
1Scientific Data |           (2022) 9:227  | https://doi.org/10.1038/s41597-022-01357-8

www.nature.com/scientificdata

Datasets on South Korean 
manufacturing factories’ electricity 
consumption and demand response 
participation
Eunjung Lee   , Keon Baek    & Jinho Kim    ✉

This study describes the release of electricity consumption data of some manufacturing factories 
located in South Korea that participate in the demand response (DR) market. The data (in kilowatt) 
comprise individual factories’ total power usage details that were acquired using advanced metering 
infrastructures. They further contain details on the manufacture types, DR participation dates, 
mandatory reduction capacities, and response capacities of the factories. For data acquisition, 10 
manufacturing companies are representatively selected according to the process regularity and 
company size standard of this study. Entire datasets are newly collected and available at one-minute 
intervals for seven months from 1 March to 30 September 2019. These datasets can be used in a variety 
of ways to contribute to the functioning of power systems and markets, including the conduction of 
industrial load characteristic analysis for load flexibility, estimation of demand-side considerations 
for virtual power plant design, and determination of energy markets and incentives to achieve carbon 
neutrality targets at the national level.

Background & Summary
Today, global energy and environmental conditions necessitate the widespread use of renewable energy sources 
for countries to achieve their carbon neutrality targets and, thereby, address climate change problems1. However, 
installing renewable energy resources without accounting for the power system reliability limitation causes sys-
tem stress resulting from a supply-demand imbalance, such as from oversupply or excessive security2. This 
forces more ancillary generators in the system to stand by or promotes inefficient investment in power grid 
reinforcement3. To solve this problem, power system operators must understand the concept of load flexibility 
(LF). LF refers to the resources used to ensure the stable operation of the power system by facilitating dynamic 
changes, including increments and decrements, in demand. This includes implementing demand-side manage-
ment (DSM), which changes power use patterns according to the time-series energy production characteristics 
of wind turbines or solar power sources to increase the application rate of renewable energy4,5.

The demand resources for LF are classified into industrial, commercial, and residential loads6. To apply the 
LF resources in DSM, load data at one-minute or one-hour resolution are collected for analysis, as shown in 
Table 17–18. Further, up-to-date public data on power usage are collected to perform non-intrusive load moni-
toring research. They mainly include information on active power, reactive power, voltage, current, aggregated 
energy consumption, and appliance-level power consumption1,5–10,13.

However, although most of the DSM capacity for LF is met by industrial loads, there are quite a few obsta-
cles to the acquisition of industrial demand data. In a competitive industrial environment, the data disclosure 
of industrial loads is prohibited since such data are considered a trade secret because a manufacturing plant’s 
electricity consumption data can be used to infer the company’s sales. To the best of the authors’ knowledge, 
investigations on manufacturing factories’ load data remain limited; only two studies require special mention in 
this respect: an investigation on the machine-level load data of a paper manufacturing factory in Brazil17 and an 
examination of the normalized electricity consumption data of food and paper industries18.
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In this study, the authors acquire data from volunteered industrial factories and analyze their characteristics 
to evaluate demand response (DR) availability of Korean industrial demands for securing power system and 
market flexibility. Furthermore, a market system is being designed to encourage factories to participate as LF 
resources.

The authors collect electricity consumption data from manufacturing factories in South Korea by using com-
munication systems, including the advanced metering infrastructure (AMI). These factories participate in the 
DR market through DSM. Accordingly, the resulting dataset is unique and potentially a valuable consideration 
in several analyses, including.

•	 Expected locational DR capacity estimation by statistically estimating customer baseline load (CBL) and 
participation amount of each industrial sector.

•	 Estimation of hourly LF by analyzing industrial demand consumption patterns.
•	 Consideration of demand-side utilization in virtual power plants.
•	 Design of the LF market and incentive price.

