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Abstract: The long-fascinated idea of creating 3D images that depict depth information along with
color and brightness has been realized with the advent of a light-field camera (LFC). Recently
advanced LFCs mainly utilize micro-lens arrays (MLAs) as a key component to acquire rich 3D
information, including depth, encoded color, reflectivity, refraction, occlusion, and transparency. The
wide field-of-view (FOV) capability of LFCs, which is expected to be of great benefit for extended
applications, is obstructed by the fundamental limitations of LFCs. Here, we present a practical
strategy for the wide FOV-LFC by adjusting the spacing factor. Multiplicity (M) is the inverse
magnification of the MLA located between the image plane and the sensor, which was introduced as
the overlap ratio between the micro-images. M was adopted as a design parameter in several factors
of the LFC, and a commercial lens with adjustable FOV was used as the main lens for practicality.
The light-field (LF) information was evaluated by considering the pixel resolution and overlapping
area in narrow and wide FOV. The M was optimized for narrow and wide FOV, respectively, by
the trade-off relationship between pixel resolution and geometric resolution. Customized wide
FOV-LFCs with different M were compared by spatial resolution test and depth information test, and
the wide FOV-LFC with optimized M provides LF images with high accuracy.

Keywords: light-field camera; wide field-of-view; micro-lens array; 3D information

1. Introduction

Painters of the Renaissance struggled to depict true colors, light, and the three-
dimensional (3D) nature of the objects in their paintings [1–3]. To depict a 3D sense,
painters such as Vermeer have tried using camera obscura by obtaining the authentic light
values [4,5]. Although modern cameras have addressed these issues and can now record 2D
projections of 3D objects with accurate color and light value, these 2D projections provide
little or no information about the depth of objects in the scene. Painters and photographers
have long been fascinated by the idea of realizing 3D images that not only depict color and
brightness, but also depict color and brightness and depth information, and Lippmann first
realized this aspiration with integral photography [6]. In earnest, light-field (LF) imaging
was initiated from the plenoptic function by Adelson [7], and successfully evolved into the
first hand-held plenoptic camera by Ng [8], which is called the standard light-field camera
(LFC), and the focused LFC by Lumsdaine and Georgeiv [9–12]. The forefront of such
LFCs primarily utilizes a micro-lens array (MLA) as a key component to acquiring rich 3D
information on light, including depth, encoded color, specularity, refraction, occlusion, and
transparency [13–17]. Post-capture capabilities such as depth estimation, perspective shift,
and refocus, well-organized in previous studies [8], have already shown potential beyond
conventional cameras. A further capability for a wide field-of-view (FOV) in LFC would be
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a huge advantage for a wide range of applications including navigation in autonomous
vehicles, recognition and tracking, and object segmentation and detection [17–19].

The anticipation for wide FOV ability is hampered by rudimentary limitations in
terms of sequential capture or camera array approaches in early LFC [20,21]. To overcome
static scene capture and bulky/expensive multi-camera arrays, the main limiting factor for
building small/low-cost wide FOV LFCs is the hard adaptability of wide-angle lenses to
LFCs. As a typical wide-angle lens, fisheye lenses have a fundamentally limited entrance
pupil that provides only a very small baseline that prevents the effective capture of LF infor-
mation. A catadioptric system using curved mirrors is bulky, and for both catadioptric and
fisheye, the resolution is essentially limited to that of a single sensor. Monocentric lenses
have been employed in wide FOV-LFC systems by rotating imaging systems or arranging
multiple image sensors according to Petzval field curvature [22,23] to alleviate these funda-
mental limitations. Although these LFC systems can successfully capture images with a
very wide FOV, bulky relay optic systems or high-priced multiple image sensors deteriorate
scalability in realistic applications, requiring portability, cost-effectiveness, and integrative
capacity. For practical expandability, conventional LFC systems using a single, flat image
sensor have not yet been optimized for wide-angle FOV with single-frame image capture.

