IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 14, 2022, accepted May 16, 2022, date of publication May 26, 2022, date of current version June 3, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3178194

A Swapping Target Q-Value Technique for Data
Augmentation in Offline Reinforcement Learning

HO-TAEK JOO 7, IN-CHANG BAEK 2, AND KYUNG-JOONG KIM"'!2, (Miember, IEEE)

I'School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
2 Al Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea

Corresponding author: Kyung-Joong Kim (kjkim@gist.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) under
Grant 2021R1A4A1030075.

ABSTRACT Offline reinforcement learning (RL) is applied to fixed datasets of logged interactions
pertaining to actual applications in healthcare, autonomous vehicles, and robotics. In limited and fixed dataset
settings, data augmentation can be beneficial in developing better policies. Several online RL methods for
data augmentation have recently been utilized to enhance sampling efficiency and generalization. Here,
a novel, simple data-augmentation technique referred to as Swapping Target Q-Value (SQV) is introduced
to enhance offline RL algorithms and enable robust pixel-based learning without auxiliary loss. Our method
matches the current Q-value of a transformed image to the target Q-value of the next original image, whereby
the current Q-value of the original image is matched to the target Q-value of the next transformed image. The
proposed method considers similar states as the same and different states as more distinct. Furthermore, the
approach ties unseen data (lacking in the dataset) to similar states in the seen data. After training, these
effects were observed to increase the performance of the offline RL algorithm. The method was tested
on 23 games in the Atari 2600 game domain. As a result, the performance of our method improved in
18 out of 23 games, with an average performance improvement of 144% compared with batch-constrained
deep Q-learning (BCQ), which is the latest offline RL method. The implementation can be found at

https://github.com/hotaekjoo/SQV.

INDEX TERMS Offline reinforcement learning, data augmentation, generalization, Atari games.

I. INTRODUCTION
Online reinforcement learning (RL), combined with deep
neural network function approximators, has been success-
fully applied in robotics [1], [2], Atari games [3], Go [4], and
StarCraft [S]. The success of RL in these areas is attributed to
the well-structured feedback system. RL is a decision-making
method that enables agents to identify optimal behavior in a
given state, and the feedback system is a series of processes
in which agents interact with the environment and learn
by observing the results of these interactions. Most of the
environments in RL have been equipped with these systems.
OpenAl created and provided environments suitable for RL
in Atari games, while DeepMind provided the StarCraft 2 and
DM-Control environments.

However, these feedback systems have become ineffective
when applying RL algorithms to actual problems. In practice,

The associate editor coordinating the review of this manuscript and

approving it for publication was Davide Patti

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

few of these feedback systems exist. For example, assuming
RL is applied to medical data, when an artificial intelli-
gence (Al) physician performs some treatment (action), the
appropriate reward (patient’s death and life) and the patient’s
next state in the actual environment cannot be detected by the
Al physician. Due to trial and error nature of RL, applying
a learning Al physician’s treatment (action) to a patient can
raise ethical concerns.

Recently, researchers have begun studying the decision
making process on already collected data, called offline
RL [6], [7], [8]. Offline RL is a crucial solution in applying
RL to actual problems, and the offline RL algorithm
has recently emerged as an area of interest. Evaluating
the value of out-of-distribution actions (OOD actions)
correctly is a major issue in recent offline RL algorithms.
The offline RL setting assumes that a specific behavioral
policy determines actions according to a given state in the
collected datasets. Actions not selected by the behavioral
policy are called OOD actions. The OOD actions trigger

57369

https://orcid.org/0000-0002-2286-3216
https://orcid.org/0000-0002-9409-9253
https://orcid.org/0000-0002-7732-0817
https://orcid.org/0000-0003-0874-7793

IEEE Access

H.-T. Joo et al.: SQV Technique for Data Augmentation in Offline RL

errors in overestimating and underestimating the value of
actions.

Several offline RL algorithms have been proposed to
handle OOD actions. The batch-constrained deep Q-learning
BCQ [9] limits the degree to which the learned policy differs
from the behavioral policy of the datasets. In the conservative
Q-learning (CQL) [8] algorithm, a conservative Q-function
is learned by regularizing the Q-values of OOD actions
during training. The critic regularized regression (CRR) [10]
and accelerating online reinforcement learning with offline
datasets (AWAC) [11] algorithms adopt a method to restrict
the OOD action from being selected.

These existing offline RL methods are yet to evaluate
data augmentation on collected datasets, which may be
a simple and promising way to improve the performance
of offline RL algorithms. On the other hand, online RL
is already being actively researched for data augmentation
techniques. Reinforcement learning with augmented data
(RAD) [12], contrastive unsupervised representations for
reinforcement learning (CURL) [13], and data regularized
Q-learning (DrQ) [14], which are the approaches proposed
for data augmentation in online RL, are reported to provide
performance improvements and advantages in increasing data
sample efficiency.

Inspired by the impact of data augmentation in online RL,
in this study, a swapping target Q-value (SQV) method is
presented for data augmentation in offline RL. The SQV
algorithm was developed by extending BCQ, an offline RL
algorithm. Subsequently, SQV was designed to improve
sample efficiency and maximize the generalization ability of
offline RL settings. The proposed method directly compares
the non-augmented and augmented Q-values and identifies
the original and transformed images as almost identical.
The offline RL algorithms can handle various distributions
of datasets, allowing substantially similar and dissimilar
data to be included in the datasets. The ability to group
similar states in the datasets increases the efficiency of the
sample, and this improvement in sample efficiency facilitates
improved performance. Furthermore, our method improves
generalization ability. which refers to the performance
achieved when evaluating data that do not exist in the training
set. Because our method exhibits the bundling effect of
grouping similar states, it identifies good policies even for
previously unseen data by grouping the policies of the most
similar images in the training set.

The contributions of the study are as follows:

o It is demonstrated that SQV outperforms advanced
offline RL baselines, such as BCQ, when tested on
popular pixel-based Atari games. Furthermore, sample
efficiency is evaluated by reducing the size of the col-
lected datasets demonstrating that our method exhibits
better sample efficiency.

o The reason behind the performance improvement of the
method is analyzed to determine the primary reasons for
pixel robustness and the generalization capability of the
offline RL settings.

