.77 ± 0.24 1.67 ± 0.28 + - 5.87 ± 0.18 This study

QIAzol None Moina micrura 30 4 105.16 ± 16.0 1.68 ± 0.04 1.53 ± 0.11 + - 5.70 ± 0.32 This study

QIAzol + glycogen None Moina micrura 10 6 113.71 ± 27.1 1.84 ± 0.05 1.86 ± 0.26 + - 6.25 ± 0.10 This study

QIAzol + glycogen None Moina micrura 30 4 352.59 ± 22.2 1.66 ± 0.13 1.43 ± 0.20 + - 6.10 ± 0.22 This study

Column-based kit

Qiagen mini kit TRIzol Acartia hudsonica 50 70 5.34 ± 0.6 NA NA NA NA NA [54]

Aurum Total RNA

Mini Kit

TRIzol reagent Calanus
helgolandicus

5–

15

16 7.25 ± 4.3 1.49 ± 0.66 1.99 ± 0.21 + - 3.93 ± 1.19 [51]

Aurum Total RNA

Mini Kit

RNAlater Calanus
helgolandicus

5–

15

10 8.57 ± 2.0 1.58 ± 0.61 2.06 ± 0.08 + + 9.43 ± 0.53 [51]

Qiagen micro kit TRIzol reagent Calanus
helgolandicus

5–

15

8 53.25 ± 14.4 2.47 ± 0.26 2.05 ± 0.04 + - NA [51]

Qiagen micro kit RNAlater Calanus
helgolandicus

5–

15

12 57.69 ± 12.0 1.94 ± 0.40 2.02 ± 0.04 + + 9.90 ± 0.14 [51]

Qiagen micro kit None Moina micrura 10 4 26.90 ± 6.9 1.95 ± 0.15 1.85 ± 0.09 + + 7.20 ± 0.16 This study

Qiagen micro kit None Moina micrura 30 4 77.80 ± 3.4 1.88 ± 0.08 1.65 ± 0.12 + + 6.70 ± 0.58 This study

Qiagen micro kit

+ glycogen

None Moina micrura 10 4 17.52 ± 5.8 1.59 ± 0.17 1.55 ± 0.07 + + 6.73 ± 0.27 This study

Qiagen micro kit

+ glycogen

None Moina micrura 30 4 26.88 ± 6.4 1.58 ± 0.09 1.37 ± 0.14 + + 6.15 ± 0.15 This study

Values represent the mean ± standard deviation. NA no values were assigned. N number of individuals per extraction. n number of replicates.

https://doi.org/10.1371/journal.pone.0264989.t003
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by Kobari et. al. (2017). The study also suggested that samples of early life stages of zooplank-

ton do not contain RNA in amounts that are sufficient for any molecular study. Thus, extra

individuals in the sample pools are needed during RNA extraction from zooplankton samples

in the early life stages [52]. For this reason, phenol-chloroform method extraction is the best

method of RNA extraction during the early life stages due to the fact that it can yield 2.4 to 93

times more RNA than the column-based kit method [39]. Furthermore, RNA concentration

plateaus in the middle to late life stages (22–27 days of incubation). Thus, to ensure a sufficient

concentration of RNA, the appropriate life stage for zooplankton to be taken as a sample is

from 9 days onwards [52].

Overall, the phenol-chloroform method showed a higher quantity of RNA compared to the

column-based kit method. Spectrophotometric analysis indicates that the use of glycogen

increased the RNA yield in the phenol-chloroform method. In the sample pools consisting of 10

individuals, the addition of glycogen successfully increased the RNA yield by three (3)fold from

35.61 ± 20.91 ng/μl to 113.71 ± 27.10 ng/μl. However, numerous precautions must be taken dur-

ing extraction when using this method because several contaminants such as phenol, chloro-

form, salt and guanidine may persist in samples. In this study, a micro kit is used as the

representative of a column-based kit instead of a mini kit because it is suitable for purification

of total RNA using samples as small as 5 mg for animal tissues or 5x105 cells for animal cells