Here, we present a facile/practical approach for a wide FOV LFC with single-frame
image capture by adjusting the spacing factor. In several factors of LFC, we adopted the
multiplicity (M) as a design parameter, which is determined by the location of the MLA
between the image plane and the sensor plane based on a conventional camera system. For
practicality, we employed a commercial lens with adjustable FOV as the main lens. Based
on the main lens, the LF information was evaluated considering the pixel resolution and
overlapped area according to M in each narrow and wide FOV [9,24–26]. The layout of
MLA in LFC design is divided into two types: Keplerian mode and Galilean mode. In the
Keplerian mode, the real image is projected onto the image sensor when the distance of
the MLA from the image plane is greater than the focal distance. In the Galilean mode,
the virtual image is projected onto the image sensor when the distance of the MLA is
closer than the focal distance. Therefore, we employed the Keplerian mode to facilitate M
adjustment. In Keplerian mode, M was optimized in each narrow and wide FOV from the
depth accuracy derived from the trade-off relationship with pixel resolution and geometric
resolution, calculated according to the baseline by considering several design factors [27,28].
The proposed wide FOV-LFC was implemented with facile customization with MLA and
spacer for adjustable M in the commercial product. Customized wide FOV-LFCs with
different M are compared with a spatial resolution test by measuring spatially spread points
and a depth information test by acquiring real object images on a checkerboard. The wide
FOV-LFC with optimized M showed excellent depth estimation with fine sharpness.

2. Materials and Methods

A focused light-field camera (LFC) captures a light-field (LF) image by placing the
image plane formed from the main lens on the object plane of the micro-lens array (MLA)
and projecting it to the image sensor. As shown in Figure 1a, each micro-lens acts like an
individual camera and the image objects of adjacent micro-lenses overlap each other on the
image plane. By applying stereoscopic to these overlapped images, 3D information can be
acquired through various image processes [11,28]. The overlapped area between micro-lens
images depends on multiplicity (M) = a/b, which is the ratio of the distance a between the
image plane and the MLA and the distance b between the MLA and the image sensor. In
the case of M = 1, the overlapped area does not exist, and the LFC system behaves like a
conventional camera, simply acquiring 2D images without light-field information. In the
case of M being similar to 2, the LF function is possible by overlapping half of the adjacent
micro-lens images to cover the entire image transmitted through the main lens. For M
higher than 2, the overlapped area is more than half of the adjacent micro-lens image and
further extends to the micro-lens image beyond the adjacent cell, which can be utilized as a
larger baseline in triangulation. As M increases, the coverage in a single micro-lens image
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expands, and consequently, the pixel per degree (PPD) tends to decrease (Figure 1b). Since
PPD is inversely proportional to the FOV of the main lens, at a higher FOV, the range of M
adjustable with PPD is relatively lower than that of lower FOV. Thus, for objects at the same
distance, the PPD of FOV 20◦ is three times greater than the PPD of FOV 60◦. Figure 1c
shows schematic images of individual lenses with maximum ratios of PPD and overlapping
ratio (OR) according to several M (1, 2, and 4) in each wide (60◦) and narrow (20◦) FOV.
At 20◦ FOV, LF image can be acquired by depth estimation with low error with the high
overlapping ratio at a relatively high resolution due to a decent maximum ratio of PPD
even at relatively high M. On the other hand, at 60◦ FOV, as M increases, the maximum
ratio of PPD sharply decreases, so the resolution of depth information becomes too low,
which causes a large error in-depth estimation. Therefore, a compromise in overlapping
ratio with a relatively low M is required for an adequate level of PPD at high FOV.
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Figure 1. (a) Schematic of the proposed light-field camera (LFC) for wide field-of-view (FOV) with
several objects. The overlapped area is optimized with adjustable multiplicity (M) for wide or
narrow FOV. (b) Linear plot of pixel per degree (PPD) versus M for wide (60◦) and narrow (20◦) FOV.
(c) Schematic images of individual lenses with maximum ratios of PPD and overlapping ratio (OR)
according to several M (1, 2, and 4) in each wide (60◦) and narrow (20◦) FOV.

