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ABSTRACT Many industries struggle with different project failures including Enterprise Resource Plan-
ning (ERP) implementations projects which has high failure rates too. FailureMode Effect Analysis (FMEA)
is an extensively utilized to analyze failure modes in risk assessment in various industry projects including
ERP implementation projects. Nevertheless, in the traditional FMEA system, ignoring the Interdependencies
among various failure modes as well as the relative importance of risk and non-injective and non-subjective
nature of conventional RPN functions leads to challenges in analysing and assessing the risk. This may
mislead in the addressing the prioritization of the Risk. Therefore, an efficient FMEA framework is proposed
using Fine Tuned Trapezoidal Fuzzy-based Technique for Order of Preference by Similarity to Ideal Solution
(FTTF-TOPSIS). The developed FMEA framework focuses to avoid data complications while preparing or
collecting the data by using a hierarchical matrix management for data preparation. Uncertain risk, cost,
and relative dependency are considered as additional parameters regarded by the work to calculate RPN.
Mathematical models such as conservative method together with the Square Root Kragten Method (SRKM)
are used to find the relative dependency along with uncertain risks. Thereafter, a highly reasonable along
with credible outcome to rank the risk, FTTF-TOPSIS is employed. Finally, to demonstrate the proposed
method’s efficiency together with benefits, a comparation is made with the other models.

INDEX TERMS Conservative method, cost, enterprise resource planning, FMEA, FTTF-TOPSIS, risk
assessment, RPN, square root Kragten method (SRKM), uncertain risk.

I. INTRODUCTION
From the literature it is evident that the project involves a
lot of risks and various projects failed due to a number of
reasons. We have known for decades that IT projects often
fail. Research indicates ERP implementations have high fail-
ure rates too. ERP implementation is often considered as
a difficult, expensive, and very risky process. ERP system
gives diverse benefits to the company. ERP systems reduce
the majority of the operational challenges like production
schedules, decreasing inventory, lowering operational costs,
maximizing productivity, offering control over materials,
enhancing quality, etc. ERP as well aids to break down
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silos, enrich cooperation amongst diverse functions, which
ultimately produces a greater quality of product and service,
lessen time tomarket, enhances productionwith reduced cost,
and lastly enhance market share with customer satisfaction.

Despite the benefits of ERP systems, several ERP systems
were unsuccessful in producing outcomes.Mostly the failures
are owing to ERP systems’ poor implementation according to
[1]. So, an appropriate Risk Management (RM) may help the
project managers to reduce both the anticipated and unknown
risks on a variety of projects. Failure to effectively man-
age risk can cause projects to go over budget, fall behind
schedule, miss important performance targets, or show any
combination of these issues. FMEA utilized in systems,
designs, along with the product has greatly drawn interest [2],
[3]. Not like other Risk Assessment (RA) tools, which look
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for remedies after the failure happened, FMEA’s major role
embrace identifying several potential failures and estimating
their risk. Next, to lessen the possibility and severity of failure
or prevent dangerous loses [4], [5]. To notify RM decisions,
Aeronautical engineering proposed FMEA in the 1960s [1].
It is as well called FMECA (FM Effects and Criticality Anal-
ysis), while it is employed in a critical study [6], [7].

The FMEA technique has been broadly used in automotive,
electronics, medical and health, aerospace, and other sec-
tors [8], [9]. But different original RPN formula’s deficiencies
have also gained attention; for example, in RA, there is com-
plexity in managing the intricate uncertainty [10]. In conven-
tional FMEA, the RPN is utilized to rank the recognized FMs.
Normally a FM’s RPN value is acquired as the product of ‘3’
Risk Factors (RFs), i.e., Occurrence (O), Detection (D), along
with Severity (S) [11], [12]. The FMswith greater RPNvalues
are assigned a superior priority for remedial measures in an
FMEA process. Despite that the traditional FMEA is capable
of coping with the risk management issues, its applicability is
restricted due to several inadequacies as highlighted in earlier
research [13], [14].

For instance, as a consequence of the ambiguity and uncer-
tainty brought by lack of information and individual cog-
nitive restrictions, it is complex for professionals to accept
precise numbers to gauge RFs. Uncertainties can be show-
cased in several ways, like restricted professional knowledge
together with experience, which may bring about erroneous
and incomplete FMEA teammembers’ evaluations [15], [16].
Diverse O, S, together with D’s combinations can create a
similar RPN value, even if the FMs’ risk implications are
unlike at the same level. The RFs’ weights are assumed to
be alike, which might be incompatible with real situations.
Furthermore, the relative dependency between the risks is
questionable and debatable [17], [18]. It is intricate for FMEA
teammembers to analyze the risk and to discover a solution to
lessen it, owing to the rising intricacy of RA issues. To over-
come the prevailing problem, the paper has created an FMEA
approach utilizing the FTTF-TOPSIS.