[53]. Study by Asai et. al. (2015) shows the RNA extracted from zooplankton by using the micro

kit yielded more RNA compared to a mini kit, with RNA concentrations of 57.69 ± 12.0 and

8.57 ± 2.0, respectively. Additionally, the column-based micro kit method saves time, can be

conducted rapidly and possesses easier protocol compared to the phenol-chloroform extraction

method [39]. However, the addition of glycogen in the column-based kit caused a significant

decrease in RNA yield from 26.90 ± 6.89 ng/μl to 17.52 ± 5.84 ng/μl. It is suggested that the mix

between glycogen and lysate in the spin columns will interfere with the dynamics of column

extraction. Subsequently, whenever the number of samples is high or samples are taken during

the middle and late life stages, the column-based kit is the best extraction method, as it success-

fully eliminates residual contaminants, thus increasing the RNA quality and integrity.

RNA quality and integrity

The total RNA extracted with the phenol-chloroform from the sample taken in the pools con-

sisting of 10 individuals method had higher purity (A260/230 and A260/280 ratios) with the

addition of glycogen during the extraction process. However, the column-based kit showed a

decrease in A260/230 and A260/280 values when glycogen was added during the extraction

process. In this study, the Qiagen micro kit without the addition of glycogen resulted in the

best A260/230 and A260/280 ratio values, or 1.95 ± 0.15 and 1.85 ± 0.09, respectively. Never-

theless, in the sample pools consisting of 30 individuals, the addition of individuals into the

pools decreased the A260/230 and A260/280 values for both extraction methods. This is

because well-known contaminants such as ribonucleases (RNases) converge more strongly in

the larger pooled samples, thus extensively digesting the RNA in the sample [54]. To prevent

this phenomenon from occurring, multiple washing steps are required in extraction methods

to eliminate the contaminants in the samples. Subsequently, rapid extraction methods and

avoidance of environmental heat are also essential to ensure high-quality RNA in the samples

[55]. The quality of the RNA extracted, with a reading of A260/230 and an A260/280 ratio

between 1.8–2.0, indicated that the extracted RNA was free from contaminants and suitable

for downstream applications [54].

The current study indicates that the addition of individuals in the sample pools reduces

RNA integrity for both extraction methods. This result is due to numerous contaminants
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such as RNases becoming more concentrated in the pooled samples [54]. Thus, the current

study established 10 individuals per sample pool as the optimised sample size for both

extraction methods. Fig 3 shows the bioanalyzer assessment of the RNA extracted from 10

individuals of female M. micrura. Fig 3B shows glycogen did not cause 18S rRNA and 28S

rRNA to peak, indicating that glycogen did not interfere with any of the proposed methods.

The heat denaturing step, which stored RNA at 70˚C for 2 min before loading it onto the

chip, was excluded in this method. The denaturing step is recommended in the Agilent

2100 Bioanalyzer manufacturer’s instructions. However, this step causes the 28S rRNA peak

to disappear from the electropherograms. During the heat denaturation step, the two frag-

ments of 28S rRNA separate and migrate with the 18S rRNA. This phenomenon was associ-

ated with the ’hidden break’ present in protostome 28S rRNA [56]. A similar suggestion was

made by Asai et al. (2015) to skip the heat denaturation step when assessing RNA integrity

with zooplankton species. Additionally, RNA integrity is one of the most vital factors in the

effectiveness of RNA extraction, since a low integrity value could intensely influence down-

stream analysis [57,58].