Figure 2a depicts the design of the wide FOV-LFC to adjust M with a and b in Keplerian
mode. When the object is at a distance of aL from the main lens with a focal length of FL,
the image plane is projected at a location with a distance of bL from the main lens, and this
image plane is projected to the image sensor through the MLA to form a projected image
as a set of individual micro-images. Therefore, the total distance from the main lens to
the image sensor is BL. The object plane is projected to the image plane through the main
lens (wide FOV lens), and this image plane is projected to the image sensor through the
MLA to form a projected image as a set of individual micro-images. Disparity estimation
is performed with slightly different points of view of each of the micro-images in shared
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areas between micro-images [27,28]. In more detail, Figure 2b illustrates the projection onto
the sensor through the MLA of point images in the image plane for different a and b ratios
(i.e., M = 2, 4). dML is the diameter of MLA equal to the distance between the centers of
adjacent micro-lenses. Px1,2 is the distance between the image point to the principal point
of the respective micro-image on the image sensor, and the arrows pointing up and down
indicate positive and negative values, respectively. At M = 2, the point image is projected
by two microlenses, and at M = 4, the point image is projected by four microlenses. As
M increases, disparity estimation is possible, even between micro-images that are farther
apart. The baseline distance between micro-lenses is defined as follows:

d = dML × (M − 1) (1)
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Figure 2. (a) Schematic of wide FOV-LFC optical structure with several design parameters in Ke-
plerian mode. (b) Schematic of ray propagation path between the image sensor and image plane
with different M. (c) Calculated disparity error according to as a function of baseline from micro-lens
projection image. (d) Calculated depth accuracy considering PPD and baseline as M variation at each
narrow (20◦) and wide (60◦) FOV, respectively. (e) Sharpness from captured images according to
different M (2, 3, and 4).

Additionally, Px, which is the disparity of the point image, is defined as a difference
between Px1 and Px2:

Px = Px1 − Px2 (2)

Since the angles are the same triangles, the following relationship is validated:

Px

b
=

d
a

(3)

The distance of the micro-lens to the object as a camera, that is, the distance a between
The image plane and the MLA formed by the main lens, a, is described as a function of

the distance between the MLA and sensor, b, the baseline d, and the disparity Px as follows:

a =
d × b

Px
, (4)
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The accuracy of a is differentiated by disparity as follows:

∂a
∂Px

=
d × b

P2
x

, (5)

Substituting Equation (5) for error a:

∂a =
a2

d × b
∂Px, (6)

We separate the error into two factors:

Geometric resolution =
a2

d × b
,

Correspondence error = ∂Px,

Geometric resolution is the error in terms of the geometry of the optical setup, and
correspondence error is the error that occurs fundamentally in correspondence-matching
algorithms [24,29]. Here, we focus on geometric resolution, assuming that the correspon-
dence error is quite small and the matching accuracy is limited to less than one pixel. As
shown in Figure 2c, the geometric resolution calculated in the proposed wide FOV-LFC
tends to decrease errors as the baseline increases. Baseline is a value obtained by mul-
tiplying M by the diameter of MLA dMLA, and geometric resolution is also expressed as
a function of M. Figure 2d shows the calculated depth accuracy as a function of M by
dividing the PPD by geometric resolution in each narrow (20◦) and wide (60◦) FOV. At a
FOV of 20◦, the depth accuracy is highest at M = 6 because a relatively long baseline can be
used with a decent level of PPD, even at a higher M. At a FOV of 60◦, the depth accuracy is
highest at M = 2 even though the baseline is relatively short because the PPD significantly
decreases as M increases. For example, in micro-images captured at a FOV of 60◦, as M
increases, sharpness drastically decreases so that the object boundary of the image becomes
blurry, resulting in lower depth accuracy.

3. Results and Discussion

Figure 3a shows the design scheme of the optical alignment module for the wide
FOV-LFC. The main lens mount was the c-mount, usually used in vision systems, and
the image plane position was configured in consideration of the flange back (17.5 mm). A
commercial image sensor (IMX 178, Sony, Tokyo, Japan) was used, which has a resolution
of 3096 × 2080. The distance b between the image sensor and the MLA was adjusted by
the number of spacers stacked to a thickness of 20 µm per unit to realize the desired M.
The MLA was firmly fixed while maintaining a constant distance between the image plane
and the cover glass using a spring clamp. Figure 3b shows photographs of the optical
alignment module. The lens mount and spring clamp were configured to be detachable
using clips, and an alignment post was placed to prevent distortion of the optical orientation.
Spring clamps were constructed on the four corners to hold the MLA flat at the same level.
Figure 3c shows raw micro-images acquired using a wide FOV-LFC module implemented
with M of 2 (left) and 4 (right), respectively, at a FOV of 60◦. The matrix of the microlens
array used is hexagonal, so the captured raw micro-image is also arranged in a hexagonal
matrix. In M = 2, although the overlapping area and baseline are small, each micro-image is
seen enough to clearly distinguish the object. On the other hand, in M = 4, the overlapping
area and the baseline are large, but the clarity of each micro-image is so low that it is
difficult to distinguish the object.
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spacer-adjustable optical alignment module for wide FOV-LFC. (c) Micro-lens images captured by
wide FOV-LFC with multiplicity M = 2 (left), and M = 4 (right).