Methods
The load aggregators performing brokerage transactions in the DR market are authorized to collect electricity 
usage information from the system operator through the AMI for DSM. In this study, the authors first introduce 
international and Korean demand response programs in detail. Subsequently, they describe a novel communica-
tion system in which a load aggregator collects relevant data through the AMI and finally classify the industrial 
demand data collected from the factories participating in DR programs by manufacture type.

Demand response programs.  DR is defined as a tariff or a program established to motivate changes in 
electric use by end-use customers in response to changes in the price of electricity over time or to give incen-
tive payments designed to induce lower electricity use at times of high market prices or when grid reliability is 
jeopardized19. It is classified into price-based DR for economic operational purposes and intensive-based DR 
for system security purposes. Figure 1 illustrates DR programs included in the planning and operation of power 

Dataset Type Duration Number of buildings Sampling rate

Individual household electric power consumption dataset7 Residential 47 months 1 1 min

AMPds28 Residential 2 years 1 1 min

Multifamily Programmable Thermostat Data9 Residential 3 years 79 10 min

ECO dataset10 Residential 8 months 6 1 Hz

DRED11 Residential 6 months 1 1 Hz

REDD12 Residential 119 days 6 1 sec

UK-DALE13 Residential 2.5 years 5 1 min

ENERTALK14 Residential 29–122 days 22 15 Hz

100 EnerNOC Commercial Buildings15 Commercial 1 year 100 15 min

CU-BEMS16 Commercial 18 months 2 1 min

Industrial machines dataset for electrical load disaggregation17 Industrial 111 days 8 1 sec

Food and paper industries18 Industrial 3 years 3 1 h

Table 1.  Summary of the details in public datasets.

Fig. 1  Role of DR in electricity system planning and operation.
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system in detail. In DR programs, the participation performance of resources is evaluated based on CBL esti-
mation19. In general, the average demand usage of past days without participating in DR is used in calculating 
CBL. Table 2 describes DR services of independent system operators (ISOs) in the US, which are internationally 
benchemarked20–25.

Korean DR market consists of six programs depending on the purpose as shown in Table 326. In recent years, 
along with traditional DR programs, they expanded to mitigate environmental issues, including fine dust prob-
lems and supply/demand balance due to rapid renewable energy penetration. Participants are restricted from 
entering the market depending on the type and capacity of resources they have. Table 4 describes Korean ISO’s 
DR services in detail26.

Monitoring set-up.  In the proposed communication system, watthour pulse (WP) and end-of-interval 
(EOI) signals are received in one-minute units through the AMI’s photocoupler, which is installed to charge 
electricity bills to the manufacturing company. The WP-based wattage data are synchronized with the EOI signal 
and delivered to the server in real-time. Further, the system involves storing the process of monitoring data for a 
short period to improve data acquisition quality. When data delivery fails, the communication system performs 
a resending the stored data to the server. After a certain number of retries fail, the data is extinguished by storage 
period expiration. The well-collected data are backed-up every 30 days. To upload the data to the server, one can 
select the interface from among Ethernet, RS-232, and RS-482 ports according to the communication environ-
ment. Figure 2 illustrates the overall hardware communication network design.

Industrial demand data classification.  In Korea, the manufacturing industry is classified into 40 indus-
tries. Among them, 10 industries, namely petrochemical, fine chemical, cement, steel, forging, food, paper, 
metal, electricity/electronics, and textile, mainly participate in the DR market and function as ancillary service 
resources. The number of their companies account for 44.92% of all industries. The authors selected five rep-
resentative types which account for 48.36% of the aforementioned 10 manufacturing factories: cement, forge, 

ISO Service CBL evaluation method Adjustment option Description

MISO20

Contingency 
reserve service Meter-before X Power consumption in the 10-second interval prior to the 

start of the DR participation time

Regulation 
reserve service Meter-before X Power consumption for the 5-minute interval preceding 

the start of the DR participation time

Energy Average O Average power consumption for 10 days out of the past 10 
days excluding holidays and weekends

NYISO21,22 Emergency and 
day-ahead DR Average X Average power consumption for lowest 5 days out of the 

past 10 days excluding holidays and weekends

PJM23,24
Economic, pre-
emergency and 
emergency DR

Average O Average of 3 hours prior to the DR participation time and 
2 hours after the DR participation time

