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Plant phenotype relationship 
corpus for biomedical relationships 
between plants and phenotypes
Hyejin Cho1,4, Baeksoo Kim1,4, Wonjun Choi2, Doheon Lee3 & Hyunju Lee  1 ✉

Medicinal plants have demonstrated therapeutic potential for applicability for a wide range of 
observable characteristics in the human body, known as “phenotype,” and have been considered 
favorably in clinical treatment. With an ever increasing interest in plants, many researchers have 
attempted to extract meaningful information by identifying relationships between plants and 
phenotypes from the existing literature. although natural language processing (NLP) aims to extract 
useful information from unstructured textual data, there is no appropriate corpus available to train and 
evaluate the NLP model for plants and phenotypes. Therefore, in the present study, we have presented 
the plant-phenotype relationship (PPR) corpus, a high-quality resource that supports the development 
of various NLP fields; it includes information derived from 600 PubMed abstracts corresponding to 
5,668 plant and 11,282 phenotype entities, and demonstrates a total of 9,709 relationships. We have 
also described benchmark results through named entity recognition and relation extraction systems to 
verify the quality of our data and to show the significant performance of NLP tasks in the PPR test set.

Background & Summary
With rapid technological advancements, data from various fields have been accumulated regardless of the 
domain, and the accumulated text collection contains innovative information that has not been structured thus 
far1. In particular, the biomedical domain contains useful information, such as those pertaining to new drug 
resources, and many studies continue to be conducted for the collection of meaningful information for the 
identification and exploration of interesting patterns based on such data sources2–4. However, most data remain 
unorganized because the volume of new data continues to increase faster than our ability to process such data to 
construct and analyze meaningful information; thus, manual conversion of data into structured forms is impos-
sible5,6. Therefore, essential goals of natural language processing (NLP) include the extraction of meaningful data 
and the construction of significant information from unstructured text in an efficient and accurate manner7,8. 
Currently, the use of deep learning-based techniques has recently ushered impressive improvements in the 
accuracy of many applications9. Additionally, NLP models can be improved by implementing a deep learning 
approach because many researchers have demonstrated the achievement of state-of-the-art results across many 
fundamental NLP tasks and the highest scores10–12.

In pharmaceutical development, plants are known for their therapeutic potential over thousands of years, 
indicating the possibility of obtaining a wide range of natural products from trees, shrubs, herbs, and crops 
with pharmaceutical capabilities13,14. Particularly, medicinal plants and plant-derived medicines are widely 
used as therapeutic agents in traditional cultures and their efficacy can be verified by numerous clinical studies 
and medical records based on accumulated experience. Although natural compounds within plants may cause 
grave side effects, many modern pharmacological drugs are derived from medicinal plants as vital resources15,16. 
Owing to such characteristics, many researchers have examined the therapeutic effects of various botanicals by 
elucidating the mechanisms of action of these plants. As interest in the development of new drugs from medic-
inal plants has increased, scientific investigations into the beneficial effects of plants include the extraction of 
various sources of information such as those pertaining to disease prevention and health promotion in addition 
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to clinical treatment; thus, the definition of the entity type that can encompass such sources is necessary. Herein, 
the term “phenotype” refers to a wide range of characteristics observable in a human. To extract novel infor-
mation on plants and phenotypes that have not been organized based on the accumulated literature, the NLP 
technique can be applied using deep learning techniques. In other words, for improvements in deep learning 
techniques, a free large-scale and well-constructed corpus may play an important role and it reflects the perfor-
mance of deep learning models.

These issues highlight the necessity of creating a large-scale and high-quality dataset for NLP tasks. All bio-
medical NLP communities share the features of remarkable efforts into the performance of high-quality manual 
annotations of biomedical literature. In the biomedical domain, widely used datasets include 2010 i2b2/VA17 
and ShARe/CLEF18 for clinical texts, NCBI disease corpus19 for diseases, BioCreative II Gene Mention corpus 
(BC2GM)20 and JNLPBA21 for gene and proteins, BioCreative V Chemicals Disease Relationship (BC5CDR)22 
for diseases and chemicals, CHEMDNER23 for drug and chemicals, LINNAEUS24 and Species-80025 for species, 
and the Plant corpus14 for plant entities. Moreover, several biomedical relation corpora exist for elucidating var-
ious relationships between biomedical entities such as AIMed26, BioInfer27, CHEMPROT28, DDI29, EU-ADR30, 
GAD31, CoMAGC32, Plant-Disease33, and Plant-Chemical13. Most text corpora contain a detailed markup of 
several types of entities and relationships in a limited number of abstracts or articles but cannot reflect the rela-
tionships between plants and phenotypes mentioned in biomedical publications.

Here, we present the plant-phenotype relationship (PPR) corpus, a resource established to support the 
development and evaluation of various tasks and to extract new information in the biomedical domain. Using 
the proposed guidelines, we manually annotated 600 abstracts from the PubMed database. In the PPR cor-
pus, 5668 plant and 11,282 phenotype mentions were annotated, and 9709 relationships between them includ-
ing “Increase,” “Decrease,” “Association,” and “Negative” were annotated. As the PPR corpus is split into three 
types—train, development, and test sets—we suggest that our corpus will be invaluable for advancing and evalu-
ating text-mining techniques for biomedical NLP tasks. The PPR corpus is publicly available for various studies 
in the biomedical domain.

Methods
Selection of candidate abstracts. To construct the corpus, annotators independently annotated the men-
tions of plants and phenotypes and their relationships in the given candidate abstracts. In this section, we describe 
the process of selecting and annotating candidate abstracts.