57370

« Finally, the limitations of data augmentation in offline
RL are discussed. This is the first study to adopt data
augmentation in the offline RL setting, and both the
advantages and disadvantages are investigated compared
to online RL data augmentation.

Il. BACKGROUND

A. REINFORCEMENT LEARNING

Considering the Markov decision process, traditional RL
methods determine the optimal behavioral policy that max-
imizes the expected return based on the policy determined
by the expected returns from a state-action function. The
RL agent performs an action a on a given state s in the
environment, then, observes the reward r and next state
s'. The state-action function Q(s,a) is updated using the
following equation, and the behavioral policy is trained
using the collected tuples (state, action, reward, next state),
(s, a, r, s") with the discount factor, where y € (0, 1].

OGs,a)=r+y x Q. d) ey

The Q-value is the estimated return from an agent’s action
in a given state. The RL methods update the current state Q-
value O(s, a) with the next state Q-value Q(s', @) to train
an optimal Q-function approximator. Estimating the exact
Q-value contributes to finding the optimal policy Q*(s, a).

B. OFFLINE RL

Offline RL is a method in which optimal behavioral policies
are learned using data collected without environmental
interactions. However, a distribution shift can be problematic
when the behavioral policy of the collected data differs from
the distribution of learned policies. In addition, a policy
remote to the training data distribution cannot guarantee agent
convergence. To address this problem, BCQ limits the extent
to which the current behavioral policy differs from that of the
dataset. In the random ensemble mixture (REM) [15], random
convex combinations of multiple Q-heads are adopted to
regularize the Q-values. CQL inserts additional regularization
into loss terms when learning a conservative Q-function,
which prevents Q-value overestimation.

C. DATA AUGMENTATION FOR ONLINE RL

Recently, several studies have been conducted on online RL
methods that utilize data augmentation. CURL [13] utilizes
data augmentations by learning contrastive representations,
such as unsupervised learning to improve data efficiency.
Although the focus of CURL is on jointly adopting data
augmentation via contrastive RL losses, RAD [12] attempts
to directly use data augmentation for reinforcement learning
without any auxiliary loss. The authors of RAD, tested
various image augmentation methods (e.g., random cropping,
grayscale, cutout, rotate, etc.) in RL environments and
benchmarked the image augmentation method that effectively
improves performance in RL. DrQ [14] utilizes random
cropping and regularized Q-functions in conjunction with the
off-policy RL algorithm SAC [16]. In the DrQ study, the

VOLUME 10, 2022

H.-T. Joo et al.: SQV Technique for Data Augmentation in Offline RL

IEEE Access

Current ’
S —{ Model H Q-value i MSE Loss
, Target
S 4’[Model H Target Q-value
:-A-] -d-l T: t T el R
ugmented y arge i Augmented
i '
| S : Model L‘"\ Target Qvalue | Target Q-value
Image = _ _ ___
Transformation]] el B
. I Augmented Current 1 Augmented 1
function f : S I—»[Model]—». Quvalue i MSE Loss
1 v ’

FIGURE 1. Architecture of the SQV method for data augmentation.

authors propose a way to apply the augmented image to the
Markov decision process (MDP) of the RL task. This method
adopts the regularized method for Q-values. Specifically, the
target Q-values for the non-augmented and augmented states
are obtained, and the target Q-value is recalculated by simply
averaging these values.

The proposed method differs from DrQ in updating the
Q-function, in that, the proposed method adopts these target
Q-values directly by swapping them. Specifically, our method
calculated the loss function for (Q-value of non-augmented
image, target Q-value of augmented image) as well as
(Q-value of augmented image, target Q-value of non-
augmented image).

D. DATA OVERSAMPLING FOR OFFLINE RL

Some of the offline RL methods introduced above increase
the amount of data involved, as in data augmentation. For
example, from an engineering perspective, CQL! increases
the collected state by a factor of 30. CQL calculates Q-values
for each state-action pair by incrementing the current state,
next state, and random state, by 10-fold. Such Q-values
conservatively optimize policy. Furthermore, BCQ? yields a
learned policy (including constraints) by increasing the state
(including noise) 10-fold, and then calculates a Q-value for
the action. In other words, the data are increased to optimize
the learned policy for limited data. Such oversampling is used
to address the limited data of data-driven offline RL.

E. GENERALIZATION FOR ONLINE RL
The study of generalization in deep RL aims to generate
appropriate policies even for unseen states and levels.
In online RL studies conducted so far, including RAD [12],
NRD [17], DrQ [14], and CURL [13], data augmentation
was expected to improve generalization. In particular, the
1 https://github.com/aviralkumar2907/CQL/blob/master/d4rl/rlkit/torch/
sac/cql.py
2https://github.C()m/sfujim/BCQ/b1ob/master/continuouS_BCQ/BCQ.py

VOLUME 10, 2022

generalization effect was verified in an environment such as
Procgen [18], because the color of the background screen and
objects change according to the levels. In this experiment, the
changed conditions induce the unseen images which are the
model confusing. Similarly, in our study, whether an agent
trained by our method can create an appropriate policy for an
unseen state was also tested.

Ill. SWAPPING TARGET Q-VALUE (SQV)

In this study, SQV was developed as a data augmentation
method for offline RL. The method matches two targets
when comparing the mean-squared error (MSE) for Q-values;
accordingly, (state, augmented next state) and (augmented
state, next state) are presented in Figure 1. First, the image
transformation function f is defined. An original image in the
dataset and the converted image are depicted by s and f(s),
respectively. The image transformation function includes
random cropping, grayscale, cutout, and rotation. Our method
uses random cropping and data augmentation to compute the
augmented Q-value and target Q-values for every (s, a, r, ")
transition.

@)
3

(s, a)uug
targetQ(s, a)aug

O (s), a)
r+y xQFf(s),d)

Next, the target Q-values are swapped and updated via
Stochastic Gradient Descent (SGD), using the learning rate
Ao and batch size N as in Equations 4 and 5 below. The 6 are
then averaged and updated.