The main contribution of this paper are as follows:
a. An efficient FMEA framework is proposed using Fine

Tuned Trapezoidal Fuzzy-based Technique for Order of Pref-
erence by Similarity to Ideal Solution (FTTF-TOPSIS).

b. To avoid data complications, a hierarchical matrix man-
agement data preparation is used.

c. Uncertain risk, cost, and relative dependency are con-
sidered as additional parameters regarded by the work to
calculate RPN.

d. Mathematical models such as conservative method
together with the Square Root Kragten Method (SRKM) are
used to find the relative dependency along with uncertain
risks.

e. A highly reasonable along with credible outcome to rank
the risk, FTTF-TOPSIS is employed.

The paper’s remaining part is arranged as: A survey
of present alterations to FMEA in the literature is exhib-
ited in Section II. The proposed technique is mentioned in

Section III. A comparative analysis with other related tech-
niques to authenticate the proposed technique is demon-
strated in Section IV. Lastly, the conclusion is presented in
Section 5.

II. LITERATURE SURVEY
Wang et al. [19] introduced a method that simultaneously
encompassed decision makers’ psychological behaviour and
interface linkages amongst risk components. Initially, it eval-
uated the FMEA team member’s mental behaviour during
RA. To measure the risk variables’ RA, the prospect the-
ory was employed. Next, the Fuzzy Measure (FM) along
with Choquet integral was utilized to amalgamate the FMs’
potential value for every risk component. The entropyweight-
ing methodology was employed to produce the overall RPN
related to every FM and the relative preference relation
was established to prioritize the FMs after it computed the
prospect value for every FM. But the method didn’t ponder
the hidden risk implications.

Ghoushchi et al. [20] designed a 3-step approach to handle
the FMEA’s disadvantages. In the 1st phase, FMEA was
employed to find FMs and provided values to the RPN.
Next, the Fuzzy Best-Worst Method (FBWM) was wielded
to compute these parameters’ weights centered on expert
judgments. For prioritizing the failures with Multi-Objective
Optimization by Ratio Analysis centered on the Z-number
theory (Z-MOORA), the previous phases’ outcomes were
used as a foundation, in the third phase. When analogized to
other commonmethods like FMEA in conjunction with fuzzy
MOORA, this methodology was employed in the automotive
spare parts business; in addition, it revealed that failures were
completely prioritized. The suggested method didn’t regard
the risk interdependencies across failure types.

Shiue et al. [21] developed an integrated RA model that
merged several techniques to give an FMEA for inclusive FM
rating. Initially, to ameliorate the assessment’s comprehen-
siveness, the predicted expenses along with environmental
security indicators were combined into the FMEA. Next,
the RFs’ significant network relationship map was produced
with the Decision-Made Trial in conjunction with Evalua-
tion Laboratory (DEMATEL) methodology, to detect the key
elements. Lastly, the ‘4’ incorporated MCDMmethodologies
along with the TOPSIS concept was wielded to rank the FMs.
Also, for describing the suggested techniques’ effectiveness
together with robustness data as of a machine tool manufac-
turing companies’ survey was utilized; however, the method
didn’t regard the comparative significance of risk variables.

Lo et al. [22] created a method that combined multiple-
criteria decision-making with grey theory. The method had
numerous benefits: adding the expected cost into the actual
RPN to imitate the real resource restrictions, considering the
diverse severities’ weights, occurrence, detectability, together
with cost centered on the FBWM in RPN computation, along
with utilizing the grey interval literary variables to handle
data ambiguity. Real data from a multinational electronics
company were deployed to prove the methods’ utility and
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efficiency. The approach gave a substitute risk priority solu-
tion for product development; however, it was unsuccessful
to manage undefined risk.

Wang et al. [23] offered an FMEA methodology, the FM,
and Shapley index that were utilized to design the interac-
tion connections amongst Risk Indicators (RIs), in addition,
to establish the weights of these indicators. To replicate the
FMEA members’ psychological behaviour, the comprehen-
sive and widespread TODIM technique with FM and Shapley
index was rendered. It was also employed to compute the
risk priority of every FM. To signify improbability in the risk
appraisal mechanism, Trapezoidal Fuzzy Numbers (TrFNs)
were utilized. Also, to amalgamate FMEA members’ RA
data into a RA matrix that considered possible correla-
tions amongst these members, a RA data amalgamation with
TrFNs-WAIA operator centered on Shapley Choquet was cre-
ated. This study did not consider cost whilst computing RPN.

Qin et al. [24] proffered a method that merged Interval
Type-2 Fuzzy Sets (IT2FSs) with the Evidentiary Reason-
ing (ER) technique that was capable of conquering a few of
the difficulties of the existent FMEA technique along with
handling uncertainty more effectually. Initially, it gave an
extra definite representation of the RFs in the IT2FSs along
with enhanced the ‘3’ RFs’ relative weight. Next, the FMs in
association with every RF were estimated with Belief Struc-
tures (BS). Lastly, the BSs were merged with the ER method
with the ‘3’ risk variables. For checking the technique’s feasi-
bility, an application for a steam valve system was designed,
in addition, the outcomes exhibited the techniques’ worth;
however, the ranking method was intricate.