We first automatically extracted data on 13,408,586 scientific abstracts from the PubMed database using 
PubTator34 with automated annotations from state-of-the-art text mining systems for biomedical entities. 
PubTator is used along with DNorm35 and SR4GN36 to pre-tag disease and species names in the articles, respec-
tively. However, these tools are not sufficient for the detection of plant and phenotypic entities. For the annota-
tion of entity names, an entity mention with its offset of the location in texts must be identified. In the case of 
plants, we utilized LingPipe37, a dictionary-based named entity recognition tool, with a plant name dictionary 
derived from the NCBI Taxonomy database38 to pre-annotate plant names in the abstracts. The NCBI Taxonomy 
dictionary contains 151,250 concepts and 315,173 terms in English, Chinese, and Latin. To improve the accu-
racy, we removed stopwords from the dictionary, which frequently appear in the texts but are not related to 
plants, such as anemia (Taxonomy ID: 12939), lens (Taxonomy ID: 3863), laser (Taxonomy ID: 62990), NAME 
(Taxonomy ID: 55581), and thymus (Taxonomy ID: 49990). For phenotypes, we applied the deep learning 
named entity recognition (NER) model39 trained by using the NCBI disease corpus to extract data on dis-
ease terms19. We also used MetaMap40, a configurable application for mapping biomedical text to the UMLS 
Metathesaurus, to retrieve information about additional clinical terms. Therefore, we combined the results of 
both NER models into a pre-annotated phenotype.

Using the pre-annotated mentions of plants and phenotypes, a total of 704,372 co-occurrence sentences 
from 469,567 pre-annotated abstracts were obtained, in which at least one plant name and phenotype name 
co-occurred. We then randomly selected 600 candidate abstracts from the pre-annotated abstracts. In spite of 
pre-processing which helped to remove stopwords for plant names and to include disease NER results, inappro-
priate entities remained in the candidate abstracts. Therefore, heuristic post-processing with additional anno-
tations is necessary to precisely define the type of plant and phenotype desired. During the annotation task, 
annotators independently annotated the mentions of plants, phenotypes, and their relationships in the candidate 
abstracts. Figure 1 depicts the workflow of our corpus construction, and details of the annotation guidelines are 
described in the next section.

annotation guidelines. Annotation guidelines were established to improve inter-annotator agreement for 
the manual annotation task. The workflow of the PPR corpus construction involved the following two main 
annotation steps: a mention-level annotation and a relation-level annotation. Here, we describe how annotators 
annotated mentions and relations from the candidate abstracts. The guidelines include the annotation process of 
plant and phenotype mentions as the mention-level annotation and highlight the relationships between them as 
relation-level annotations. Thus, guidelines were categorized for entity annotation and relationship annotation. 
In the annotation step, the brat rapid annotation tool (BRAT)41, an intuitive web-based tool for text annotation 
supported by natural language processing (NLP) technology, was used to maximize the annotation efficiency.

At this stage, the annotators checked whether the pre-annotated mentions in the abstracts were correctly 
annotated. If the pre-annotation was incorrectly added due to NER errors, the annotators corrected them to 
the best of their knowledge. Moreover, most NER systems have been developed based on the sequence labeling 
method, in which each token is classified as a single label. For this reason, the entity annotations only focus on 
the longest entity, without the inner nested entities. To maximize the accuracy of the annotations, the annotators 
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formulated guidelines for annotating mentions through the discussion. The annotators followed the guidelines 
for the annotation task.

Annotation of plant mentions. As previously mentioned, plant mentions were first pre-annotated using 
LingPipe with the NCBI Taxonomy dictionary. Details regarding the guidelines for the annotation of plant 
mentions are as follows.

•	 Annotators manually annotate plant names based on the pre-annotated mentions. In this step, the NCBI 
taxonomy dictionary was used to annotate the exact plant names.

•	 Annotators should annotate all synonyms in the dictionary.
•	 If the candidate plant mention contains both plant name with terms describing specific parts or extracts and 

its abbreviation, annotators annotate both the plant name excluding part or extract names and the abbrevia-
tion term as well. (e.g., several extracts of Tripterygium wilfordii Hook F (TWHF))

•	 Annotators do not annotate the words that represent part names of plants, for example, roots, stems, and 
leaves. (e.g., persimmon leaf extract, the stem bark of Catalpa ovata)

•	 Annotators do not annotate the terms describing the processing methods of plants to extract their active 
compounds, for example, extraction methods and cooking methods. (e.g., Korean red ginseng extract, water 
extracts of Tochu)

•	 The plant-based products should not be annotated. (e.g., annotators do not annotate “chocolate” made of 
cocoa and “cigarette” made of tobacco.)

•	 The plant derived substances should not be annotated. (e.g., annotators do not annotate “caffeine,” “rg3,” and 
“lycopene” as a plant name.)

•	 Do not annotate pre-annotated mentions derived from plant names as plants if they do not mean plant them-
selves. (e.g., “tobacco mosaic virus” is not a plant.)

•	 The scientific name of plants basically consists of a genus name and a specific epithet name, which refers to 
the species within the genus. The genus name is always mentioned first, followed by the mention of a specific 
epithet name. Annotators should consider words after a specific epithet’s name (e.g., “activities of Phryma 
leptostachya var. asiatica Hara extract”).

Annotation of phenotype mentions. MetaMap with UMLS semantic types is widely utilized in various biomed-
ical NLP tasks for all integrated concepts. As mentioned before, the term “phenotype” refers to any observable 
characteristic in the human body, including diseases. In this step, we annotated disease names as phenotypes 
using the deep learning NER model; we also used the results derived with the use of MetaMap that belong to the 
following UMLS semantic types: T019, T020, T033, T034, T037, T038, T039, T041, T046, T047, T048, T049, 
T050, T184, T190, and T191. The other names not included in the standard were not used for the annotation. 
Here, we divided the phenotypes into three categories as follows:

•	 Positive phenotype (POS): phenotypes with effects that positively affect humans (e.g., recovery, anti-cancer, 
and anti-inflammatory).