Average O Average power consumption for 5 days out of the past 5 
days excluding holidays and weekends

Matching day pair O Average power consumption for 3 days most similar with 
DR participation day

ERCOT25 Emergency 
response service

Regression O
Baseline estimation based on the correlation model of 
power consumption for weather condition on the day and 
preceding days, the type of day, and daylight

Average O Average power consumption for 8 days out of the past 10 
days excluding highest, lowest consumption days

Average O Average power consumption for 20 days out of the past 20 
days excluding holidays and weekends

Matching day pair O Average power consumption for 10 days most similar 
with DR participation day

Meter-before X Power consumption for the immediately preceding time

Table 2.  Summary of the details of CBL evaluation methods for ISO in the US.

DR program Purpose

Voluntary DR

Economic DR Power supply cost reduction by being participated in the power market in the same 
way as conventional generators

Peak demand DR Reserve capacity securement in accordance with excess of forecasted demand 
compared with baseline

Fine dust DR Reduction of power supply cost and fine dust

Reliability DR Substitution of new power generator construction depending on demand reduction 
during forecasted emergency periods

Frequency DR Frequency drop prevention below stability operating standard

Reverse DR Reduction of renewable energy curtailment

Table 3.  Summary of the details of the DR program in South Korea.
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metal, paper, and steel. Only 11.59% of the companies included in the types are actually participating in the DR 
program. Therefore, it is expected that they still have high potential that can be utilized as LF resources27.

Data from 20 volunteer factories with data disclosure agreements were obtained. Finally, 10 factories with 
regular manufacturing processes and their company sizes (e.g., number of employees, sales, and manufacturing 
scales) were selected in this study. Figures 3–7 illustrate the five representative manufacturing processes. To 
maintain information security, the company name and factory location are not disclosed in this paper, and net 
power consumptions without normalization are mentioned to preserve data originality. This study presents the 
data measured for seven months from 1 March 2019 to 30 September 2019. During the measurement period, a 
DR was issued twice; Table 5 depicts the date and time of DR participation, mandatory reduction capacity, and 
response capacity of each factory for the load aggregator’s transaction.

CBL evaluation method DR program Description

Max 4 of 5 Standard DR Average power consumption for top 4 days out of the past 5 days excluding holidays 
and weekends

Mid 6 of 10 Standard DR Average power consumption for 6 days out of the past 10 days excluding highest and 
lowest consumption 2 days

Mid 4 of 6 Reverse DR (weekdays) 
and residential DR

Average power consumption for 4 days out of the past 6 days excluding highest and 
lowest consumption days

Mid 8 of 10 Residential DR Average power consumption for 8 days out of the past 10 days excluding highest and 
lowest consumption days

Past 10 minute Frequency DR Sum of the 1-minute interval power consumption for 10 minutes prior to the start of 
the DR participation time multiplied by 6

H-mid 4 of 6 Reverse DR (weekends and 
holiday)

Average power consumption for 4 days out of the past 6 days (holidays and 
weekends), excluding highest and lowest consumption days

Table 4.  Summary of the details of CBL evaluation methods in South Korea.

Fig. 2  Overall hardware communication network used in the study. EOI, end of interval; IP, Internet Protocol; 
TCP, Transmission Control Protocol; WP, watthour pulse.

Fig. 3  Cement manufacturing process.
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Fig. 4  Forging process.

Fig. 5  Metal casting process.