1 N
01 < 0 =gV) (targetQ(s, aaug — (s, @)° (4)
i=1
1 N
02 < 0 =gV) (targetQ(s, @) — Os, Daug)® (5)
i=1
01+ 6>
2

(6)

0 «

57371

IEEE Access

H.-T. Joo et al.: SQV Technique for Data Augmentation in Offline RL

Algorithm 1 SQV: BCQ Version
Black: Unmodified BCQ
Blue: code Modified From BCQ

Input: batch B, number of iterations T, target update frequency C, mini batch N, threshold 7, learning rate 1o
Initialize Q-network Qy, generative model G,,, and target network Qg with 6’ < 0,

Image transformation function f.

fort =1toT do
Sample mini batch N transitions (s, a, r, s") from B

Image transformation for upper mini batch (s, s) to £ (s), f (s")

a’ = arg maxa/le(a/|S/)/ max a Gy (als))>t Q@(S/» CZ/)
/ — / /
Aayg = AEMAX |G, (a'|f (s'))) max & Go(@lf (s)>T Oo(f(s'), a)

2
0 <6 —)»evejlv Zfi] Z(s,a,r,s/,f(s),f(s’))eN (7’ + Qo (f(s), a;ug) — Op(s, a))
2
th <6 —)‘QVO% Z{v=1 Z(s,a,r,x’f(s)f(s/))GN (}’ +yQu(s', d") — Qp(f (s), Cl))

6 = 01+6>

2
If t modC=0: 0" < 6
end for

A. SQV FOR BCQ

The SQV based on the discrete BCQ [19] is summarized
in Algorithm 1. Our method extends the discrete batch-
constrained deep Q-learning to the data-augmentation setup
by applying the same update rules as in offline training. BCQ
is an offline RL algorithm that operates deep Q-learning
(DQN) as a primary operation. The following equations
express the objective function for selecting the next action
in Q-learning.

J(0) = (targetQ(s, a) — Q(s, a))* @)
targetQ(s,a) = r +y x O(s', d')
where @’ = argmax, O(s', d') 8

The BCQ differs from general DQN when selecting the next
action, as expressed in the following equation.

d' = argmax, |G, |/ maxa Go(alsy=r 206 @) (9

Instead of considering the maximum for all possible actions,
the BCQ considers only those actions where (s',a’) are
likely to appear in the collected datasets. Similar to the
equation above, G(a’|s’) [19] denotes the action probability
distribution in discrete BCQ. After classifying the most
probable action and the other actions by calculating the
probability distributions, the probabilities of the other actions
are divided by the highest action probability. If the quotient
is less than a certain threshold value t, actions corresponding
to that value are not selected as the next action. Thus, the next
action is selected from among the values that are greater than
a certain threshold. In that case, the largest value is selected as
the next action by multiplying the Q-values by the probability
distribution.
g = AEMAX |G (|F(s"))) max Gy (alf s >1 Q8 (), @)
(10)

a

57372

Similar to the equation expressed above, our algorithm
extends BCQ when choosing the next action. Our method
augments the next state using the image transformation
function f. In addition, similar to the BCQ algorithm, the
action distribution is output and the augmented next action
is selected using the threshold value.

2
0 < 0 =20V (r + 700 (), dlue) — Qo5 @) (1)

0« 60— 2V (r + 100 (s, d) — Qo(f(s), @) (12)
01+ 6> (13)

0 «

Furthermore, the formula presented above applies to swap-
ping the target Q-Value. Our algorithm adopts 8; and 6;
to update the policy; 6; calculates the loss function for the
augmented target Q-value and the non-augmented Q-value;
and 6, calculates the loss function for the non-augmented
target Q-value and the augmented Q-value. By adding the
above two loss functions, the algorithm updates the policy
network.

IV. EXPERIMENTS

Experiments Setup The objective of our experiment is
to compare the performance and data efficiencies of SQV,
with data augmentation, and BCQ, without augmentation,
for offline RL settings. The offline RL setting is also
known as full batch RL, in which a policy is learned
from a static dataset. First, RL agents are trained in Atari
games using the DQN [3] algorithm and the agents are
used to collect the datasets. Then, the BCQ algorithm
(without data augmentation) and the SQV algorithm (with
date augmentation) are applied to the collected datasets.
In addition, the data efficiency performances of the two
algorithms are compared in tests and evaluations using only
10% and 50% of the collected datasets.

VOLUME 10, 2022

H.-T. Joo et al.: SQV Technique for Data Augmentation in Offline RL

IEEE Access

AMIDAR

@
3

Average Score
a
&

75 100

Iteration

125 150 175 20.0

BEAMRIDER
1800

1600

1400

1200

1000

Average Score

800

75 100

Iteration

125 150 175 20.0

CARNIVAL
3500

3000
2500
2000

1500

Average Score

1000

500 -

0.0 25 50 75 100

Iteration

125 150 175 20.0

GOPHER
1400

1200

Average Score
® B
g 8
3 3

@
3
E

00 25 50 75 100 125 150 175 20.0
Iteration
NAMETHISGAME
7000
6000
5
@ 5000
o
>
H 4000
H
3000
2000
00 25 50 75 100 125 150 175 20.0
Iteration
SPACEINVADERS
450
400
o
&350
o
>
& 300
g
<
250
200
00 25 50 75 100 125 150 175 20.0
Iteration

N BCQ

ASSAULT

75 10.0

Iteration

125 150 175

BERZERK

00 25 50 75 100 125 150 175 200
Iteration
CENTIPEDE
4000
3500
3000
2500
2000
1500
00 25 50 75 100 125 150 175 20.0
Iteration
GRAVITAR
00 25 50 75 100 125 150 175 20.0
Iteration
PHOENIX
3500
3000
2500
2000
1500
1000
00 25 50 75 100 125 150 175 200
Iteration
STARGUNNER
2500
2250
2000
1750
1500
1250
1000
00 25 50 75 100 125 150 175 200
Iteration