Fig 3. The bioanalyzer assessment of total RNA from ten (10) female M. micrura extracted using different RNA

extraction methods with the agilent RNA 6000 pico kit on the agilent 2100 bioanalyzer. X-axis units in nt

(Nucleotides); Y-axis units in FU (Fluorescence Units); N/A (Not Applicable) a) RNA ladder, b) glycogen, c) QIAzol

method, d) QIAzol + glycogen method, e) Qiagen Micro Kit method, f) Qiagen Micro Kit + glycogen method, and g)

Electrophoretic gel for each sample.

https://doi.org/10.1371/journal.pone.0264989.g003

PLOS ONE Assessment of RNA extraction from cladocerans

PLOS ONE | https://doi.org/10.1371/journal.pone.0264989 April 26, 2022 10 / 20

https://doi.org/10.1371/journal.pone.0264989.g003
https://doi.org/10.1371/journal.pone.0264989


Glycogen effectively increased the RNA integrity of the phenol-chloroform method from

5.87 ± 0.18 to 6.25 ± 0.10, However, glycogen has undesirable effects on the column-based kit

as it was shown to decrease RNA integrity from 7.20 ± 0.16 to 6.73 ± 0.27. Total RNA from M.

micrura extracted with the phenol-chloroform method showed a single peak corresponding to

the 18S rRNA subunit, an absence of a 28S rRNA peak and a small amount of small RNA

occurring between 25 nt and 200 nt. Subsequently, the column-based kit showed a clear 28S

rRNA peak and a tiny amount of small RNA appearing between 25 nt and 200 nt. Additionally,

the RIN values obtained by using column-based kit methods were significantly higher than

those achieved with the phenol-chloroform method. The low RIN values, particularly in the

phenol-chloroform method, were associated with the absence of 28S rRNA. The dissociation

of the 28S rRNA was caused by the denaturation process of hydrogen bond breaking during

the RNA extraction [51]. A similar discovery related to the denaturing effect of the lysis

reagent on the 28S rRNA was reported in molluscs, insects and other zooplankton species

[44]. A previous extraction study shows that the dissociation of 28S RNA caused by using the

phenol-chloroform extraction method causes the RIN value to drop to 3.90 ± 1.13 [51]. As a

result, the phenol-chloroform method is suggested to be unsuitable for extracting RNA from

these organisms. Several studies showed that the extracted RNA in a RIN value of 6–10, indi-

cating RNA from human and animal tissues that is high quality and non-degraded, and thus

suitable for downstream applications [59,60]. This study showed that the column-based kit

extraction is the most reliable method to extract RNA from freshwater Cladocerans species,

specifically M. micrura. The effects of glycogen on RNA quantity, quality (A260/230 and

A260/280 ratios) and integrity (RIN values) in both phenol-chloroform and column-based kit

methods (Fig 4).

The Qiagen Micro Kit (Method C) was the most optimised method and surpassed the mini-

mum requirement of RNA quality control. Thus, the RNA extracted from this method was

Fig 4. The effect of glycogen on RNA quantity, quality (A260/230 and A260/280 ratios) and integrity (RIN values). Box plots illustrate a) total

yield of RNA extracted, b) A230/260 ratios of RNA extracted, c) A230/280 ratios of RNA extracted and d) RIN values of RNA extracted. Significant

differences were analysed by ANOVA (Tukey’s post hoc test; ρ< 0.05) and are expressed as different letters. The results are based on the RNA

extraction from the sample pools of ten (10) female M. micrura.

https://doi.org/10.1371/journal.pone.0264989.g004
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used for cDNA synthesis and subsequent RT-PCR analysis. Alpha tubulin and actin genes

were employed as housekeeping genes in this study. Both genes have been identified as cladoc-

erans’ cellular maintenance genes that regulate basic and ubiquitous cellular functions [50].

Thus, the genes were ideal candidates for serving as internal controls for gene expression anal-

ysis towards cladocerans. Moreover, the consistent expression of a housekeeping gene is

required in any RT-PCR analysis since it is crucial for in the interpretation of the final result

[61]. In all samples, the RT-PCR amplification cycle graphs showed that both alpha tubulin

and actin genes exponential increase started at 33–35 cycles and the cycle threshold (Ct) values

were between 32.64–33.48, respectively (S2 File). The stable reference genes identified in this

study indicates current extraction method produces useful genetic material for testing the

hypotheses involving genetic expression assays.