III. PROPOSED FMEA FRAMEWORK
To define, detect, and eliminate potential along with known
risks, the FMEA is utilized. In the classic FMEA, the risk
is quantified as an indicator by using the RPN in which the
process of computation is effortless. However, owing to the
existence of uncertain risks, inadequate scientific basis in
RPN computation, the need for accurate risk determination,
along with neglecting the RFs’ weights, there exist numerous
cons in the previous FMEA. Additionally, to execute RA
along with RP, the factors chosen for RPN aren’t efficient.

Therefore, developing a methodology that overcomes the
limitations of the conventional FMEA becomes very vital.
Additionally, three key risk variables such as Relative depen-
dency, Uncertain risk, and cost are used to evaluate the capa-
bility of ranking FMs. So, a FMEA framework by utilizing
the FTTF-TOPSIS is generated, which is exhibited in Fig 1.

A. PREPARATION
In the execution of FMEA, the ERP is studied at first.
To decide on the impacts and causes of probable failures, the
interaction between the ERP user, Costs, time, budgets, and
its working environment must be fully understood. A poten-
tial FM is extended as a system, subsystem, or component,
which possesses the ability to fail prior to getting its design
objectives. The initial potential failure causes the secondary

FIGURE 1. Proposed FMEA framework.

failure, that is to say, the failure of a lower-level component
owing to the deficiency in spontaneous attention of the ERP
implementation staff. The component and its function for
every possible FM should be well documented. The presump-
tion is that there may occur a failure; however, it doesn’t have
to. After the failure, the breakdown mode’s consequence is
proffered as the imminent failure effect; also, it should be
centered on the evaluation of the system reaction. To process
further, the data’s preparation should be structured. Identify-
ing the risk with lower computation time with precise detec-
tion along with handling the uncertain data are done with the
collected data’s aid, which is made into matrix management.

For instance, an ERP implementation, which is required
for accessing the risk, is considered here. ‘6’ stages of
risk

(
Mn
i = M1

1 ,M
2
2 ,M

3
3 ,M

4
4 ,M

5
5 ,M

6
6

)
are included in this.

Here, the number of processes to gather the data regarding
the risk possibility is specified as n.The risk is completely
understood under the provision of the ERP users (GLHi ),
Organizational/ management team (SPHi ), Technical team
(MTHi ), Internal people team (TLHi ), external people team

(PMH
i ), Software manager (QMH

i ) to appraise the risk. Here,
the data’s hierarchical formation is signified as H . For effort-
less processing, the data is made under HMM as, (1), shown
at the bottom of the next page, where, the data is constructed
in a hierarchical manner as d︸︷︷︸

d1 d2 d3 d4

to classify the data

provided by the team, where, the RFs, which might be oper-
ational, analytical, organizational, or technical, are specified
as Rf , the data viewer is signified as IG.

Regarding the data viewer, the risk’s chances are classi-
fied to perform the hierarchical structure. For exemplar, the
data amassed might bring about a complication if the risk
is occurred owing to internal people who possess chances
of ERP exploitation risks under different circumstances.
As mentioned above, the hierarchical structure classifies
them under every single categorization of risks to defeat the
aforementioned issue.

B. RISK IDENTIFICATION
Risk identification observes the prepared data and prepares
for the prioritization of risk. A direction to rank the poten-
tial failures; in addition, to recognize the suggested actions
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for outlines or process modifications, which would mitigate
severity or occurrence, is provided by the RPN. The RPN
Estimation is supported by the Risk Indexed Parameter (0,2
and D). A higher risk of failure is indicated by a higher
RPN. To lessen the risk, restorative methodologies have to
be introduced.

However, an efficient RA with RP was not provided by
simply computing occurrence, severity, together with detec-
tion. The constraints like the similar sort of identical values
can be acquired for various data set points of 0,2, along
with D; nevertheless, the RA might be entirely varied. The
risk’s priority might be altered by the risk’s relative depen-
dence, uncertain risk, along with the dissimilarity of hazard
descriptions amongst FMs. Additionally, uncertain risk value,
relative dependency, and cost for RA are considered here.

RPN [P] = 0 ×2× D×<D × UR × Cs (2)

(i) Severity (0)
The severity of the possible hazard’s consequence is

estimated by the seriousness rating. Whilst computing the
score0,theFM’s effectisconsidered.
(ii) Occurrence (2)
The likelihood of a prospective risk existing in a partic-

ular condition or context is computed by Occurrence. The
impact’s likelihood occurring as a consequence of a FM is
analogized with the probability score.