Figure 4a shows a schematic of point spread function (PSF) measurement for wide FOV-
LFC. The PSF describes the spatial response of an imaging system to a point source [30–32].
Multiple spatial point sources are generated with a laser and spatial filter. The spatial
filter generates a Gaussian beam as a point source, which removes unwanted multiple
aberration peaks and suppresses ring patterns caused by dispersion. With consideration of
the objective lens focal length F, beam radius input to lens s, and laser wavelength λ, the
pinhole diameter D was calculated by the following equation:

D =
λF
s

(7)

The experimental setup is that the laser has a beam diameter of 1 mm and a wavelength
of 630 nm, and the spatial filter consists of a 4× objective lens and a pinhole with a 35 µm
diameter (Figure 4b). To measure the PSF change for each different M, the LFC was
configured with a stage moving perpendicular to the optical axis to measure spatially
spread point sources from the on-axis to the off-axis of 3 mm. The PSF measurement images
and light intensity distributions in each M of 2 and 4 are shown in Figure 4c,d, respectively.
In M = 2, three spread points were measured uniformly on the on-axis. Although on the
off-axis, the intensity tends to decrease with the PSF farther from the optical axis, even at
an off-axis of 3 mm, center PFSs were measured with a moderate peak intensity (Figure 4c
right). For a wide FOV, the spatial resolution becomes insufficient with a relatively high M,
so the image quality is difficult to obtain reliably.

In Figure 5, the experimental demonstrations were performed with different M
(i.e., M = 2, and 4) to optimize wide FOV-LFC for resolution differences in rendered images,
depth maps, and depth resolutions. The distance between the image plane and main
lens, bL, can be calculated by a and known parameters BL and b. In addition, in order to
perform depth estimation from the actually extracted disparity, it can be calculated using
the parameters of Figure 2a and Equation (4).

bL = BL − b − a (8)
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Figure 4. (a) Schematic of point spread function (PSF) measurement with axis moving stage.
(b) Photograph of an experimental set up with a laser beam diameter of 1 mm, a pinhole diameter
of 35 µm, 4× objective lens. (c,d) Captured PSF images (top) and illuminance intensity distribution
of PSF (bottom), peak intensities (right) according to axis moving with 0–3 mm at (c) M = 2, and
(d) M = 4.

The object plane distance from the main lens, aL, is calculated by the thin lens Equation,
which is expressed by

aL =

(
1
fL

− 1
BL − b − a

)
(9)