Another factor that can influence the quality and integrity of RNA used for downstream

analysis besides the extraction method is the preservation of RNA samples. Previous studies

have utilised several preservation methods, including preservation in RNAlater and storage at

-80˚C [44,51,54,62–67], preservation in lysis reagent and storage at -80˚C [51,54,62,64], pres-

ervation in ethanol and storage at -80˚C [38,68] and immersion in liquid nitrogen and storage

at -80˚C [62,63,65]. Preservation in formalin or 95–100% ethanol and flash freezing by using

liquid nitrogen is a conventional method and most regularly used for bulk fixation of zoo-

plankton samples [69,70]. However, this method does not preserve the integrity of proteins

and degrades the genomic RNA. Moderate nucleic acid degradation in ethanol-preserved sam-

ples of Parvocalanus crassirostris after a month of preservation was observed by Goetze and

Jungbluth (2013). The conventional method requires toxic chemicals and relies on liquid

nitrogen, which is expensive. TRIzol as a preservation reagent for zooplankton, as no signifi-

cant RNA degradation (p> 0.05) was detected in Acartia hudsonica preserved in TRIzol at

4˚C for up to two weeks, or −80˚C for two years as suggested by Zhang et. al. (2013). A similar

study indicated RNAlater was not a suitable preservation reagent for Acartia hudsonica
because no RNA was detectable in 6 out of 24 samples during the extraction process after pres-

ervation in RNAlater. The study indicated RNAlater fixation is not suitable for the preserva-

tion of individual small-sized zooplankton. Thus, the number of zooplankton samples

preserved in RNAlater should be increased to reduce RNA loss during the preservation process

[54]. Different observations were obtained by Gorokhova (2005), who revealed that RNAlater

was capable of preserving RNA from an Artemia spp. sample for about 1 month at room tem-

perature and 4 months at 5˚C. Subsequently, the study indicates that -80˚C is the best tempera-

ture for sample storage because no significant RNA degradation was observed until after 8

months. Accordingly, if the sample requires longer storage time, the temperature during stor-

age must be kept as low as possible to ensure the RNA in the sample remains intact and is not

degraded. Previous study by Asai et. al. (2015) also proposed RNAlater as a preservation

reagent if liquid nitrogen is not available for flash freezing of zooplankton samples. A similar

study indicated the integrity of Calanus helgolandicus was increased by 2.5-fold when it was

preserved with RNAlater, from 3.90 ± 1.13 to 9.9 ± 0.14. Additionally, the effects of RNAlater

on zooplankton depend on the exoskeleton structure of zooplankton species. A thin and non-

calcified cuticle exoskeleton will increase the effectiveness of RNA preservation, as the RNAla-

ter can easily penetrate the tissue, particularly before the samples are refrigerated. Preservation

methods are essential to maintain the integrity of RNA from samples, thus determining the

success of downstream analysis. Therefore, further studies by using several preservation meth-

ods before the RNA extraction are recommended to increase the integrity of RNA from several

zooplankton samples.

Furthermore, the occurrence of RNases in both the sample and the environment causes the

breakdown of RNA into smaller components [56]. The hydroxyl (-OH) group and diatomic

PLOS ONE Assessment of RNA extraction from cladocerans

PLOS ONE | https://doi.org/10.1371/journal.pone.0264989 April 26, 2022 12 / 20

https://doi.org/10.1371/journal.pone.0264989


carbon (C2) group in RNA chemical structure play a crucial role in the nonenzymatic degrada-

tion process [71]. Degraded RNA will not become amplified at the same level as cDNA derived

from intact RNA during gene expression analysis. As RNA becomes degraded, quantitative

expression levels determined by RT-PCR decrease and may cause inaccurate and unreliable

gene expression assessment in the samples. RNA sequencing (RNA-seq) is an established

high-throughput sequencing assay that applies next-generation sequencing (NGS) to deter-

mine any changes in the cellular transcriptome [72,73]. The transcript level of various genes

changes with even slight differences in RNA integrity as observed by Reiman et. al. (2017). The

highly degraded RNA did not yield enough sequencing library data; thus, the diversity and the

coverage of transcript level values were significantly understated [65]. Samples with RIN values

below 2.2 showed significant differences in gene expression profiles, producing only 30 million

sequenced reads compared to 50 million sequenced reads of high-quality RNA [65]. However,

data normalisation techniques can be implemented to increase the accuracy of gene expression

assessments in RNA-seq analysis for degraded samples [74]. Data normalisation during RNA-

seq analysis could determine several expressed genes, even when RNA samples with RIN val-

ues as low as 4 were included as examined by Romero et. al. (2014).

Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis

Worldwide communities must integrate all available ecotoxicological data, especially at

molecular levels, by providing more detailed mechanistic information. The Organisation

Fig 5. a) Key apical endpoints in various levels of organisation and b) workflow of Cladocerans bioindicator in risk and pathway assessment.

https://doi.org/10.1371/journal.pone.0264989.g005
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for Economic Co-operation and Development (OECD) established the adverse outcome

pathway (AOP) framework to compile, incorporate and integrate ecotoxicological data

through pathway assessment to clarify adverse outcomes. The framework examines the

Fig 6. SWOT analysis of the phenol-chloroform extraction method and the column-based kit for the RNA extraction of zooplankton

samples.

https://doi.org/10.1371/journal.pone.0264989.g006
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effects of chemicals through several levels of biological organisation (e.g., neuronal, cells,

tissue, organ and individual) leading to adverse outcomes that are important to chemical

and risk assessment [75]. Fig 5 shows a) key apical endpoints in several organisation levels

and b) workflow at the molecular level for risk and pathway assessment. The figure shows

the critical molecular assessment as a core interaction that causes adverse outcomes to the

organisms. As more ecotoxicological data at the molecular level is recorded, it is possible to

predict and evaluate potential adverse outcomes based on toxicity mechanistic understand-

ing [76]. OECD established AOP Knowledge Base (AOP-KB) as the central repository for

accelerating AOP applications (https:/aopkb.oecd.org/). AOP-KB consists of AOP-Wiki,

Effectopedia, and AOP Xplorer for gathering mechanistic information and evaluating

existing AOPs. The framework provides a means of collecting, organising and integrating

data from numerous sources to allow accurate evaluations for chemical risk assessment,

hazard projection and regulatory decision making [77]. Comparison assessment between

vertebrate and invertebrate species is essential to determine the relationships in both spe-

cies. The latest study shows several similar reactions across both species at the molecular

levels of biological organisation, indicating potentially numerous overlapping responses to

specific stressors. Unfortunately, only a fraction of molecular assessment data is reported

on invertebrate species, especially zooplankton. Subsequently, the comparative analysis of

two commonly used RNA extraction approaches in this study will support studies on cla-

docerans as non-model organisms for molecular assessment. A Strengths, Weaknesses,

Opportunities, and Threats (SWOT) analysis of the phenol-chloroform extraction method

and the column-based kit for the RNA extraction of zooplankton samples (Fig 6). Although

the column-based kit is more expensive than the phenol-chloroform extraction method,

the column-based kit offers high-quality extracted RNA and a rapid method that is more

suitable for downstream application with zooplankton samples.

Conclusions

RNA quality control is an essential step when evaluating gene expression profiles for down-

stream applications. In this study, a comprehensive assessment of RNA extracted from M.

micrura was conducted using phenol-chloroform and column-based extraction methods.

This study also showed the usefulness of a well known inert carrier, glycogen, in enhancing

the quantity, quality and integrity of RNA, albeit only for a specific extraction method,

namely the phenol-chloroform method. However, the phenol-chloroform method is not

compatible with M. micrura or other zooplankton, insects and molluscs species because the

lysis reagent used in this method will eventually denature 28S rRNA. On the other hand, the

incorporation of glycogen is not compatible with the column-based kit method due to its

interference with the dynamics of column extraction. However, the column-based kit

method surpassed the minimum requirement of RNA quality control for downstream appli-

cations such as reverse transcription polymerase chain reaction (RT-PCR) and next-genera-

tion sequencing (NGS).
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