•	 Negative phenotype (NEG): phenotypes that are known to be harmful to human health and those that need 
to be medically healed to suppress the negative effects on humans (e.g., inflammation, breast cancer, and 
cervical carcinoma).

•	 Neutral phenotype (NEU): phenotypes for which there exists an uncertainty regarding their distinguishment 
into positives or negatives (e.g., pregnancy, sweating, blood pressure, and fat weight).

Fig. 1 The pipeline of the PPR corpus construction.
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After annotating the phenotype mentioned in the article, annotators should consider the category (POS, 
NEG, or NEU) to which the selected mention belongs according to the definitions presented above. Details 
regarding the guidelines for the annotation considered for phenotype mentions are described below.

•	 Annotators manually annotate mentions that satisfy only one of the three categories as the phenotype.
•	 Annotators should consider words in the form of noun phrases for deciding the scope of entity annotation 

(e.g., “acute phase of inflammation” and “injured the muscle” could be associated with “acute inflammation 
[UMLS ID: C0333361]” and “muscle injury [UMLS ID: C0410256],” respectively).

•	 Annotators should annotate the only function of an organism, organ, or tissue as a phenotype mention, not 
the organism, organ, or tissue itself (e.g., “liver disorders” in “to treat liver disorders” is the phenotype, but 
“liver” in “nuclear extracts of the liver” is not the phenotype).

•	 Annotators should consider the mention with quantitative concepts like weight, length, or concentration as 
the phenotype. Although a mention itself is not a phenotype in principle, when this mention appears together 
with a quantitative concept, it is regarded as a neutral phenotype (e.g., “body weight” in “increase in body 
weight,” and “high blood pressure” are all deemed phenotypes.)

•	 If there is a noun phrase containing a phenotype mention, and if it is significantly related to the phenotype, 
then annotators should annotate all terms in the phrase as the phenotype mention (e.g., the annotator anno-
tates “oral squamous cell carcinoma” rather than “carcinoma” itself).

•	 Do not annotate general terms such as “phenotype,” “syndrome,” “deficiency,” and “complications.”
•	 Do not include terms indicating species names like “human and mouse” (e.g., “to suppress various human 

tumors”).
•	 If the pre-annotated mention contains the name of a cell line, annotators should annotate it after separating 

the phenotype mention and cell line name (e.g., in “MDA-MB231 human breast cancer cell”, two mentions 
“MDA-MB231” and “breast cancer” should be separately annotated).

•	 Annotators should annotate “any phenotype-induced symptom” as a phenotype, but not use “any chemi-
cal-induced symptom” as a phenotype. In other words, annotators should only consider the symptom term 
present in the mention as a phenotype excluding “chemical-induced.” (e.g., diabetes-induced cardiomyopa-
thy includes whole words as the phenotype, but in case of “ethyl phenylpropiolate-induced ear edema”, “ear 
edema” is only the phenotype mention.)

•	 Do not annotate simple substances such as “glucose” and “lipid.”
•	 The mention of the phenotype model and cell line is considered a negative phenotype. This includes the treat-

ment or assay involving the phenotypes.
•	 Bacteria and viruses should be considered as a negative phenotype.

Annotation of PPRs. Annotators should determine one class label for denoting the relationships between the 
annotated plants and phenotypes. The class labels for the PPR have been divided into four classes as follows:

•	 Increase relationship (Increase): A plant-derived compound contextually increases a specific phenotype 
(e.g., “Anti-cancer effect of Annona Muricata Linn leaves crude extract (AMCE) on breast cancer cell line. 
[PubMed ID: 27558166]”).

•	 Decrease relationship (Decrease): A plant-derived compound contextually decreases a specific phenotype 
(e.g., “The flowers of Prunus persica Batsch have been used for skin disorders in East Asia from ancient times. 
[PubMed ID: 11917253]”).

•	 Association relationship (Association): A plant-derived compound is contextually related to a specific 
phenotype. However, it is difficult to define either an increase or decrease (e.g., “To the best of our knowl-
edge, this is the first description of acute hepatitis associated with T. capitatum administration. [PubMed ID: 
12072605]”).

•	 Negative relationship (No relation): Although a pair of plant and phenotype mentions is observed in the 
same sentence, there is no relationship between the two mentions. Particularly, the title is always considered 
as a negative relationship, even if a plant-derived compound is contextually related to a specific phenotype 
(e.g., “Differential effects of Viscum album extract IscadorQu on cell cycle progression and apoptosis in cancer 
cells. [PubMed ID: 15547686]”, “Anti-obesity action of oolong tea. [PubMed ID: 10094584 (Title)]”). Note 
that in the released corpus, a negative relationship is not specified because any co-occurrence of plant and 
phenotype entities without specific relationship types (increase, decrease, and association) can be considered 
a negative relationship.

inter-annotator agreement (iaa) measurement. As the corpus has been manually constructed by the 
annotators, the quality of corpus data, which is one of the most important issues in the annotation process of the 
corpus, relies on the knowledge of the annotators. As previously mentioned, the construction of the PPR corpus 
was organized in the mention-level annotation and relation-level annotation between mentions. Therefore, the 
inter-annotator agreement (IAA) was independently calculated at each annotation level. In this study, three differ-
ent IAA measures were calculated to assess the accuracy of the corpus. First, a simple index measurement, defined 
as the proportion of agreement between the two annotators, is calculated as follows:

Simple index P
number of agreements

N
_ ( )

_ _
,

(1)0 =
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where N represents the total number of annotation units. Note that we used the simple index as “Strict 
matches (Strict)” for full-word matches and “Partial matches (Partial)” for overlap matches. Second, the G-index 
was used to measure the overall inequality of the annotator’s work and is calculated as follows:

= −
−
−

G index
P
P

_ 1
1
1

,
(2)k

0

where P0 represents a simple index, Pk = 1/k, and k denotes the number of relation classes. Lastly, Cohen’s kappa 
(κ) index42 is the most frequently used index for calculating the overall agreement scores between two annota-
tors. The kappa value is calculated as follows:

Cohen s
P
P

1
1
1

,
(3)e

0κ′ = −
−
−

where Pe represents the hypothetical probability of an agreement by chance. A kappa value of = 1 indicates 
complete agreement, and kappa = 0 indicates no agreement between the two annotators. According to the study 
conducted by Viera et al.43, kappa values ranging from 0.61 to 0.80 denote “substantial” agreement and those 
presenting with values 0.81 or above indicate “almost perfect” agreement.