(iii) Detection (D)
Detectability refers to the chance of detecting a failure

before determining its impact on the technique or framework
being examined. TheD score is calculated based on the ability
to recognise the breakdown mode’s outcome.

(iv) Relative dependency (<D)
While it is normal to identify and manage risks individu-

ally, certain project hazards are in fact interdependent. For
example, a risk where, on the one hand, an ERP system
contains inaccurate goals and objectives and, on the other
hand, there is a poor ERP implementation strategy which
has a dependence connection. The dependence connection in
this situation is that if the chance of the first risk event rises,
the likelihood of the second risk event also rises. In order to
improve the RPN, the work has used a conservative method.
A conservative methodology is utilized here to enhance the
RPN. In this methodology, the implicit assumption is that it
will place a superior priority on minimizing risks, which has
a larger dependency effect; however, it places a lower prior-
ity on utilizing chances, which possess a lower dependency
effect.

The conservative methodology prefers the largest value as
of the direct predecessors’ entire Risk Dependency Values or

Risk Dependency Multipliers during the higher dependency
influence on a risk’s possibility. The project prioritizes risk
reduction by providing higher priority or lower priority over
opportunity exploitation, which is regarded as the implicit
assumption. This model would augment the risk’s depen-
dency effect and it might require extra resources; thus, the
project must be significant to the organization, or the risk
must possess a vital effect on the project goals to utilize
the aforementioned strategy for risks. Conversely, the depen-
dency effect on an opportunity is mitigated by the strategy.
There is an assumption that for managing opportunities, the
project has only limited resources or the opportunities don’t
provide more values to the project purposes.

Let χx = f (Px , Ix) along with Px has k direct predeces-
sors, say χ1, χ2, . . . .χx , where x 6= 1 . . . .k . The posterior
riskχ+x = f

(
P+x , Ix

)
, wherein,P+x = Px+℘ or P+x = Px—λx .

Posterior risk χab between two risksχa and χb is formulated
as,

χ+ab = f
(
P+ab , Ia

)
= f (Pb + χab, Ib) whereP+ab = P

(3)

In this, <D = {<x1,<x2,<x3, . . . ..<xn} specifies the Risk
Dependency Values as:

<mx = {<m1x ,<m2x ,<m3x . . . ..<mnx} (4)

It signifies the set of Risk Dependency Multipliers. If there
is a risk dependency multiplier <mab betwixt‘2’ risks χa and
χb, then the posterior risk is expressed as,

χ+ab = f (Pb<mab, Ib) wherePb<mab = P (5)

Lastly, the Relative risk dependency is achieved by selecting
the maximum value as of the Risk Dependency Value and
Risk Dependency Multipliers as follows,

℘x = Max (<x1,<x2,<x3, . . . ..<xn) (6)

—λx = Max (<m1x ,<m2x ,<m3x . . . ..<mnx) (7)

(v) Uncertain Risk (UR)
To produce more robust findings when compared to other

people’s viewpoints, it is vital to prioritise the failures in
terms of the uncertainty in the RPN variables. The risk assess-
ment is influenced by the unclear risk by modifying the risk
priority. In order to accomplish an appropriate risk assess-
ment of a project, the unknown risk should be considered. The
work established the square root kragten method (SRKM),
which simplifies the computation of combined uncertainty by
utilising finite differences instead of derivatives. When com-
pared to the Kragten approach, the created SRKM delivers
a more in-depth intuitive estimate of uncertain risk. If the

P =


Rf /IG GLHi SPHi MTHi
M1

1 d d d
M2

2 d d d
...

...
...

...

· · ·

· · ·

· · ·

...

NH
G

M f
n×1

M f
n×2
...

M1
1 GLN1×m SPN2×m MTN3×m MTN4×m NN

n×m n

 (1)
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uncertainties in the inputs are inferior to the respective values
of the input quantities, then the approximation is valid.

The measurands or riskχ that is computed as of the
input quantities P1,P2, and P3 along with the uncertain-
ties UP1 ,UP2 , and UP3 intended for the input quantities are
analyzed normally. From this, the measurands’ computa-
tion is executed separately for every single input magnitude
(χP1, χP2, and χP3 ); thus, the corresponding values are
appended to their uncertainties every time as,

χP1 =

(
P1 + UP1

)
P2

P2
3

(8)

χP2 =

(
P2 + UP2

)
P1

P2
3

(9)

χP3 =
P1P2

(P3 + χP3)2
(10)

Owing to the inclusion of the uncertainty UP1 to the value of
its corresponding input quantity, the value of the measurands
χ varies for χP1. Therefore, every single input source’s
uncertainty component in the unit of the measurands χ is
proffered by the difference |χPi − χ |, in accordance to,

Uχ (P1) =
√
|χP1 − χ | (11)

Uχ (P2) =
√
|χP2 − χ | (12)

Uχ (P3) =
√
|χP3 − χ | (13)

Lastly, the amalgamated standard uncertainty of χ is esti-
mated as,

Uχ =

√∑N

i=1
U2
χ (P i) (14)

(vi) Cost (Cs)
The amalgamation of the opportunity of occurrence of

risk along with the degree of that harm estimates the cost;
unfortunately, no additional data is offered regarding how the
possibility of occurrence along with severity is to be ‘‘com-
bined’’. Specific failure’s predicted cost is simply notated as,

Cs = Pr ob(failure)× Pr ob(not an failure)

× cos t of harm if it occurs (15)

Lastly, the risk’s score has been gauged regarding the RPN;
after that, regarding the score, the ranking is conducted, (16),
as shown at the bottom of the next page.