B sQV (BCQ + Switching Q)

20.0

B Buffer Performance

ASTERIX
1200

A
/)

A

1000

800

600

75

10.0
Iteration

125 150

BOXING

00 25 50 75 100 125 150 175 200
Iteration
DEMONATTACK
1400
1200
1000
800
600
400
200
00 25 50 75 100 125 150 175 200
Iteration
KRULL
5000
4500
4000
3500
3000
2500 =
00 25 50 75 100 125 150 175 200
Iteration
ROADRUNNER

00 25 50 75 100 125 150 175 200
Iteration
YARSREVENGE
9000
8000
7000
6000
5000
00 25 50 75 100 125 150 175 200
Iteration

17.5 200

BANKHEIST

75 100

Iteration

125 150 175 200

BREAKOUT

75 100

Iteration

125 150 175 20.0

ENDURO

00 25 50 75 100 125 150 175 20.0
Iteration
MSPACMAN
1400
1200
1000
800
600
00 25 50 75 100 125 150 175 20.0
Iteration
SEAQUEST

75 100

Iteration

125 150 175 20.0

FIGURE 2. Atari game benchmark with 1 million datasets. The black and green lines represent the BCQ and SQV, respectively.

VOLUME 10, 2022

57373

IEEE Access

H.-T. Joo et al.: SQV Technique for Data Augmentation in Offline RL

TABLE 1. Hyperparameters for DQN network.

Hyper-parameter Value
Replay buffer size 1 million
Evaluation time steps 20k time steps

Initial € 1.0

Final e 0.01

€ decay period 250k training iterations
Network optimizer Adam [22]

Learning rate 0.0000625

Adam € 0.00015

Discount ~y 0.99

Mini-batch size 32

Target network update frequency | 8k training iterations
Huber loss < 1

Evaluation e 0.001

Environment The proposed method was validated
in the arcade learning environment platform [20] of
Atari 2600 games running on OpenAl gym [21]. The
Atari 2600 games with high-dimensional visual input
(210 x 160 RGB) are the most commonly used online RL
testbed. In addition, these games are recently being adopted
as offline RL testbeds. They are also suitable for testing
the data efficiency and performance improvement of data
augmentation in pixel-based RL. To summarize, this study
addresses the following questions:
1) Performance: By how much did the performance of
our method SQV improve compared to existing offline
RL methods such as BCQ?

2) Sample efficiency: Using the 10% and 50% of the
dataset, by how much was the performance enhanced
compared to that of existing offline RL?

A. TRAINING AN AGENT USING DQN

The offline RL setup is for training an agent based on
the collected dataset. The agents are first trained using the
DQN algorithm in Atari games, whereby the trained agent
can interact with the environment to collect datasets. The
DQN parameters are presented in Table 1. The experimental
settings in all Atari games are set in the same way as the
Nature DQN model [3]. In Figure 2, the brown horizontal
line represents the performance of the trained DQN agent.
The line shows the average performance for testing the agent
20 times in each environment post training. The agents were
trained for 30 Atari games; however, this study only displays
the performance graph for 23 games in Figure 2 because
seven agents were not trained using the DQN model.

The pixel input size of the Atari games is usually given as
(250, 160, 3), where 250 refers to height, 160 to width, and
there are 3 RGB channels. This study replaced this image
with a grayscale (250, 160, 1) and then cropped it to 84 x
84 images (84, 84, 1). The network inputs were four stacked
frames (4, 84, 84).

Table 2 presents the network structure of the DQN
model. The DQN model comprises three convolution layers
(Conv2d) and two fully-connected layers (FC, Linear),
as presented in Table 2. Linear(1-1) is a layer that outputs the

57374

TABLE 2. Network structure in online DQN.

Layer output shape

Conv2d(1) [—1, 32, 20, 20]
Conv2d(2) [—1, 64,9, 9]
Conv2d(3) [—1,64,7, 7]
Linear(1) [—1, 512]

Linear(1-1) | [—1, number of actions]

TABLE 3. Network structure used on the BCQ and SQV models.

Layer output shape

Conv2d(1) [—1, 32, 20, 20]
Conv2d(2) [—1, 64, 9, 9]
Conv2d(3) [—1,64, 7, 7]
Linear(1-1) | [—1, 512]

Linear(1-2) | [—1, number of actions]
Linear(2-1) | [—1, 512]

Linear(2-2) | [—1, number of actions]

Q-value. Furthermore, this study adopts sticky action, which
means that the probability of repeating an action from the
previous state is p = 0.25. The reward function is clipped
to a range of [—1, 1]. The DQN [3] implementation is based
on [19]°

B. COLLECTING DATASETS

With each trained agent taking action according to a given
state in the environment, data corresponding to 1 million
transitions (s, a, r, s') were collected for each game. The
datasets were collected by adding noise from a uniform
distribution to the action of the trained agent. By adding
action noise, a variety of datasets can be collected. In general,
if a trained DQN agent selects the action with the highest
Q-value in a given state, the agent cannot collect various
transitions (s, a, r, s') into the buffer. Because offline RL is
only trained based on the collected data, it is difficult to
predict what action to take if a state does not exist in the buffer
or an unexpected state appears during evaluation. Hence, data
were collected to improve the offline RL performance by
adding noise to action.

C. BCQ AND SQV SETTINGS

The SQV and BCQ agents were trained using the datasets
in the previous section. In this section, the settings for BCQ
and SQV are introduced. The Atari game settings are the
same as those for the DQN mentioned above. Furthermore,
the network structures of BCQ and SQV structures differ
only slightly from that of DQN owing to the nature of
the algorithm. Similar to Algorithm 1, the BCQ algorithm
adopts both the Q-value and action probability distribution
to decide what action to take for a given state. As presented
in Table 3, Linear(2-1) and Linear(2-2) are added to the
network comparing DQN. Linear(1-1) and Linear(1-2) are
the layers that output the Q-value as in DQN, and the added
Linear(2-1) and Linear(2-2) are layers that output the
probability distribution for the action.