Disagreements. In the annotation results, we found several fully disagreed cases and partially agreed cases 
between two annotators. According to our analysis, most of fully disagreed cases occurred in the following cases: 
(i) one of annotators did not recognize abbreviation for plant mention as plant (ex., SEG = semi-evergreen); 
(ii) one of annotators mistakenly identified the word, “extract,” which is a substance taken from a plant, as 
plant name; and (iii) one of annotators annotated terms related to cells, chemical levels, genes as phenotype 
mentions even though they were not included in the phenotype range (ex., human lung epithelial cells, nitric 
oxide level, and COX-2). Most of partially agreed cases appeared in the following cases: (i) one of annotators 
included the words corresponding to plant parts in the plant mention although they should not be included 
(ex., P. guajava leaf, Persicariae Rhizoma) and (ii) annotators mistakenly regarded chemical-induced disease/
symptom or plant-induced disease/symptom as phenotype (ex., Tripterygium wilfordii-induced liver injury, 
colitis-associated colon cancer, and circulating tumor-related leukocytes).

Data Records
The PPR corpus is the first corpus annotated with information on plant and phenotype entities and their rela-
tionships derived from PubMed abstracts. The PPR corpus consists of data from 600 non-redundant abstracts 
randomly extracted from the PubMed database, which contains 16,937 mention annotations (with 5,858 unique 
mentions) and 9,709 relation annotations (with 8,135 unique relations). To facilitate benchmarking experi-
ments, the set of articles must be categorized into train, development, and test sets during corpus construction. 
We fixed the number of abstracts in development and test sets to 100 by referring to the NCBI disease corpus19, 
as the separated corpus is useful for the development of new algorithms, the avoidance of overfitting, and the 
accurate evaluation of new models. Therefore, the PPR corpus was divided into 400, 100, and 100 articles as the 
train, development, and test sets, respectively.

Table 1 shows the overall statistics of entity and relation annotations in the PPR corpus, and the three data 
sets exhibit similar aspects of the number of mentions and relations, which renders increased utility to the 
corpus for training models. In addition, we compared overlapping of entities and relations among training, 
development, and test sets. Here, the overlap between entities means exactly the same in annotated mentions 
and their types. For the relations, the overlap means that both entities and their relationship have identical anno-
tation. For plant entities, 242 out of 934 (25.91%) mentions in the development set and 180 out of 968 (18.60%) 
mentions in the test set overlapped with plant entities in the train set. For phenotype entities, 1,249 out of 1,803 
(69.27%) mentions in the development set and 1,174 out of 1,812 (64.79%) mentions in the test set overlapped 
with phenotype entities in the train set. Since we used biomedical literature to build the PPR corpus and specif-
ically defined observable characteristics in a human as a phenotype in this study, the phenotype names overlaps 
relatively more than plant names. For relationships, 45 out of 1,563 (2.88%) relations in the development set and 
25 out of 1,569 (1.59%) relations in the test set overlapped with the relation of the train set. Because the PPR 
corpus contains various kinds of plant names and plant-phenotype relationships with little redundancies, NLP 
models trained by the PPR corpus may show robust performances any other data set.

Set Abstracts

Entity (# of unique entities) Relationships (# of unique relations)

Plant

Phenotype

Total Increase Decrease Association

Negative 
(No 
relation) TotalPOS NEG NEU

Train 400 3752 (1031) 1702 (410) 5605 (1974) 361 (190) 11420 (3605) 971 (855) 2808 (2424) 52 (49) 2746 (2211) 6577 (5539)

Development 100 934 (281) 466 (166) 1283 (614) 54 (42) 2737 (1103) 265 (239) 608 (519) 13 (13) 677 (511) 1563 (1282)

Test 100 968 (322) 437 (152) 1339 (650) 36 (26) 2780 (1150) 242 (210) 663 (577) 2 (2) 662 (525) 1569 (1314)

Total 600 5654 (1634) 2605 (728) 8227 (3238) 451 (258) 16937 (5858) 1478 (1304) 4079 (3520) 67 (64) 4085 (3247) 9709 (8135)

Table 1. Overall corpus statistics. The PPR corpus consists of training, development, and test sets for plant and 
phenotype name recognition and relation extraction tasks.
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The PPR corpus contains information regarding all sentences of abstracts and annotations of entities and 
relationships at the sentence level. Figure 2 shows an example of our PPR corpus. All data fields are formatted in 
tab-delimited text files. For sentences, the fields consist of PubMed ID (e.g., 10072339) with a sentence number 
separating the underlined and plain sentence. For entities, the fields are as follows: PubMed ID (e.g., 10072339), 
start index (e.g., 0), end index (e.g., 17), text (e.g., “Facial dermatitis”), and entity type (e.g., “Negative_pheno-
type”). The fields for relationships are as follows: PubMed ID (e.g., 10072339), relationship type (e.g., “Increase”), 
front entity information (e.g., “0 17 Facial dermatitis Negative_phenotype”), and rear entity information (e.g., 
“81 87 potato Plant”).