Fig. 6  Paper manufacturing process.
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Data Records
The entire dataset comprises 10 comma-separated value (CSV) files28, summarised in Table 6. As mentioned 
earlier, the total electricity consumption (kW) of each factory was measured in this study. The CSV files of each 
factory have 308160 rows, including N/A spaces and outliers, which indicate one-minute-interval data (1440 
data points/day) for 214 days during the 7-month data collection period in 2019. Since the method of preproc-
essing data is selected and applied according to various research purposes, the authors provided raw data for 
reuse without preprocessing. Each file has two columns: one indicates time information (in the YYYY-MM-DD 
hh:mm format), while the other indicates the factory’s real-time electricity consumption. For better reuse, the 

Manufacturing factory DR participation date(s) Mandatory reduction capacity (kW) Responded capacity (kW)

Metal 1 18:00–19:00,
13 June 2019 8000 8777

Metal 2
17:00–20:00,
15 May 2019
16:00–17:00,
13 June 2019

24000/24000/24000
24000

25737/25874/26822
24279

Metal 3 18:00–19:00,
13 June 2019 8000 10727

Forge 1 18:00–19:00,
13 June 2019 6000 4440

Forge 2 18:00–19:00,
13 June 2019 4000 9

Steel 1 18:00–19:00,
13 June 2019 4000 3925

Steel 2 18:00–19:00,
13 June 2019 60000 195415

Cement 1 18:00–19:00,
13 June 2019 45000 51198

Cement 2 18:00–19:00,
13 June 2019 13000 18999

Paper 18:00–19:00,
13 June 2019 25000 12510

Table 5.  DR market participation records of manufacturing factories. DR, demand response.

Manufacturing factory Name The number of data Data periods

Cement 1 Cement_1.csv 306941 2019–03–01~2019–09–30

Cement 2 Cement_2.csv 307475 2019–03–01~2019–09–30

Forge 1 Forge_1.csv 306656 2019–03–01~2019–09–30

Forge 2 Forge_2.csv 308029 2019-03-01~2019-09-30

Metal 1 Metal_1.csv 208154 2019-03-01~2019-09-30

Metal 2 Metal_2.csv 276938 2019–03–01~2019–09–30

Metal 3 Metal_3.csv 307566 2019–03–01~2019–09–30

Paper Paper.csv 308158 2019–03–01~2019–09–30

Steel 1 Steel_1.csv 303501 2019–03–01~2019–09–30

Steel 2 Steel_2.csv 308160 2019–03–01~2019–09–30

Table 6.  Summary of manufacturing factories’ dataset file names.

Fig. 7  Steel manufacturing process.
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Korean system load data file of the same period is provided together28. The dataset has been made publicly avail-
able under the creative commons license CC BY 4.0 hosted on the figshare repository.

Technical Validation
This section discusses the visualization of data to clarify the quality of the dataset, which includes missing data, 
outliers, and weekly pattern plots. The missing data plot and outlier information indicate the availability of 
minute details on the electricity consumption of each factory, whereas the weekly pattern plots provide the 
characteristic insights into power consumption according to the manufacturing type and working/non-working 
date conditions. The summary of manufacturing factories’ dataset statistics is described as shown in Table 7.

Missing data.  Figure 8 illustrates the missing electricity consumption data of 10 factories. The missing data 
plot for the entire data collection period (where the missing data are indicated using black lines) is shown on the 
left side of the figure. Further, the horizontal bars on the right visually represent the percentage of missing data 
over the study period. The manufacturing factories have an average data availability of 98.7%. An exception is the 
Metal 2 factory, whose missing data rate is more than 10% due to data collection errors in April 2019. Data with 
a 20% or less missing rate guarantees quality through missing data imputation29. The approach for time-series 
missing data imputation provided in this study is classified mainly into five categories: deletion, neighbor-based, 
regression-based, multi-layer-perceptron-based, and deep-learning-based approaches. The description and prac-
tical methods of each approach were reviewed in detail as shown in Table 830–40.