3 https://github.com/sfujim/BCQ/blob/master/discrete_ BCQ/DQN.py

VOLUME 10, 2022

H.-T. Joo et al.: SQV Technique for Data Augmentation in Offline RL

IEEE Access

TABLE 4. Descriptive statistics of BCQ and SQV on the Atari 1 million benchmark shown in Figure 2. The bold style fonts denote that our method

outperforms the baseline in most games.

Game Title BCQ SQV (Ours) Improvement (%)
Amidar 44.39+4.64 49.32+6.21 110.13%
Assault 742.34+49.18 827.87+70.55 113.76 %
Asterix 663.37+87.53 991.5+132.95 154.43%

BankHeist 140.82+9.63 142.74+18.42 98.68%

BeamRider 1194.19£174.91 1309.16+223.87 109.94 %
Berzerk 242.175+29.79 336.21+50.00 151.10%
Boxing 10.65+4.75 30.661+-12.28 302.46 %
Breakout 13.275+1.32 15.25+2.33 114.40%
Carnival 2799.15+499.34 2458.3+681.65 90.30%

Centipede 2553.64+£518.67 3098.65+471.30 124.68%

DemonAttack 357.12+99.61 842.54+322.13 236.52%
Enduro 1.89+1.41 5.85+2.49 321.42%
Gopher 752.35+£210.13 525.6+115.89 56.09%
Gravitar 163.25+66.87 166.0+75.94 122.96 %

Krull 4370.954+439.05 4174.5£526.63 98.42%
MsPacman 803.44159.03 951.24+172.67 112.95%
NameThisGame 4780.4+£556.09 5513.6+937.04 118.53%
Phoenix 2265.0+399.11 2711.0+£693.71 114.39%

RoadRunner 115.0+65.91 341.04+-193.59 324.76 %
Seaquest 350.7443.99 392.81+71.82 109.78 %

Spacelnvaders 333.05+35.85 337.55+48.97 98.78%

StarGunner 1477.0+217.85 1727.0+312.71 118.04%

YarsRevenge 5796.97+£802.85 6862.08+857.89 119.46 %
Average 144%

TABLE 5. Descriptive statistics of the data efficiency experiment on the Atari benchmark. The dataset is limited to 10% and 50% for the 1 million dataset.
Most of results show that our method outperforms the baseline with limited data.

Game Title 10% Dataset 50% Dataset
BCQ SQV BCQ SQV
Amidar 38.9+3.6 31.7£6.0 40.24+5.3 45.2+6.3
Assault 471.0+31.8 556.61+-49.4 585.91+33.1 567.9+38.7
Asterix 429.24+65.9 432.54+60.1 443.0+61.1 555.0+60.0
Berzerk 212.6+44.1 180.1444.1 190.04+27.0 225.1+38.3
Boxing 0.6+2.6 2.3612.6 34433 5.7+3.1
Breakout 7.5+0.8 9.21+0.9 9.94+1.7 11.4+1.4
Centipede 2379.1+336.6 2284.8+445.9 2255.3+392.3 2847.4+448.9
DemonAttack 189.7+47.7 185.14+38.8 195.7+30.7 181.8+54.7
Enduro 2.1£1.1 2.1+1.24 1.1+0.8 1.274+0.8
NameThisGame 3042.3+421 3109.9+£226.8 3793.8+505.4 4093.3+394.8
RoadRunner 3.545.7 35.9+19.9 44.04+30.6 66.0+28.7
YarsRevenge 5229.2+327 5670.7+914.4 5273.1+£956.5 5312.0+841.9

Image Augmentation (Random Cropping) The most
frequently used online RL image augmentation method is
random cropping, as in RAD and CURL. These methods
train the agents in the DeepMind control suite and on Atari
games. In this study, data augmentation experiments were
also conducted for Atari games using random cropping in
various image augmentation methods. First, the Atari game
observations were converted to 84 x 84 gray-scale images,
using “‘zero padding” of pixels on each side. Then, random
84 x 84 crops that moved the original images by +4 pixels
were selected. Such data augmentation can be adopted for
images sampled from the replay buffer collected by the
DQN [3] agent. The augmentation procedure was applied to
images from the replay buffer.

D. PERFORMANCE
Using the settings in the previous section, the agents were
trained in 1 million steps for each of the BCQ and SQV

VOLUME 10, 2022

algorithms. The performance of each algorithm was evaluated
20 times for each Atari game during the training, every
0.05 million steps. Figure 2 compares the DQN, BCQ, and
SQV algorithms in terms of the experimental results. The
brown line and buffer performance indicate the performance
of the trained DQN. The black and green lines represent the
BCQ and SQV graphs, respectively. Table 4 is a quantitative
representation of Figure 2. The average score for the last 10 of
the 20 evaluations was recorded. In terms of performance
improvement, SQV (ours) outperformed BCQ by 144%, and
the performances of 18/23 games improved.

E. SAMPLE EFFICIENCY

In the sample-efficient online RL, researchers evaluated
the performance on relatively small datasets collected via
interactions with the environment. Sample-efficient online
RL studies, such as DrQ and RAD, assess performance
according to the number of data samples stored in the

57375

IEEE Access

H.-T. Joo et al.: SQV Technique for Data Augmentation in Offline RL

S (seen)

St (unseen) St+1 (seen)

S¢ (seen)

St (unseen) St+1 (seen)

+ (seen) ¢+ (unseen)

I

t (seen) ¢+ (unseen)

St+1 (seen)

Si+1 (seen)

(a)

A
I

St+1 (unseen)

@ State
% Next State
®
)
b*
St+1 (unseen) o E o . °
*
St+1 (unseen) (b) BCQ
@ State
% Next State
St+1 (unseen) °
o
. =
-
(c) SQV

FIGURE 3. Results of t-SNE comparisons between the (b) BCQ algorithm and (c) SQV.

replay buffer. In other words, the criterion for ascertaining
performance depends on the speed at which agents improve
their performance because the smaller the steps, the fewer are
the data collected in the buffer.