The PPR corpus is publicly available at two locations:

•	 Figshare, an open scientific data repository44.
•	 A git repository of the project is accessible at https://github.com/DMCB-GIST/PPRcorpus.

technical Validation
inter-annotator agreements. In this annotation task, the construction of the PPR corpus included six 
phases comprising the inclusion of 100 abstracts per phase, and two annotators who were experienced in biomed-
ical text-mining participated in the experiments. Table 2 describes the overall IAA results of each phase between 
two annotators for the construction of the PPR corpus. The average “strict matches” IAA scores for plant and 
phenotype mentions were 91.5% and 66.4%, respectively. When the “partial matches” IAA scores were calculated, 
two mention-level annotations yielded IAA scores higher than those obtained using “strict matches.” The average 
“Partial” IAA scores were 94.8% of the plant mentions and were 80.9% of the phenotype mentions, representing 
higher agreement with the consideration of plant mentions compared to phenotype mentions. The lowest agree-
ment score for each entity is represented in Phase 1 of the phenotype entity annotation and Phase 6 of the plant 
entity annotation. The annotator disagreements of the phenotype entity in Phase 1 occurred when a few mentions 
were not present in the annotation guidelines. The conflicts were primarily attributable to the differences in the 
mention boundaries. We further assessed the IAA scores of the relation-level annotations based on the three crite-
ria considered. Additionally, for relation-level annotations, the average IAA scores according to the simple index, 
G-index, and Cohen’s kappa were estimated to be 92.2%, 90.7%, and 86.9%, respectively.

IAA for entities. Table 3 shows the overall statistics of the PPR corpus in comparison with the previously pub-
lished corpora for biomedical NER tasks, grouped by entity types. All mentions in the PPR corpus are annotated 

Fig. 2 Example of the PPR corpus. The first line is a sentence obtained from the first sentence of an abstract 
(PubMed ID: 10072339), followed by annotated named entities and their relationships. The named entity 
information includes PubMed ID, start and end positions, annotated mention, and entity type. The relationship 
information consists of PubMed ID, relation type, and information related to the two entities.

Annotation 
Phase

Plant Phenotype Relations

Strict Partial Strict Partial Simple index G-index  Cohen’s κ

Phase 1 93.6 96.4 51.5 70.0 90.8 89.7 86.5

Phase 2 93.0 97.0 64.0 93.2 92.5 90.2 85.6

Phase 3 91.7 94.6 64.8 77.6 93.1 91.8 87.2

Phase 4 93.5 95.8 72.4 82.0 92.8 90.3 86.4

Phase 5 92.8 95.2 78.0 86.0 91.9 90.6 87.5

Phase 6 84.4 89.5 67.5 76.3 92.2 91.5 88.3

Average 91.5 94.8 66.4 80.9 92.2 90.7 86.9

Table 2. Overall inter-annotator agreement (IAA) results of each phase. The PPR corpus was annotated by two 
annotators at the mention- and relation-levels. Therefore, IAA was independently calculated at each annotation 
level, and three different IAA measures were calculated to assess the accuracy of the corpus.
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as two types of entities, plant and phenotype names, in which 5,668 and 11,282 mentions are mapped, respec-
tively. For plant type, although species corpora (LINNAEUS24 and Species-80025) contain the names of all organ-
isms, including botanical terminology, the PPR corpus demonstrates the presence of a greater number of plant 
name annotations. To obtain insights into the diversity of plant names within the corpus, the PPR corpus is con-
structed based on the information derived from 600 abstracts, which is approximately three times greater than 
that of the plant corpus14. An IAA score of the entity-level was obtained by correctly identifying the mentions 
classified by each entity type. Although the IAA score of plant mentions in the PPR corpus is inferior to that in 
the plant corpus14 (91.5% vs 98.5%) because of the complicated annotation guideline of the PPR corpus, it also 
suggests a high level of agreement (“almost perfect” agreement).

Following the definition in the annotation guideline, it is observed that the phenotype refers to all events, 
such as positive, negative, and neutral effects on humans. Therefore, the proposed concept of phenotype includes 
disease and clinical terms. The NCBI disease corpus19 comprises 6,892 disease mentions, and the BC5CDR cor-
pus22 is composed of 12,850 disease mentions, in which 8.7 mentions and 8.6 mentions per abstract are mapped, 
respectively. In contrast, clinical reports have a relatively considerable number of clinical term annotations in 
the corpora. For instance, the 2010 i2b2/VA corpus17 comprises 88.2 mentions per report and the ShARe/CLEF18 
corpus includes 37.5 clinical terms per report. The PPR corpus contains 18.8 phenotype mentions per abstract, 
which includes more entity information than the published abstract-based disease corpora. The IAA score of 
phenotype mentions shows low performance compared with others because there were a few changes in the 
guidelines. However, the final PPR corpus was constructed using a sufficient disagreement resolution process 
to ensure accuracy.

IAA for relations. Table 4 represents the overall statistics of the PPR corpus, together with previously published 
corpora for biomedical RE tasks, grouped by relation types. The PPR corpus consists of 9,709 annotated PPRs 

Corpus Entity type Text type # Documents # Mentions IAA (%) IAA metric

2010 i2b2/VA17 Clinical concept Reports 826 72,846 — —

ShARe/CLEF18 Clinical concept Reports 298 11,167 — —

NCBI disease19 Disease Abstracts 793 6,892 87.5 Strict

BC5CDR22
Disease Abstracts 1,500 12,850 87.5 Strict

Chemical Abstracts 1,500 15,935 96.1 Strict

CHEMDNER23 Drug/Chemical Abstracts 10,000 84,355 91.0 Strict

BC2GM20 Gene/Protein Sentences 20,000 24,596 — —

JNLPBA21 Gene/Protein Abstracts 2,404 59,963 — —

LINNAEUS24 Species Full-text 100 4,259 89.0 Cohen’s kappa

Species-80025 Species Abstracts 800 3,708 80.0 Cohen’s kappa

Plant14 Plant Abstracts 208 3,985 98.5 Strict

PPR
Plant Abstracts 600 5,654 91.5/94.8 Strict/Partial

Phenotype Abstracts 600 11,283 66.4/80.9 Strict/Partial

Table 3. Statistics of the biomedical NER corpora for the annotated entities.