C. RISK PRIORITIZATION
The decision matrix is created regarding the strategy being
selected; then, it is ranked by wielding the FTTF-TOPSIS
methodology. The prevailing ranking methodologies bring
about a poor ranking of the risk priority owing to their
exposure to numerous attributes-centric decisions making
along with uncertain alterations in the strategies and outliers.
To conquer the aforementioned complications along with to
get an effectual ranking model, the Z-score together with
Levenshtein distance is utilized in the fine-tuned method-
ology being developed. Following are steps involved in the
proposed framework.

Step 1: Firstly, regarding the RPN value, the Risk pri-
oritized matrix is generated for risk; it is then formulated
within n rows and m columns, which is expressed as, (17),
shown at the bottom of the next page, where, the degree of
confidence is specified as A11,B11,C11,D11, the maximum
value of interval value

fuzzy set is signified as B−11,B
+

11, the minimum value of
fuzzy sets is illustrated as 911, the uncertain linguistic vari-
able is proffered as βϕ11.
Step 2: Here, FTTF-TOPSIS builds the risk prioritized

matrix ℵ =
[
∀ij
]
regarding the decision matrix, (18), as

shown at the bottom of the next page.
Step 3: Next, the Risk prioritized matrix is produced uti-

lizing its corresponding weights. The weight vector W =

(ω1, ω2, ω3, . . . ..ωn)gathered as of the isolated weights
ωj (j = 1, 2, 3, . . . .n) for every single attribute gratifying∑n

j=1Wj = 1. The weighted normalized value is illustrated
as,

Aj = ∀ijωj (19)

Step 4: The Positive Ideal Solution (PIS)
(
α+i

)
along with

the Negative Ideal Solution (NIS)
(
α−i

)
is calculated after

formulating the Risk Prioritized matrix as follows.

α+i = {βϕ1 [A1,B1,C1,D1] , αϕ2
× [A2,B2,C2,D2] · · · · · ·βϕn [An,Bn,Cn,Dn]

×
{〈[
B−1 , 91

]
,
[
B−2 , 92

]
· · ·
[
B−n , 9m

]〉}}
= max

i
βϕij,max

i

(
Aij,Bij,Cij,Dij

)
,

{
max
i

(
B+1
)}

{
min
i
(9i)

}
(20)

α−i = {βϕ1 [A1,B1,C1,D1] , αϕ2
× [A2,B2,C2,D2] · · · · · ·βϕn [An,Bn,Cn,Dn] ,

×
{〈[
B−1 , 91

]
,
[
B−2 , 92

]
· · ·
[
B−n , 9n

]〉}}
= min

i
βϕij,min

i

(
Aij,Bij,Cij,Dij

)
,

{
min
i

(
B+1
)}

{
max
i
(9i)

}
(21)

Step 5: In this, by deploying the n-dimensional Levenshtein
distance, the separation measures are gauged. The transpo-
sition of ‘2’ adjacent candidates beside deletion, insertion,
alongwith substitution is offered by the Levenshtein distance.
The separation of every single candidate as of the trapezoidal
linguistic cubic PIS
l+i
〈[
A−,A+

]
,2
〉
is formulated as, (22) and (23), shown at

the bottom of the next page.
Step 6: The Relative Closeness (RC) to the ideal solution is

measured here. This evolution figures out the RC to an ideal
solution as,

0i =
l−i
〈[
B−,B+

]
, 9
〉

l−i
〈[
B−,B+

]
, 9
〉
+ l+i

〈[
B−,B+

]
, 9
〉 (24)

Step 7: Here, regarding the RC coefficient, the strategies’
ranking occurs.
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Lastly, the most impacted RFs on the industries are dis-
covered by the ranking procedure. Algorithm 1 exhibits, the
proposed FTTF-TOPSIS’s pseudo-code.