However, the basic setting of offline RL cannot collect data
via interactions with the environment. Offline RL studies,
such as CQL, measure sample efficiency by reducing the
collected datasets. In addition, our performance experiment
adopted only 10% and 50% of the collected datasets
to evaluate sampling efficiency. Additional experiments
were conducted on 12 Atari games. Table 5 presents the
performances obtained when using 10% and 50% of the data.
In this table, performance improvements of 8/12 for the 10%
dataset and 10/12 for the 50% dataset are observed.

V. RESULT ANALYSIS

A. COMPARING PERFORMANCES ONLINE RL AND
OFFLINE RL

In online RL, data augmentation methods such as DrQ
and CURL exhibit significantly improved performance in
pixel-based learning. For example, in a previous study,
the DrQ data augmentation method was applied to the
SAC [16] algorithm. This method improved the performance
by 3~4 times more than the natural SAC in the DM control
suite [23] environment. Our data augmentation method in
offline RL also facilities performance improvement; however,

57376

the performance improvement is not as significant as that
of online RL. In fact, our results are approximately 144%
better than those of BCQ when averaged across the last
10 episodes of 23 games, as shown in Table 4. The primary
reason for the difference in performance improvement is
the fundamental difference between online and offline RL.
Online RL constantly interacts with the environment, and
the data change depending on the agent’s actions in a given
state. The policy changes according to the data in online RL,
and new data are altered according to the changed policy.
Owing to this feedback loop, the effect of data augmentation
in online RL increases. In other words, the use of data
augmentation in online RL remarkably affects data growth
and data collection based on the feedback loop. In addition to
having a significant impact on policy changes, data collection
also provides overall performance improvements. However,
data augmentation in offline RL exhibits the most pronounced
effect with data increase because additional data cannot
be collected in the offline RL setting. Even if data are
augmented in offline RL, the data quality does not change,
which is associated with limited performance improvements
compared to online RL.

B. T-SNE
In Figure 3, the t-stochastic neighbor embedding (t-SNE)
method was adopted for the trained BCQ and SQV models

VOLUME 10, 2022

H.-T. Joo et al.: SQV Technique for Data Augmentation in Offline RL

IEEE Access

to analyze the reason for performance improvement when
utilizing data augmentation in offline RL. t-SNE is an unsu-
pervised non-linear technique commonly used to visualize
higher dimensional data in a lower-dimensional space. t-SNE
generates a probability distribution for these mutual distance
relationships between points in a high-dimensional space,
including a low-dimensional space with similar relationships
between these points. The embedding results obtained via
t-SNE are presented distinguishing between similar and
dissimilar states.

C. T-SNE EXPERIMENTS

In Figure 3, models trained with BCQ and SQV for
Atari games are organized in various input screens via
data augmentation. After inputting these images into the
BCQ and SQV models, t-SNE was applied to the feature
maps obtained and passed through the last convolution
layer. Some transitions were randomly sampled from the
1 million transition tuples (s, a, r, 5’), and augmented images
were created for each s and s’ using the data augmen-
tation mentioned in Section IV-C. Each row comprises
s(seen), s(unseen), s'(seen), and s'(unseen) transition tuples
(s,a,r,s") in Figure 3a. The first and third images in each
row present the original transition states (seen) and next states
(seen); the second and fourth images are the augmentations
of the state (unseen) and the next state (unseen). The
t-SNE graph of Figure 3b is obtained by applying the BCQ
method to an offline baseline, and in Figure 3c, the graph
is obtained by adopting our approach. The original and
augmented images are not well-tied in the BCQ algorithm
(Figure 3b); however, in our method, they are well-tied
(Figure 3c).

D. PIXEL ROBUSTNESS

The proposed method primarily facilitates performance
improvement because it exhibits pixel robustness capability.
Figure 3 presents t-SNE results for BCQ and SQV, and the
results display two effects related to pixel robustness:

1) The proposed model recognizes the original and
augmented states as similar states.

2) The proposed model allows the current state and the
next state to be considered similarly (if the reward is
Zero).

As mentioned in Section IV-B, 1 million datasets were
collected using the trained model for each Atari game.
The trained model learns by extracting meaningful features
for various states of this dataset. Using t-SNE results, our
study demonstrated that the model outputs similar features
for similar states, thereby increasing the efficiency of data
samples, the generalization effect, and performance. As a
second pixel robustness effect, the current states (s) and
the next states (s") are grouped together in Figure 3. This
figure presents (s) as a circle and (s") as a star, as indicted
in the transition (s, a, r,s’). These results imply that our
model recognizes these states as similar, thereby verifying

VOLUME 10, 2022

= 0

(b) Unseen 1 (c) Unseen 2

(a) Seen

|_oow s | | _oow s |
I q
(d) Unseen 3 (e) Unseen 4

FIGURE 4. Example of unseen images that we fill black patch on the seen
image.

this effect as:

targetQ(s,a) = r +y x Q(s', a’) (14)
targetQ(s, a) = 0+ 0.99 x Q(s', a’) (15)

Assuming that the reward is zero, the difference between
0(s, a) and the target Q(s, a) is approximately 1%. Thus,
if the reward is zero, the ability to recognize similar current
states and next states increases the data efficiency in offline
RL settings. Furthermore, Figure 3a indicates that the pixel
change between the present and next states is negligible. The
two effects described above improve sample efficiency and
increase adaptability to unseen data. In Figures 6, 7, 8, and 9,
our study also presents the results of t-SNE experiments for
various Atari games.

E. GENERALIZATION FOR UNSEEN DATA

One of the main reasons for the performance improvement
of our offline RL method is the generalization ability.
Generalization refers to the difference in the performance of
a model when evaluated on previously seen training data and
never-before-seen test data. The evaluation method of offline
reinforcement learning is to learn using fixed and collected
datasets to evaluate the learned model in an actual Atari
game. To achieve significant performance improvement in
the evaluation task, the trained agent must function optimally
even on data not found in the collected dataset (created by
the DQN agent). For example, if the behavioral policy has
an average performance (i.e., total reward in an episode) of
approximately 20 points in the breakout game, these data do
not have a transition (s, a, r, s) higher than 20 points. For an
agent to score higher than 20 points, the agent must function
well on the datasets of 20 points or more that have never been
seen before.