Corpus Relation type Text type # Documents # Relations IAA (%) IAA metric

AIMed26 Protein-Protein Sentences 1,955 5,834 — —

BioInfer27 Protein-Protein Sentences 1,100 9,666 — —

BC5CDR22 Chemical Disease Abstracts 1,500 3,116 — —

CHEMPROT28 Chemical-Protein Abstracts 5,031 10,031 — —

DDI29
Drug-Drug (Drugbank) Documents 792 4,701 83.9 Cohen’s kappa

Drug-Drug (PubMed) Abstracts 233 327 62.1 Cohen’s kappa

EU-ADR30

Drug-Disorder Abstracts 100 668 73.3 (relaxed) Simple 
index

Target-Disorder Abstracts 100 941 74.0 (relaxed) Simple 
index

Target-Drug Abstracts 100 827 75.7 (relaxed) Simple 
index

GAD31 Gene-Disease Sentences 5,330 5,330 — —

CoMAGC32 Gene-Cancer Abstracts 408 821 75.7/56.8 Cohen’s kappa

Plant-Disease33 Plant-Disease Abstracts 199 1,309 86.9 Cohen’s kappa

Plant-Chemical13 Plant-Chemical Sentences 382 1,043 79.8 Cohen’s kappa

PPR Plant-Phenotype Abstracts 600 9,709 86.9 Cohen’s kappa

Table 4. Statistics of the biomedical RE corpora for the annotated relationships.
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in 600 PubMed abstracts and includes 16.2 relations per abstract. Although CHEMPROT28 presents with a 
similar number of relations with the PPR corpus, it exhibits the presence of two relationships per abstract. Thus, 
the information in each abstract may not be sufficient. The IAA score of the plant-disease corpus33 is similar to 
that of the PPR corpus; however, its ratio of relations per abstract is 6.6, which is relatively lower than that of the 
PPR corpus. The plant-chemical corpus13 is a sentence unit corpus with only one relation type “contain” used 
for describing that a plant contains chemicals. Other corpora related to diseases, disorders, and clinical terms, 
which are also a component of the phenotype, are shown in Table 4, including BC5CDR22, EU-ADR30, GAD31, 
CoMAGC32, and plant-disease33. The PPR corpus includes a sufficient number of relations compared to these 
corpora, and the IAA result of the PPR corpus showed “almost perfect” agreement (kappa = 0.869). Moreover, a 
ratio of relations per abstract of the PPR corpus is as high as 16.2 relations while that of the plant-disease corpus 
is 6.6.

The evaluation techniques. As an application of the PPR corpus, we used NER and performed relation 
extraction (RE) tasks to the corpus. NER is one of the most widely known text mining-related tasks, which 
involves recognition of numerous domain-specific entities in the biomedical text, and RE is another commonly 
studied NLP task to classify relationships between the recognized named entities in text. For the NLP tasks with 
the best performance, most researchers previously used various combinations of hidden layers such as deep 
neural networks and conditional random fields architectures10,11. Recently established deep learning methods, 
especially contextualized language models such as BERT12, have resulted in significant improvements in many 
NLP tasks, including NER and RE. Therefore, we considered fine-tuning BERT-based models such as BERT12, 
BioBERT45, BlueBERT46, SciBERT47, and PubMedBERT48.

•	 BERT12: BERT is a contextual language representation model using pre-training deep bidirectional rep-
resentations from unlabeled text. Instead of conducting traditional left-to-right language modeling, BERT 
is trained on two tasks: a masked language model (MLM) by predicting randomly masked tokens and a next 
sentence prediction (NSP) by predicting whether two sentences follow each other. BERT demonstrates a 
simple architecture based on the transformer and shows powerful performance in various NLP tasks, while 
illustrating the potential of the fine-tuning approach.

•	 BioBERT45: BioBERT is a domain-specific language representation model designed for biomedical text and is 
initialized with the checkpoint of BERT, followed by training of the BERT model using PubMed abstracts and 
PubMed Central full-text articles. BioBERT achieves SOTA performance in various biomedical NLP tasks 
with minimal task-specific fine-tuning, while requiring only minimal architectural modifications.

•	 BlueBERT46: Similar to BioBERT, BlueBERT is recognized as another variant of BERT, which is initialized 
with BERT and is further pre-trained using information available in PubMed abstracts and clinical notes 
derived from MIMIC-III. The standard approach of utilization of BERT-based models, such as BioBERT, is 
initialized with application of the BERT model, followed by continuous conduction of the pre-training pro-
cess with MLM and NSP using their respective corpora.

•	 SciBERT47: SciBERT is a variant of BERT-based models and demonstrates the same architecture as that 
exhibited by BERT. While BERT was pre-trained using general-domain corpora, SciBERT was pre-trained 
using information available in a greater number of scientific papers that consist of complete textual content 
based on computer science and biomedical domains. Previously, the vocabulary was considered the same as 
the original BERT model generated using information available in Wikipedia and BookCorpus. A major dis-
advantage of this approach is that vocabulary is not representative of the target biomedical domain. Therefore, 
they constructed a new in-domain vocabulary for their scientific text corpora, called SciVocab, to overcome 
the problem of the continual pre-training approach.