Outliers.  Figure 9 illustrates the 10 factories’ daily electricity consumption profiles during data collection 
periods. As an index for outlier detection, the interquartile range (IQR) of the box plot was considered. As a result 
of extracting data located outside the range of 3 sigma of the normal distribution from each demand data, 4, 38, 
and 1 outlier were detected in Cement 1, Cement 2, and Paper, respectively. The approach for time-series outlier 

Manufacturing factory Mean Standard deviation 0th percentile 25th percentile 50th percentile 75th percentile 100th percentile

Cement 1 1095 293 0 1008 1187 1277 2854

Cement 2 530 100 0 470 549 594 7482

Forge 1 57 48 0 2 81 102 188

Forge 2 54 35 0 6 67 82.6 119

Metal 1 124 73 6 29 154 190 259

Metal 2 369 224 0 73 451 543 786

Metal 3 111 80 0 26 115 179 294

Paper 480 88 0 420 521 554 857

Steel 1 47 36 0 13 35 78 131

Steel 2 7375 2705 0 5310 7872 9522 14966

Table 7.  Summary of manufacturing factories’ dataset statistics.

Fig. 8  Missing electricity consumption data of 10 manufacturing factories; the missing data are indicated using 
black lines.
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data detection provided in this study is classified into four categories: statistical, unsupervised discriminative, 
unsupervised parametric, and supervised approaches. The description and practical methods of each approach 
were reviewed in detail as shown in Table 941–50. Accordingly, the authors propose to scale and utilize the raw data 
according to the research purpose.

Weekly patterns.  Figure 10 shows the 10 factories’ weekly electricity consumption patterns, obtained by 
averaging the electricity consumption during the data collection period by day of the week. Each factory reveals 
approximate periodicity according to its own manufacturing process. The factories that implemented automated 

Approach Description Method

Deletion30,31 Elimination of observations with missing values in raw data Listwise deletion and pairwise deletion

Neighbour based32,33 Missing data imputation through neighbours identified by the 
clustering method KNN and DBSCAN

Regression based34,35 Missing data prediction by modelling correlations between a 
dependent variable and independent variables based on historical data AR, ARX, and ARIMA

Multi-layer perceptron 
based36,37

Missing data estimation by designing a model minimizing the loss 
function of fully connected network NLP and ANN

Deep learning based38–40 Missing data prediction by designing network including information 
over time RNN and GRU

Table 8.  Summary of missing data imputation methods for time series data.

Fig. 9  Electricity consumption daily profiles of 10 manufacturing factories during data collection periods.

Approach Description Method

Statistical approach41–43 Outlier detection through a function describing the relationships between a 
dependent variable and independent variables based on historical data

ARMA, ARIMA, VARIMA, 
and EWMA

Unsupervised 
discriminative 
approach44,45

Outlier detection through similarity measurement based on clustering method K-means, SOM

Unsupervised parametric 
approach46–48 Outlier detection through probabilistic model about state or value over time HMMs

Supervised approach49,50 Outlier detection through a model trained with labelled data SVM

Table 9.  Summary of outlier detection methods for time series data.
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processes (Steel 2, Cement 1, and Cement 2) recorded a steady electricity use even on non-working days. The fac-
tories’ electricity consumption varied according to their size; for example, employees, sales, and production scale. 
In particular, factories with high electricity usage (Metal 2, Steel 2, and Cement 1) tended to avoid operating on 

Fig. 10  Weekly electricity consumption patterns of 10 manufacturing factories.

Fig. 11  Manufacturing factories’ electricity consumption profiles at the demand response participation day (13 
June 2019); cyan lines indicate customer baseline load (CBL), and red lines indicate the actual load.
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time intervals with high electricity rates. Despite the limitation of the 7-month acquisition period, the character-
istics of weekly demand usage were strongly confirmed.

Figure 11 provides the factories’ electricity consumption profiles at the DR participation day (13 June 2019), 
which confirm the factories’ responded capacities. The capacity is calculated as the difference between the CBL 
(denoted using cyan lines in Fig. 11) and the actual load (denoted using red lines). The CBL is a general standard 
used for settlement in national DR markets. In this study, the factories’ average power consumption in the same 
time for four out of the past five days, excluding holidays, is considered the CBL. As additional information, 
Fig. 12 indicates the power system demand profile at the DR participation days (15 May and 13 June 2019) in 
South Korea.

Code availability
The code implementation was done in R 4.0.5 using R studio. The scripts to perform data visualization are 
available in28.
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