The experiments designed in Figures 4 and 5 evaluate the
generalization ability of the trained model. In these experi-
ments, whether the trained agent denies a policy optimally is
evaluated by matching it with previous experiences on data

57377

l E E E ACCGSS H.-T. Joo et al.: SQV Technique for Data Augmentation in Offline RL

(a) Case 1 (Right) (b) Case 2 (Left) (c) Case 3 (No-Op)

ok
E

(d) BCQ (e) SQV

FIGURE 5. The t-SNE results show the generalization ability to unseen images. The unseen data are the
augmented images from the three cases.

St (seen) St (unseen) St+1 (seen) St+1 (unseen)

@ State
% Next State

St (seen)

S¢ (seen) S¢ (unseen) S¢41 (seen) S¢+1 (unseen) (b) BCQ

@ State
% Next State

St (seen)

(a) Asterix (c) SQV

FIGURE 6. Results of t-SNE comparisons between the BCQ baselines and SQV for Asterix in Atari games.

57378 VOLUME 10, 2022

H.-T. Joo et al.: SQV Technique for Data Augmentation in Offline RL

IEEE Access

S¢ (seen)

St (unseen) St+1 (seen)

St+1 (unseen)

St (seen) St (unseen) St+1 (seen) St+1 (unseen)

S; (seen) S¢ (unseen) St+1 (seen) St+1 (unseen)

St (seen) St (unseen) St+1 (seen) St+1 (unseen)

.
“m - |

(a) Phoenix

FIGURE 7. Results of t-SNE comparisons between the BCQ baselines and SQV for Phoenix in Atari games.

St (seen)

St (unseen)

St+1 (seen) St+1 (unseen)

St (unseen)

St+1 (seen)

St (seen)

(a) Ms-Pacman

o

@ State

% Next State
k.

|

(b) BCQ

E]

k]

@ State
% Next State

-«

[

(c) SQV

@ State
% Next State

*

@ State
% Next State

B @3
LR

FIGURE 8. Results of t-SNE comparisons between the BCQ baselines and SQV for Ms-Pacman in Atari games.

VOLUME 10, 2022

(c) SQV

IEEE Access

H.-T. Joo et al.: SQV Technique for Data Augmentation in Offline RL

S¢ (seen)

S¢ (unseen)

(a) Space-Invaders

St+1 (seen)

St+1 (unseen)

@ State
B * Next State

(b) BCQ

@ State
% Next State
[]

t e

*%

x ¥ .
o'l
(c) SQV

FIGURE 9. Results of t-SNE comparisons between BCQ and SQV for Space-Invaders in Atari games.

never seen before. For these experiments, the t-SNE method
was adopted to demonstrate that our model is adaptable
to unseen data, and then the matching performances of
two methods, BCQ (Figure 5d) and SQV (Figure 5e) were
compared. As presented in Figure 4, the state distribution
of the environment is considered in creating valid unseen
data. In our case, the Breakout game in Atari was selected
as an example, and it was determined that the “cut-out”
technique could represent the broken brick, remaining in the
same context of the ball moving. In the Breakout game, the
more the number of broken bricks, the higher is the state of
the reward. Figures 5a, 5b, and 5c are three examples of
unseen test-set creation based on Figure 4. By filling six parts
of each image with black (“‘cut-outs’), the unseen images
were created from the training set. The positions of the balls
and the poll (a stick on the bottom side of the screen) in each
set are the same. In Figures 5d and Se, Cases 1, 2, and 3
correspond to the red, green, and blue dots, respectively. The
star mark of each color represents the original image, and
each circle mark represents the augmented image by the cut-
out. Comparing the two experiments in Figures 5d and Se,
it is observed that BCQ sometimes cannot distinguish each
case, whereas our method (SQV) distinguishes each case
optimally. Identifying a policy optimally by matching it
with previous experiences, means taking the right action
according to each situation. Therefore, a model with a high
level of generalization will correctly classify each case.

57380

This experiment demonstrates that our model’s ability to
generalize unseen data is better than that of BCQ.
Appropriate policies must be created for states absent from
the datasets to increase performance in offline RL settings.
The unseen data were designed by augmenting the state of the
Breakout game using cut-out and the generalization ability
of the model was verified. Our study demonstrates that this
generalization ability improves the performance of the model.

VI. CONCLUSION

Offline RL refers to methods in which the agent decides
based on the collected dataset. These methods provide
additional help over the online RL method in which the agent
interacts with the environment in real-time to collect data. For
example, if an autonomous vehicle driving dataset has already
been collected in the real world, the offline RL algorithm,
such as BCQ, REM, and CQL can create the agent that can
drive based on this dataset.

However, in offline RL, the amount of data is fixed
since the algorithm learns based on the collected dataset.
In this work, a method was proposed to improve performance
compared with the existing offline RL method by applying
data augmentation. However, our method not only augments
the data but also combines augmented data with the MDP of
RL. The method measures the Q value of the augmented data,
whereby the Q value of the original data and the Q value of
the augmented data are swapped.

VOLUME 10, 2022

H.-T. Joo et al.: SQV Technique for Data Augmentation in Offline RL

IEEE Access

TABLE 6. Descriptive statistics of performance comparison on REM and REM+SQV.

Game Title REM REM + Ours Improvement (%)
Assault 4.62+3.15 4.84+2.77 104.76 %
Asterix 212.5+30.84 230.25+2.48 108.35%
Berzerk 284.85+57.20 480.5+46.12 168.68%
Breakout 4.03+£1.29 5.261+4.06 130.52%
Carnival 484.7+£195.13 408.7+£222.63 84.32%
Enduro 21.08+6.39 27.74+11.26 131.59%
Gopher 32.0£28.39 214.5+128.90 670.31%

Krull 951+13.11 995.69+993.9 104.70%
NameThisGame 1801.21+486.06 1284.6+£925.02 71.31%
Phoenix 341.84358.26 354.66+£228.07 104.0%

RoadRunner 855.01+-227.60 716.5+£361.68 83.80%
Seaquest 64.61+71.96 66.0+90.62 102.16%

YarsRevenge 2252.08+1147.85 2145.94+1579.29 95.28%
Average 150.75%

The model trained with our method (SQV) displayed input
pixel robustness and generalization ability. Pixel robustness
refers to grouping similar data in collected datasets. This abil-
ity allows the model to make rational policy decisions based
on similar data. The original BCQ and modified BCQ (SQV)
were also implemented to evaluate the performance of Atari
games, demonstrating that SQV outperforms BCQ in most
Atari games. Also, as shown in Table 6, we conducted
additional experiments by combining our method (SQV)
with REM which is one of the offline RL method. In this
experiment, the REM combined with our method performed
better than the original REM.