•	 PubMedBERT48: PubMedBERT is another pre-trained language model exhibiting the same architecture as 
that demonstrated by BERT. Unlike those observed in the mixed-domain pre-training models, the weights 
of the PubMedBERT model were not initialized with those of BERT during pre-training. They constructed 
an in-domain vocabulary of the target biomedical domain and pre-trained it using information available in 
PubMed abstracts and additional data in full-text PubMed Central articles. The PubMedBERT model was 
pre-trained using information available in PubMed abstracts and additional data in full-text PubMed Central 
articles, which comprised data derived from 14 million PubMed abstracts with 3 billion words and contained 
21 GB of textual data in total.

Using the PPR corpus, we used five types of BERT-based models for biomedical NER and RE tasks between 
plant and phenotype entities and compared the performance of pre-trained models. For fair comparison, all 
parameters of the BERT-based models are set to the default values described in BERT12. Figure 3 illustrates the 
fine-tuning techniques of NER and RE using the BERT-based models. In the NER task, the NER process involves 
the classification of entities with proper boundaries and types based on informal texts. To recognize the entity in 
texts, each token in the input sentence is assigned the BERT-based classifier, and the label of each token is deter-
mined through the probabilities calculated by using the SoftMax function. In the biomedical domain, entity 
names are usually extremely complex and specific; hence, the vocabulary of models must contain all tokens in 
sentences. The anonymization process prevents the RE model from exhibiting bias toward specific words or 
tokens. For simplicity, we anonymized target entities in a sentence by replacing the plant entity with “@Plant$” 
and the phenotype entity with “@Phenotype$.” As the RE task is usually considered as a classification issue at the 
sentence or sequence level, the achievement of a representation of a certain number of dimensions for the input 
sequence is necessary. We presented the sentence using the “[CLS]” token of BERT’s last hidden layer despite 
common practice49. Particularly, the embeddings of the “[CLS]” token typically act as pooling token embeddings 
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representing the whole sequence for downstream tasks. For the RE task, the label of the input sentence is decided 
based on the probabilities of relation classes using the SoftMax function.

Our evaluation metrics were micro-F1, macro-F1, and weighted-F1 scores. In such cases, precision(p) was 
defined as the number of true positives divided by the number of predictions, recall(r) was defined as the num-
ber of true positives divided by the number of annotations, and F1-score(f) was defined as the harmonic mean 
of precision and recall. Micro-F1 score is used to enumerate the global true positives, false positives, and false 
negatives, whereas macro-F1 is used to convey the average unweighted class scores. Since macro-F1 is often used 
to assign equal weights to both frequent and infrequent classes, we must consider the entity type distribution. 
Weighted-F1 scores are used to denote the average “weighted” class scores to consider class imbalance in the 
PPR corpus.

Named entity recognition. For named entity recognition, we evaluate performance via strict matching, 
which helps to evaluate both the boundary and entity types of mentions. Table 5 shows the comparison of NER 
performance for precisions, recalls, and F-scores of the five BERT-based models which consist of two types of 
evaluation experiments. The first approach is to use a divided corpus where the training set is used to train a 
model, the development set is used to optimize the model during training time, and the test set is used to evalu-
ate the performance of the model. Since we always use the same data for evaluation under all cases, this method 
can be used to evaluate the benchmark system. The second approach is the well-known k-fold cross-validation 
method. k-fold cross-validation is an objective approach for examining the accuracy of statistical prediction 
methods. Thus, there is no need to artificially separate the corpus into train and test sets. In this study, we used 
the method of 5-fold cross-validation (k = 5). In the PPR test set, although BioBERT demonstrated the obtain-
ment of a relatively lower macro recall than that obtained by using PubMedBERT (86.80% vs. 87.07%), BioBERT 

Fig. 3 BERT-based fine-tuning model architectures. The input sentence is “The tumor specific cytotoxicity of 
dihydronitidine from Toddalia asiatica Lam (PubMed ID: 16465544).” In this case, “tumor” is annotated with 
the negative phenotype, and “Toddalia asiatica Lam” is the plant mention. Figure (A) represents the BERT-
based NER model, and Figure (B) shows the BERT-based RE model.

Model

Test (100 abstracts) 5-fold cross validation

micro-F1 macro-F1 weighted-F1 micro-F1 macro-F1 weighted-F1

p r f p r f p r f p r f p r f p r f

BERT 81.25 85.58 83.36 74.82 83.61 78.55 81.46 85.58 83.43 82.03 84.57 83.28 77.78 80.33 78.99 82.06 84.57 83.28

BioBERT 87.49 91.04 89.23 78.66 86.80 82.11 87.70 91.04 89.31 87.82 89.98 88.89 81.79 84.36 83.01 87.86 89.98 88.90

BlueBERT 82.54 86.87 84.65 73.80 83.70 77.72 82.90 86.87 84.79 83.44 86.46 84.92 72.57 75.71 74.07 83.51 86.46 84.95

SciBERT 84.13 88.13 86.09 74.38 83.01 77.92 84.48 88.13 86.23 85.26 87.64 86.43 77.71 79.91 78.75 85.28 87.64 86.43

PubMedBERT 82.84 87.70 85.20 74.89 87.07 79.55 83.23 87.70 85.33 83.90 87.08 85.46 79.40 82.79 81.00 83.96 87.08 85.48

Table 5. Evaluation of the BERT fine-tuned models to recognize plant and phenotype mentions based on the 
conduction of two types of evaluation experiments.
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exhibited the achievement of the best F1 scores for all types of evaluations. In the 5-fold cross-validation method, 
the fine-tuned BioBERT outperformed all other models.