Consequently, the depth can be estimated from a disparity that is simultaneously
focused on a correspondence point of at least two micro-images. Figure 5a shows the object
placement for LF image rendering and depth map extraction on a checkerboard floor with
dimensions of 10 cm × 10 cm per unit. Figure 5b shows raw data of micro-lens images with
M = 2 at a FOV of 60◦. In the case of M = 2, the patch size is large, and most micro-images
are used for rendering (Figure 5c), whereas at M = 4, the image patch size is so small that the
number of pixels used to render the image is significantly reduced compared to the number
of micro-images (Figure 5d). To evaluate the disparity, we used the open-source Plenoptic
Toolbox 2.0 modified to fit our LFC and MLA, and the corresponding matching method
used the sum of absolute differences (SAD) algorithm [33]. Although this study focused
on the hardware aspect and did not consider distortion, a lot of research was conducted
on radial distortion correction for MLA as well as the main lens in light-field cameras, so
it was possible to improve the performance of depth extraction [34,35]. In depth maps,
in M = 2, depth information with accuracy high enough to distinguish objects, including
the checkerboard pattern on the floor from near to far was extracted (Figure 5e). On the
other hand, in M = 4, the checkerboard pattern of the floor was only visible in close range,
and the objects and the nearby floor were blurred, making it difficult to distinguish depth
information (Figure 5f). For depth resolution analysis, the checkerboard was located 30 cm
away from the wide-FOV LFC, and the disparity was measured while moving 5 cm to
60 cm in the optical axis direction. Figure 5g is the calculation result of disparity according
to distance. Typically, disparity tends to decrease as the distance increases, and the amount
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of change in disparity also tends to decrease as the measurement distance increases. This
implies that the closer the measurement distance, the higher the depth resolution, and the
greater the measurement distance, the lower the depth resolution. Even in the disparity
plot according to distance, since the parallax trend from near to far is maintained at M = 2,
depth information can be extracted with high accuracy (Figure 5g,h). However, in M = 4,
the linear correlation of disparity with the distance is acceptable only in the close range,
and as the distance increases, the disparity becomes saturated, making it difficult to obtain
accurate depth information (Figure 5i). The subpixel unit used in disparity estimation was
set to 0.2 pixels, and when the object was 30 cm to 35 cm, the depth step started at nine
and gradually decreased at M = 2 (Figure 5j). On the other hand, when M was 4, the depth
step decreased from 1.5 to 1 in the 30 cm to 35 cm section, making it difficult to estimate
the depth.
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Figure 5. (a) Photograph of object-measurement set up of wide FOV-LFC. (b) Law data image
captured from wide FOV-LFC (c,d) Preprocessed images from captured object image. at (b) M = 2
and (c) M = 4. (e,f) Disparity maps extracted from captured object images at (e) M = 2 and (f) M = 4.
(g) Calibration result of disparity plots with different distances at M = 2 is shown by the blue line, and
M = 4 the apricot line. (h,i) Disparity plots with different distances extracted from captured object
images at (h) M = 2 and (i) M = 4. (j) Depth step plot by distance section of object. M = 2 is blue bar,
and M = 4 is apricot bar.

4. Conclusions

In summary, we proposed a wide FOV-LFC by introducing an adjustable M as a
spacing factor for practical application. Based on a main commercial lens alterable with a
wide FOV, LF imaging was realized by optimizing M as a design parameter for narrow and
wide FOV. A practical design rule was established in the optimization process to evaluate
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depth accuracy by appropriately compromising geometric resolution and pixel resolution.
Based on these realistic considerations, the wide FOV-LFC was customized with a facile
approach for adjustable M with spacer stacking into a conventional LFC system without
significant structural modifications to overcome fundamental limitations. Compared to
the previously reported sequential or multiple capture-based systems, the optimized wide-
FOV LFC with adjustable M was successfully implemented as a single image-capture
method with a high FOV per frame (Table 1). Customized wide FOV-LFC for optimized
M opens up possibilities for practical applications of wide FOV-LF imaging through PSF
measurement and depth mapping of real objects on the checkerboard. Moreover, this
compromise strategy further expands conventional LFC systems adapting diverse optical
components without huge module changes. We further envision that our facile approach
holds great potential for various practical applications requiring 3D information acquisition,
such as autonomous vehicles, unmanned aerial vehicles, and autonomous underwater
vehicles, without laborious redesign of LFC systems.

Table 1. Various state-of-the-art light-field cameras for wide field-of-view.

Technique Lens Additional
Components

Num. of
Image Sensors

Image
Acquisition

(Frames)

Field-of-View
(FOV per Frame) Ref

Panoramic single
aperture Monocentric lens

Relay optics,
Horizontal

rotating stage
1 Sequential

capture (11)
138◦

(24◦) [23]

Panoramic
monocentric Monocentric lens Multiple consolidators,

Multiple fiber bundles 5 Multiple capture
(5)

140◦

(32◦) [20]

Axial light field Conventional lens Spherical mirror,
Rotating stage 1 Sequential

capture (25)
140◦

(32◦) [36]

Gaussian image
blending

Multiple
conventional

lenses

Hemispherical support,
FPGA board 15 Multiple

capture (15)
360◦

(36◦) [37]

Omni-directional
light-field
imaging

Multiple
conventional

lenses

Hemispherical support,
FPGA board 44 Multiple

capture (44)
360◦

(53◦) [38]

Adjustable
multiplicity Conventional lens Adjustable spacer 1 Single capture 60◦ This work
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