D. RISK REDUCTION
Frequency reducing along with impact reducing activities
and their amalgamation are included in the process of risk
reduction. The measures may be operational, technical, along
with organizational in nature. Regarding broad analysis in
which the risk aspects are pondered, the sorts of measures
are selected in general. To monitor the total effect of the
measure on the risk, the emphasis should be adopted. The fea-
sible coupling betwixt risk-reducingmeasures should interact
overtly with the decision-makers if alternative measures are
proposed. Whilst selecting which measures are instigated
along with developed into an accident event, the measures
that mitigate the frequency for a hazardous situation are
prioritized. Measures should be considered for the design of
ERP projects to mitigate any impacts. The reliability and the
probability of documenting along with verifying the deter-
mined extent of risk reduction are regarded whilst choosing

risk-reducing measures. When analogized with the frequency
reducing measures, the consequence reducing measures pos-
sess higher reliability, particularly for the operating criteria.
The current phase in the activity, available technology, and the
outcomes of cost-benefit evaluation are the factors on which
the probability of implementing particular risk-reducingmea-
sures relies. Thus, in association with such aspects, the option
of risk-reducing measures can be explicated.

IV. RESULTS AND DISCUSSION
To prioritize the risk to decrease the likelihood of risk, the
FMEA is evaluated centered on the ranking approaches.
For examining the FMEA, the study has chosen 7 FMs
(F1

M ,F
2
M ,F

3
M ,F

4
M ,F

5
M ,F

6
M ,F

7
M ). Every mode illustrates

definite risks like organizational and management risk, which
includes bad cultural readiness, bad organizational maturity
level, insufficient training, insufficient communication sys-
tem, etc. The technological risk encompasses poor technical
infrastructure, incorrect package selection, etc. The processes
risk includes commitment issues with the leadership team,
insufficient budget, deprived project creep management, etc.

RPN (P) =


FMs/RPN 0 θ DRDUR CS

F1
M A11,B11,C11,D11 A12,B12,C1,,D12 · · · · · · · · · A16,B16,C16D16
...

...
...

...
...
...

...

FWl Al11,BN1,CN1,D111 AN2,BN2,CN2,DN2 · · · · · · · · · AVM ,BVM ,CNH ,DNM

 (16)

∀DM =


βϕ11 [A11,B11,C11,D11]

〈[
B−11,B

+

11

]
, 911

〉
· · · · · · βϕn1 [An1,Bn1,Cn1,Dn1]

〈[
B−n1,B

+

n1

]
, 91n

〉
βϕ22 [A22,B22,C22,D22]

〈[
B−22,B

+

22

]
, 922

〉
· · · · · · βϕn2 [An2,Bn2,Cn2,Dn2]

〈[
B−n2,B

+

n2

]
, 92n

〉
...

...
...

...

βϕm1 [Am1,Bm1,Cm1,Dm1]
〈[
B−m1,B

+

m1

]
, 9m1

〉
· · · · · · βϕmn [Amn,Bmn,Cmn,Dmn]

〈[
B−mn,B

+
mn
]
, 9mn

〉
 (17)

∀ij =



βϕ−
n∑
i=1
(αϕ)ij

σ(βϕ)

A−
n∑
i=1
(A)ij

σ(A) ,

B−
n∑
i=1
(B)ij

σ(B) ,

C−
n∑
i=1
(C)ij

σ(C) ,

D−
n∑
i=1
(D)ij

σ(D)


〈B−−

n∑
i=1
(B−)ij

σ(B−)
,

B+−
n∑
i=1
(B+)ij

σ(B+)

 9−
n∑
i=1
(9)ij

σ(9)

,

〉


(18)

l+i
〈[
B−,B+

]
, 9
〉
=



∣∣∣∣βϕij − ϕj∣∣ , ∣∣Aij − Aj∣∣∣∣∣∣Bij − Bj∣∣+ ∣∣Cij − Cj∣∣
lev
(
tail

∣∣βϕij − ϕj∣∣ , ∣∣Aij − Aj∣∣ , tail ∣∣Bij − Bj∣∣+ ∣∣Cij − Cj∣∣)
if
∣∣∣∣Bij − Bj∣∣+ ∣∣Cij − Cj∣∣∣∣ = 0

if
∣∣∣∣βϕij − ϕj∣∣ , ∣∣Aij − Aj∣∣∣∣ = 0

if B− [0] = B+ [0]

1+ min


lev
(
tail

(
B−
)
,B+

)
lev
((
B−
)
, tail

(
B+
))

lev
(
tail

(
B−
)
, tail

(
B+
)) otherwise

(22)

l−i
〈[
B−,B+

]
, 9
〉
=



∣∣∣∣βϕij − ϕj∣∣ , ∣∣Aij − Aj∣∣∣∣∣∣Bij − Bj∣∣+ ∣∣Cij − Cj∣∣
lev
(
tail

∣∣βϕij − ϕj∣∣ , ∣∣Aij − Aj∣∣ , tail ∣∣Bij − Bj∣∣+ ∣∣Cij − Cj∣∣)
if
∣∣∣∣Bij − Bj∣∣+ ∣∣Cij − Cj∣∣∣∣ = 0

if
∣∣∣∣βϕij − ϕj∣∣ , ∣∣Aij − Aj∣∣∣∣ = 0

if B−[0] = B+[0]