Table 6 represents performance comparison of BERT-based models based on the target entity types used to 
divide plant and phenotype names: ALL, PLT, PHE, PLT/PHE, and POS/NEG/NEU. Originally, the PPR corpus 
consisted of four types of plants and three subtypes of phenotypes (negative, positive, and neutral), as “ALL” in 
Table 6. The model of “PLT” considers only plant mentions. The “POS/NEG/NEU” model recognizes only phe-
notype mentions such as positive, negative, and neutral phenotypes, respectively, whereas the models of “PHE” 
recognize the only phenotype mentions regardless of the subtypes of phenotype mentions. The model of “PLT/
PHE” is used simultaneously with two types of named entities as plant and phenotype mentions regardless of 
the subtypes. Similar to Table 5, BioBERT in Table 6 shows outperformed performance with respect to all cases 
except for the macro recall. Moreover, BioBERT outperformed other types of ALL, PHE, PLT/PHE, and POS/
NEG/NEU.

Relation information extraction. For relation information extraction, we also performed experiments to 
elucidate RE performance using five different BERT-based models. Table 7 demonstrates the results of each RE 
model shown in the same manner using the NER evaluation. In the PPR test set, the fine-tuned PubMedBERT 
demonstrated the obtainment of the best micro-, macro-, and weighted F-scores compared with the other mod-
els. After PubMedBERT, BioBERT showed the second-best performance. For a more detailed comparison, 
we also performed 5-fold cross-validation in the RE task. In the 5-fold cross-validation, although BlueBERT 
demonstrated the achievement of a higher micro F-score (87.50%) than the others, PubMedBERT showed the 
achievement of best macro and weighted F-scores of 68.66% and 87.34%, respectively. Since the PPR corpus 
contains data on a relatively small number of association relations, the macro F-score seems to be lower than the 
micro-and weighted F-scores. In conclusion, although BioBERT showed the best performance in the NER task, 
PubMedBERT generally showed the best performance in the RE task.

Usage Notes
The PPR corpus is made available under the Creative Commons Attribution 4.0 International Public License 
(CC-BY). The codes to run this corpus is available at https://github.com/DMCB-GIST/PPRcorpus. Compared 
to other plant-disease corpora, the PPR corpus defined positive and negative phenotypes, which is a wide range 
of characteristics observable in a human, so that it can explain a wider range about medical information than 

Model

macro-F1 macro-F1 weighted-F1

p r f p r f p r f

BERT

All 81.25 85.58 83.36 74.82 83.61 78.55 81.46 85.58 83.43

PLT 82.36 84.40 83.37 82.36 84.40 83.37 82.36 84.40 83.37

PHE 81.89 84.60 83.22 81.89 84.60 83.22 81.89 84.60 83.22

PLT/PHE 81.59 85.90 83.69 81.70 86.44 84.00 81.58 85.90 83.68

POS/NEG/NEU 81.14 84.27 82.67 71.15 81.33 75.23 81.54 84.27 82.83

BioBERT

All 87.49 91.04 89.23 78.66 86.80 82.11 87.70 91.04 89.31

PLT 87.76 92.56 90.10 87.76 92.56 90.10 87.76 92.56 90.10

PHE 86.67 88.96 87.80 86.67 88.96 87.80 86.67 88.96 87.80

PLT/PHE 88.81 91.04 89.91 89.58 91.85 90.70 88.81 91.04 89.91

POS/NEG/NEU 86.83 89.90 88.34 76.13 85.59 80.08 87.15 89.90 88.46

BlueBERT

All 82.54 86.87 84.65 73.80 83.70 77.72 82.90 86.87 84.79

PLT 83.98 89.36 86.59 83.98 89.36 86.59 83.98 89.36 86.59

PHE 84.24 87.64 85.91 84.24 87.64 85.91 84.24 87.64 85.91

PLT/PHE 83.55 87.30 85.38 83.82 87.83 85.78 83.54 87.30 85.38

POS/NEG/NEU 83.02 86.09 84.53 71.84 80.60 75.41 83.44 86.09 84.70

SciBERT

All 84.13 88.13 86.09 74.38 83.01 77.92 84.48 88.13 86.23

PLT 85.91 89.46 87.65 85.91 89.46 87.65 85.91 89.46 87.65

PHE 84.51 88.25 86.34 84.51 88.25 86.34 84.51 88.25 86.34

PLT/PHE 84.79 89.21 86.94 84.78 89.72 87.18 84.79 89.21 86.93

POS/NEG/NEU 84.86 87.86 86.33 73.95 83.46 77.89 85.20 87.86 86.47

PubMedBERT

All 82.84 87.70 85.20 74.89 87.07 79.55 83.23 87.70 85.33

PLT 83.14 88.64 85.80 83.14 88.64 85.80 83.14 88.64 85.80

PHE 83.45 86.53 84.96 83.45 86.53 84.96 83.45 86.53 84.96

PLT/PHE 83.12 87.70 85.35 83.12 87.99 85.48 83.12 87.70 85.35

POS/NEG/NEU 83.27 84.88 84.07 74.78 82.50 78.01 83.53 84.88 84.16

Table 6. Performance comparison of BERT-based models based on target entity types used to divide plant and 
phenotype names: a total of four types for plants and three subtypes of phenotypes (ALL), only plant (PLT), the 
only phenotype (PHE), two types of named entities as plant and phenotype mentions regardless of the subtypes 
(PLT/PHE), and only phenotype mentions such as positive, negative, neutral phenotypes (POS/NEG/NEU).
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the plant-disease corpus. Negative phenotype is known to be harmful to human health and need to be medically 
healed to suppress the negative effects on humans. Thus, disease name in our corpus is a part of the negative 
phenotypes.

Code availability
The Python codes for the NER and RE experiments represented in Technical Validation can be accessed from 
https://github.com/DMCB-GIST/PPRcorpus.
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