The proposed method has limitations, however. Our
method increases the amount of data through data augmen-
tation but does not change the quality of the data. Essentially,
to change the quality of data, an environment in which the
agent collects data in real-time is required, violating the
definition of offline reinforcement learning. Therefore, only
a performance improvement of 144% was obtained over
the existing offline RL, and further significant performance
improvement is not expected. Future work will involve a
study in this direction to increase data quality. The objective
is to collect additional data when an agent trained with our
method makes inappropriate policies while interacting with
the environment. Thus, by retraining the already trained agent
through the collected dataset, the quality of the dataset as well
as agent training can be improved.

REFERENCES

[1] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2017, pp. 23-30.

[2] X. Ren, J. Luo, E. SolowjoW, J. A. Ojea, A. Gupta, A. Tamar, and
P. Abbeel, “Domain randomization for active pose estimation,” in Proc.
Int. Conf. Robot. Automat. (ICRA), May 2019, pp. 7228-7234.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533,
2015.

VOLUME 10, 2022

[4]

[51

[6]

[71

[8]

[9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

[17]

(18]

[19]

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of go without human knowledge,” Nature, vol. 550,
no. 7676, p. 354, 2017.

O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,
A. Makhzani, H. Kuttler, J. Agapiou, and O. J. Schrittwieser, ““StarCraft
II: A new challenge for reinforcement learning,” 2017, arXiv:1708.04782.
S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” 2020,
arXiv:2005.01643.

Y. Wu, G. Tucker, and O. Nachum, “Behavior regularized offline
reinforcement learning,” 2019, arXiv:1911.11361.

A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative Q-learning
for offline reinforcement learning,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 33, 2020, pp. 1179-1191.

S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in Proc. Int. Conf. Mach. Learn., 2019,
pp- 2052-2062.

Z. Wang, A. Novikov, K. Zolna, J. S. Merel, J. T. Springenberg,
S. E. Reed, B. Shahriari, N. Siegel, C. Gulcehre, N. Heess, and
N. de Freitas, “Critic regularized regression,” in Advances in Neural
Information Processing Systems, vol. 33, H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, Eds. Red Hook, NY, USA: Curran
Associates, 2020, pp. 7768-7778. [Online]. Available: https://proceedings.
neurips.cc/paper/2020/file/588cb956d6bbe67078f29f8de420a13d-
Paper.pdf

A. Nair, M. Dalal, A. Gupta, and S. Levine. (2021). AWAC: Accelerating
Online Reinforcement Learning With Offline Datasets. [Online]. Available:
https://openreview.net/forum?id=0OJiM1R3jAtZ

M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,
“Reinforcement learning with augmented data,” 2020, arXiv:2004.14990.
A. Srinivas, M. Laskin, and P. Abbeel, “CURL: Contrastive unsupervised
representations for reinforcement learning,” 2020, arXiv:2004.04136.

I. Kostrikov, D. Yarats, and R. Fergus, “Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels,” 2020,
arXiv:2004.13649.

R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic perspective
on offline reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2020,
pp. 104-114.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Oft-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. Int. Conf. Mach. Learn., vol. 80, 2018, pp. 1861-1870.
K. Lee, K. Lee, J. Shin, and H. Lee, “Network randomization: A
simple technique for generalization in deep reinforcement learning,” 2019,
arXiv:1910.05396.

K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging procedural
generation to benchmark reinforcement learning,” in Proc. Int. Conf.
Mach. Learn., 2020, pp. 2048-2056.

S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau, ‘“Benchmarking
batch deep reinforcement learning algorithms,” 2019, arXiv:1910.01708.

57381

IEEE Access

H.-T. Joo et al.: SQV Technique for Data Augmentation in Offline RL

[20] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, ““The arcade
learning environment: An evaluation platform for general agents,” J. Artif.
Intell. Res., vol. 47, pp. 253-279, Jun. 2013.

[21] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “OpenAl gym,” 2016, arXiv:1606.01540.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[23] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden,
A. Abdolmaleki, J. Merel, A. Lefrancq, T. Lillicrap, and M. Riedmiller,
“DeepMind control suite,” 2018, arXiv:1801.00690.

57382

HO-TAEK JOO received the B.S. degree in
electro-mechanical systems engineering from
Korea University, in 2015, and the M.S. degree
in information security from Sejong University,
South Korea, in 2018. He is currently pursuing
the Ph.D. degree with the School of Integrated
Technology, Gwangju Institute of Science and
Technology (GIST). His current research interests
include explainable artificial intelligence and
reinforcement learning.

IN-CHANG BAEK received the B.S. degree
in computer science from Sejong University,
Seoul, South Korea. He is currently pursuing the
integrated M.S. and Ph.D. degrees with the Al
Graduate School, Gwangju Institute of Science
and Technology. His research interests include
artificial intelligence, reinforcement learning, pro-
cedural content generation, and general game
artificial intelligence.

KYUNG-JOONG KIM (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer
science from Yonsei University, in 2000, 2002, and
2007, respectively. He worked as a Postdoctoral
Researcher with the Department of Mechanical
and Aerospace Engineering, Cornell University,
in 2007. He is currently an Associate Profes-
sor with the School of Integrated Technology,
Gwangju Institute of Science and Technology
(GIST). His research interests include artificial

intelligence, game, and robotics.

VOLUME 10, 2022