1+ max


lev
(
tail

(
B−
)
,B+

)
lev
((
B−
)
, tail

(
B+
))

lev
(
tail

(
B−
)
, tail

(
B+
)) otherwise

(23)
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Algorithm 1 : Pseudo Code for Proposed FTTF-TOPSIS
Input: RPN Matrix based on RPN [P] = 0×2×D×<D×
UR × Cs
Output: Risk prioritization

Begin
Create a decision matrix ∀DM
For i in ∀DM

Calculate RPN Matrix ℵ =
[
∀ij
]

End For
Calculate Z-Score based Normalized weight matrix
For ∀ij in ∀DM

Aj = ∀ijωj
End For
Determine the positive

(
α+i

)
and negative ideal solution(

α−i

)
For Aj in ∀DM do
Calculate

(
α−i

)
and

(
α+i

)
End For
Calculate separation from l+i and l−i
For Aj in ∀DM do
Calculate

(
α−i

)
and

(
α+i

)
End For
Determine relative closeness
For Aj in ∀DM do

0i =
l−i 〈[B−,B+],9〉

l−i 〈[B−,B+],9〉+l
+

i 〈[B−,B+],9〉
End For
Rank the Risk

End Begin

The people risk (internal) consists of bad leadership, work-
force resistance to alter, so on and people risk (external)
involves inefficient consulting services, development errors,
etc. Strategic risk includes no apparent targets and objec-
tives, bad ERP implementation plan, etc. Lastly, to appraise
the FMEA’s feasibility, the fuzzy VIKOR technique, fuzzy
TOPSIS, Hybrid COPRAS are implemented to rank the pri-
ority and weighed against the acquired outcome.

A. PERFORMANCE ANALYSIS
The FMEA methodology is authenticated centered on the RP
utilizing the FTTF-TOPSIS method. To enhance the RPN
computation, the FMEA inserts ‘3’ more parameters, like
relative dependency, uncertain risk, and cost. The proposed
method’s RA and RP are listed below.

Table 1 shows assessment information for the 7 FMs under
every RI offered by the FMEA team. Table 2 illustrates that
the FTTF-TOPSISmethod converts the linguistic information
gathered from team members into numerical formats. Under
HMM, the corresponding linguistic terms for risk value are
devised and processed for accurate RPN assessment. The
HMM methods aid to decrease data difficulties and provide
a data’s structured format. It is evident that there is assorted
information concerning the data i.e. linguistic terms, which

TABLE 1. Linguistic terms and values for 0, 2, D, <D, UR and, Cs.

TABLE 2. Linguistic term value obtained by proposed FTTF-TOPSIS
method.

TABLE 3. Decision matrix.

makes it difficult to observe the risk clearly. The numerical
conversion aids to undergo a comprehensive risks analysis.

The 9 linguistic terms to rate the FM are described in
Table 2. Centered on the recognized FMs, FMEA team
members are solicited to give in a RA for 6 risk variables,
0,2,D,<D,UR,Cs by accepting the fuzzy linguistic terms.
A decision matrix is established centered on the linguistic
term

The decision matrix creation with the relevant linguistic
values is indicated in Table 3. The FTTF-TOPSIS method
is used to process the values, and the ranking strategy is
examined. The FTTF-TOPSIS method is capable of dealing
with uncertain RFs and provides an effective ranking plan.

VOLUME 10, 2022 50043



R. Subramanian et al.: Efficient Fine Tuned Trapezoidal Fuzzy-Based Model for FMEA Risk Prioritization

TABLE 4. The risk priority ranking order of FMs.

TABLE 5. Relative dependency index.

The ranking is completely centered on the trapezoidal mem-
bership function, which improves the lower bound and upper
bound limitation to choose risk. With diverse prioritized RPN
values, the FTTF-TOPSIS method identifies the FMs’ risk
implications.

A comprehensive investigation of FTTF-TOPSIS to direct
the FMs as per their risk capability is exhibited in Table 4.
For FM 7, the method generates the PIS and NIS of 15.64 and
5.68 respectively, and for each ideal solution, it manages to
accomplish a RC of 0.266, and it is ranked as a very high risk.
FMs 3 and 4 have the lowest risk values, with 0.198 of RC,
which is identical for both. Because of the TOPSIS model’s
fine-tuning, the FTTF-TOPSISmethod provides accurate risk
estimation. The fine-tuning aids to manage the outliers and
uncertain data and do not permit them to disrupt the ranking
mechanism i.e. rank reversal. Therefore, the proposed rank-
ing method is extremely effective to rank the risk centered on
the RPN value.

