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Particle accelerators and radiation based on radio-frequency (RF) cavities have sig-
nificantly contributed to the advancement of science and technology in the last century.
However, the rising costs and scales for building cutting-edge accelerators form barriers
to accessing these particle and radiation sources. Since the introduction of chirped pulse
amplification technology [1] in the 1990s, short-pulse, high-power lasers have enabled the
realization of laser-driven accelerations and radiation sources. Laser-driven accelerators
and radiation sources could be a viable alternative to providing compact and cost-effective
particle and photon sources. The accelerating field in a plasma, driven by intense laser
pulses, is typically several orders of magnitude greater than that of RF accelerators, while
controlling the plasma media and intense laser pulses is highly demanding. Therefore,
numerous efforts have been directed toward developing compact, high-quality particle
beams and radiation sources based on intense laser-plasma interactions, with the goal of
paving the way for these novel sources to be used in a variety of applications.

This Special Issue covers the latest developments in laser-based ion and electron
accelerators, laser-plasma radiation sources, advanced targetry and diagnostic systems for
laser-driven particle accelerators, particle beam transport solutions for multidisciplinary
applications, ionizing radiation dose map determination, and new approaches to laser-
plasma nuclear fusion using high-intensity, short laser pulses. This collection of research
articles is a complementary set of experimental results, achieved using cutting-edge laser
technologies with a broad range of parameters (from 10 TW to 1 PW and from 10 fs to 1 ps)
and numerical simulation studies, carried out through particle-in-cell, hydrodynamic, and
Monte Carlo advanced modelling.

The versatility of laser-plasma accelerators is demonstrated through an optically
switchable, multi-MeV ion/electron accelerator using the same target geometry (thin-
foil) [2]. A review of the recent developments, limitations, and perspectives of multi-GeV
electron accelerators with PW-class lasers using the laser-wakefield acceleration approach is
provided [3]. Advanced spectroscopic investigations of laser-based, far-ultraviolet plasma
sources are also presented [4]. Recent progress in the design and development of auto-
mated systems to refresh solid targets at a high repetition rate during the interaction with
high-intensity laser pulses are presented, along with ion diagnostics and corresponding
data collection and real-time analysis methods [5]. Experimental studies on the correla-
tion between the frequency spectrum of the large electro-magnetic pulse generated in the
high-intensity laser–target interaction and the distortion of Thomson parabola spectrome-
ter proton tracks are also reported [6]. A dedicated Monte Carlo Study of Imaging Plate
Response to Laser-Driven Aluminum Ion Beams is presented [7]. The design, implemen-
tation, and characterization of a multi-MeV laser-plasma proton beamline using compact
and cost-effective particle beam transport solutions is presented [8]. On the other hand,
feasibility studies aimed to perform radiobiological experiments using laser-accelerated
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proton beams with intermediate-energy (few tens of MeV), properly focused and selected
through advanced particle beam transport solutions, are reported [9]. The angular spectral
distribution of laser-accelerated particles is assessed for the subsequent modelling of ra-
diation dose maps and a comparison with the experimental results [10]. Finally, the first
proof-of-principle experiment to demonstrate the efficient generation of α-particle beams
through proton–boron fusion reactions using a PW-class laser in the “in-target” geometry
is presented [11].
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5. Chagovets, T.; Stanček, S.; Giuffrida, L.; Velyhan, A.; Tryus, M.; Grepl, F.; Istokskaia, V.; Kantarelou, V.; Wiste, T.;

Hernandez Martin, J.C.; et al. Automation of Target Delivery and Diagnostic Systems for High Repetition Rate Laser-Plasma
Acceleration. Appl. Sci. 2021, 11, 1680. [CrossRef]

6. Grepl, F.; Krása, J.; Velyhan, A.; De Marco, M.; Dostál, J.; Pfeifer, M.; Margarone, D. Distortion of Thomson Parabolic-Like Proton
Patterns due to Electromagnetic Interference. Appl. Sci. 2021, 11, 4484. [CrossRef]

7. Won, J.; Song, J.; Palaniyappan, S.; Gautier, D.C.; Jeong, W.; Fernández, J.C.; Bang, W. Monte Carlo Study of Imaging Plate
Response to Laser-Driven Aluminum Ion Beams. Appl. Sci. 2021, 11, 820. [CrossRef]

8. Brandi, F.; Labate, L.; Palla, D.; Kumar, S.; Fulgentini, L.; Koester, P.; Baffigi, F.; Chiari, M.; Panetta, D.; Gizzi, L.A. A Few MeV
Laser-Plasma Accelerated Proton Beam in Air Collimated Using Compact Permanent Quadrupole Magnets. Appl. Sci. 2021,
11, 6358. [CrossRef]

9. Mingo Barba, S.; Schillaci, F.; Catalano, R.; Petringa, G.; Margarone, D.; Cirrone, G.A.P. Dosimetric Optimization of a Laser-Driven
Irradiation Facility Using the G4-ELIMED Application. Appl. Sci. 2021, 11, 9823. [CrossRef]

10. Groza, A.; Chirosca, A.; Stancu, E.; Butoi, B.; Serbanescu, M.; Dreghici, D.B.; Ganciu, M. Assessment of Angular Spectral
Distributions of Laser Accelerated Particles for Simulation of Radiation Dose Map in Target Normal Sheath Acceleration Regime
of High Power Laser-Thin Solid Target Interaction—Comparison with Experiments. Appl. Sci. 2020, 10, 4390. [CrossRef]

11. Margarone, D.; Bonvalet, J.; Giuffrida, L.; Morace, A.; Kantarelou, V.; Tosca, M.; Raffestin, D.; Nicolai, P.; Picciotto, A.; Abe, Y.; et al.
In-Target Proton–Boron Nuclear Fusion Using a PW-Class Laser. Appl. Sci. 2022, 12, 1444. [CrossRef]

http://doi.org/10.1016/0030-4018(85)90120-8
http://doi.org/10.3390/app11125424
http://doi.org/10.3390/app11135831
http://doi.org/10.3390/app11156919
http://doi.org/10.3390/app11041680
http://doi.org/10.3390/app11104484
http://doi.org/10.3390/app11020820
http://doi.org/10.3390/app11146358
http://doi.org/10.3390/app11219823
http://doi.org/10.3390/app10124390
http://doi.org/10.3390/app12031444

	References