Table 5 shows the risk dependency index’s highest possible
value is 0.028. The entire value of all indexes is comparatively
low, implying that several risks discovered were not related to
any risk dependencies. For FMs 2 and 3, the risk dependency
indexes of every four projects were increasing. Because of
the effects of risk response actions, the larger number of
risks discovered in the previous phases was deleted on their
difficulty levels. The risk dependency effects are influencing
the project B risks whilst those risk in the Project had been
the slightest influenced. This is due to Project D’s system
had been the highly damaged, with the greatest number of
interfaces amongst the Projects A, B, along with C’s systems.
But, Project A’s system was afflicted the least owing to the
less number of interfaces with other devices. Thus, for the
FMs, the dependency index was comparatively low.

FIGURE 2. Graphical representation of relative dependency index.

TABLE 6. evaluation of FMEA methods based on the coefficient of
variation in ranking.

TABLE 7. Evaluation of risk ranking results for different FMEA methods.

Fig 2 visually finishes off that the FMEA method focuses
on identifying out relative dependency for the risk, which aids
to enhance the RPN computation and to get the appropriate
preventive measures in the future.

B. COMPARATIVE ANALYSIS
Hybrid Complex Proportional Assessment (HCOPRAS),
Fuzzy VlseKriterijumska Optimizacija I Kompromisno
Resenje (FVIKOR), and Fuzzy TOPSIS (FTOPSIS) are the
prevailing methodologies with which, the obtained ranking
outcomes are analogized. Table 6 illustrates the comparative
evaluation.

To establish the relative variability amongst ‘2’ or more
sample data sets; also, to investigate the partition of a degree
of FMs offered by the ‘3’ FMEA methodologies, the coef-
ficient of variation is utilized. The computation outcomes
are demonstrated in Table 6. Regarding the partition degree
amongst the identified FMs, the recommended methodology
surpasses the available HCOPRAS, FTOPSIS, and FVIKOR
models. It is observed that the present methodology avoids
RF dependence, which brings about a partial ranking of
failure types. Whilst avoiding any inter-relationships betwixt
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FIGURE 3. Graphical demonstration of the proposed method based on
statistical variables.

FIGURE 4. Different FMEA method for ranking risk.

any ‘2’ FMs, the FVIKOR analogizes every single FM to
the most hazardous one. Consequently, the proposed method-
ology ponders the Relative Dependence betwixt risks along
with ameliorates the outcome.

The proposed ranking strategy’s statistical variable assess-
ment was exhibited in Fig 3. The proposed methodology is
more strong in prioritizing the risk under uncertain situa-
tions along with it has the potential to defeat the existent
complications.

From the table, it is established that the same ranking for
FM 4 was attained by the prevailing Fuzzy VOKOR along
with Fuzzy TOPSIS methodologies; however, a ranking of
6 to the same mode was achieved by the proposed along with
the Hybrid COPRAS. Owing to the enhancement made to
establish the RPN along with the strategy utilized to rank,
a better ranking was achieved by the proposed framework.
When analogized with the prevailing methodology, the pro-
posed mechanism, which prioritizes the risk is highly consid-
erable along with credible.

The variation betwixt the ranking strategy implemented by
the proposed and the prevailing methodology is demonstrated
graphically in Fig 4. The divergences amongst the team
members for evaluating the risk are mitigated; in addition,
to enhance the RA along with RP properties in FMEA, a
pair-wise correlation amongst the risk was performed in the
proposed methodology.

V. CONCLUSION
For the identification along with the elimination of risk in
numerous fields particularly in ERP implementation, the
FMEA, an effective tool is utilized. Thus, the accurate rank-

ing of every single FM is highly significant. In FMEA,
the risk pertinent to the detected FMs, causes, along with
effects is evaluated; in addition, issues for corrective action
are prioritized. However, the RA is highly challenging owing
to the difficulties faced in the process of RA together with
RP. An FMEA methodology utilizing FTTF-TOPSIS RA
has been presented here to conquer the available compli-
cations. To calculate RPN, uncertain risk, risk dependency,
and cost are regarded as extra parameters in the proposed
mechanism. To estimate uncertain risk in conjunction with
risk dependency, mathematical modelling like conservative
methodology along with SRKM is

employed here. To avoid data complexity, the data prepa-
ration focused here by employing the HMM model. Lastly,
by wielding the FTTF-TOPSIS methodology, the RP is exe-
cuted. The evaluation results of Hybrid COPRAS Method,
Fuzzy VIKOR Method, Fuzzy TOPSIS and the proposed
FTTP-TOPSIS based on the statistical variables showing that
mean 245.64, 78.98, 45.67 and 12.45 respectively. Similarly,
the standard deviation shows 117.85, 39.65, 27.45 and 06.54
respectively. The coefficient of variation achieves 0.478,
0.589, 0.667 and 0.895 values, respectively. This shows that
the proposedmethodology has the capacity tomanage sudden
or uncertain alterations in the risk, adopt numerous attributes-
centric decisions making, along with result with the best risk
priority. The experiential outcome displayed that by achiev-
ing a better ranking strategy together with RDI, the proposed
methodology outperforms the prevailing methodologies.
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