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a b s t r a c t

Underexposure regions are vital in constructing a complete perception of the surrounding environment
for safe autonomous driving. The availability of thermal cameras has provided an essential alternative
to explore regions where other optical sensors lack in capturing interpretable signals. A thermal camera
captures an image using the heat difference emitted by objects in the infrared spectrum, and object
detection in thermal images becomes effective for autonomous driving in challenging conditions.
Although object detection in the visible spectrum domain has matured, thermal object detection
lacks effectiveness. A significant challenge is the scarcity of labeled data for the thermal domain,
which is essential for SOTA artificial intelligence techniques. This work proposes a domain adaptation
framework that employs a style transfer technique for transfer learning from visible spectrum images
to thermal images. The framework uses a generative adversarial network (GAN) to transfer the low-
level features from the visible spectrum domain to the thermal domain through style consistency.
The efficacy of the proposed object detection method in thermal images is evident from the improved
results when using styled images from publicly available thermal image datasets (FLIR ADAS and KAIST
Multi-Spectral).

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Object detection, as one of the elemental component of the
erception system, has a wide range of applications ranging from
edical to autonomous driving. For autonomous driving, the
erception of the environment plays a pivotal role in deter-
ining safety of autonomous driving. Environmental perception

s generally defined as awareness of or knowledge about the
urroundings, and the understanding of the situation by the visual
erception [1]. Furthermore, since autonomous driving has to
ffer broader access to mobility, the safety standards as instructed
y SOTIF (Safety of the intended functionality)1 perception sys-
em constitute of the object detection must reflect the safe and
ecure course of action for the autonomous driving.
The sensors commonly used for perception in autonomous

riving include Lidar, RGB cameras, and radar. Object detection

∗ Corresponding author.
E-mail address: mgjeon@gist.ac.kr (M. Jeon).

1 https://newsroom.intel.com/wp-content/uploads/sites/11/2019/07/Intel-
afety-First-for-Automated-Driving.pdf
ttps://doi.org/10.1016/j.asoc.2022.108793
568-4946/© 2022 Elsevier B.V. All rights reserved.
using these sensor modalities provides the perception for au-
tonomous driving, but in contrast, each of these sensor modalities
has its drawbacks. Lidar gives a sparse 3D representation of the
environment, but small objects like pedestrians and cyclists are
hard to detect at a considerable distance. Similarly, the RGB
camera performs poorly in unfavorable illumination conditions
such as low lighting, sun glare, and glare from the vehicle’s
headlight. Radar has a low spatial resolution to detect pedestrians
accurately. There exists a performance gap in object detection
for adverse lighting conditions [2]. The inclusion of a thermal
camera in the sensor’s suite provides a way to fill the blind
spots in environmental perception. The thermal camera is robust
against illumination variation and has the advantage of being
deployed day and night. Object detection and classification are
indispensable for visual perception, which provides a basis for
computing perception in autonomous driving.

Object detection in visible spectrum (RGB) domain is consid-
ered sufficient for conventional AI applications, and has resulted
in deep neural network models for robust object detection [3]
[4] [5]. However, object detection accuracy in thermal images
has not yet attained state-of-the-art results compared to visible

https://doi.org/10.1016/j.asoc.2022.108793
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.108793&domain=pdf
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pectrum RGB images. The aforementioned object detection al-
orithms depend on networks that have been trained on sizable
GB datasets such as ImageNet [6], PASCAL-VOC [7], and MS-
OCO [8]. Unfortunately, there exists a scarcity of such large-scale
ublic datasets in the thermal domain. Two primary datasets for
rban thermal imagery that are publicly available include the
LIR-ADAS image dataset2, and KAIST Multi-Spectral dataset [9].

However, the KAIST Multi-Spectral dataset only gives annotations
for persons, while the FLIR-ADAS dataset provides annotations for
four classes. In order to overcome the absence of the large-scale
labeled dataset, here, a domain adoption framework for object
detection in the thermal domain is presented.

Currently, numerous approaches for domain adaptation have
been introduced, which aim to narrow down the gap between
source and target domain. Among many, generative adversarial
networks (GAN) [10], and domain adaptation [11] for the feature
adaptation are noteworthy. The domain adaptation prospects in
data starved thermal images domain which is the motivation of
this study. It explores a derivative of closing the gap between
visible and infrared spectrum in the context of object detection.
Generative models influence domain adaptation; for instance, Cy-
cleGAN [12] translates the single instance of the source domain to
the target domain without translating the style attributes to the
target domain. The low-level visual cues have an implicit impact
on the performance of object detection [13]. The delegation of
these visual cues in the target domain from the source domain
can be beneficial for robust object detection in the target domain.

This work proposes a framework based on domain adapta-
tion for thermal object detection by translating the low-level
features adopted from a source domain (RGB) to a target domain
(thermal). A multi-style transfer approach is employed in the
domain adaptive framework to translate low-level features such
as curvatures and edges from the source domain to the target
domain. Deep learning-based object detection architectures that
rely on classical backbone like VGG [14], ResNet [15] are trained
on the multi-style transfer images from scratch for robust ob-
ject detection in the thermal domain (target domain). Moreover,
we have proposed a cross-domain model transfer 3 method for
object detection in thermal images supplementing the domain
adaptation. The cross-domain model transfer for which the ob-
ject detection deep neural networks have trained in the source
domain (visible spectrum). The trained models, referred to as
cross-domain models, are evaluated with multi-style transfer im-
ages and without multi-style transfer images in the target domain
(infrared spectrum). The proposed techniques are evaluated on
FLIR-ADAS, and KAIST Multi-Spectral [9] datasets, and PASCAL-
VOC evaluation is used to determine the average mean precision
of the detected objects[7]. The major contributions in this work
are highlighted below:

1. Fusion of two domains at the data level for the object
detection and confirming the hypothesis by extensive ex-
perimentation using the available FLIR ADAS and KAIST
Multi-Spectral datasets. The underlying thesis is that the
style transfer relegates low-frequency features from the
source domain to the target domain that form the basis of
improved detection accuracy and classification.

2 https://www.flir.in/oem/adas/adas-dataset-form/
3 The cross-domain model is coined by the cross-domain interoperability
here the systems from different domains interact in information exchange,
ervice, or work together to achieve the common goal. The cross-domain model
s the knowledge transfer of a model that is trained in one domain and can be
sed in another domain by implying the feature learned by that model is reused
or the other domain.
2

2. Improved object detection in the infrared spectrum (ther-
mal images) by exploring the low-level features through
style consistency. The proposed object detection frame-
work outperformed existing benchmarks in terms of mean
average precision.

3. Cross-domain model transfer paradigm not only enhances
the object detection in the infrared spectrum (thermal im-
ages) but also provides an alternative yet effective method
for labeling the unlabeled dataset.

This work illustrates a novel approach to improve object de-
tection for thermal images is introduced by transferring knowl-
edge through domain adaptation by employing style transfer.
This work’s primary motivation is to handle the scarcity or non-
existence of labeled data, which is an utmost challenge to the
research community, and further, the labeling of data is an ex-
pensive task.

The paper is organized as follows: Section 2 discusses the
related literature. In Section 3, the proposed methodology is
discussed. Section 4 focuses on experimentation and analysis of
results. Section 5 shows the comparison and discussion about the
proposed method. Section 6 concludes the study.

2. Related work

2.1. Object detection

Human vision can identify objects in countless challenging
conditions, but it is not a trivial task for autonomous driving.
The ultimate goal of object detection in images is to localize
and identify all instances of the same object or different objects
present in the image.

Significant work is done on person detection in thermal im-
ages by considering the temperature difference between hot bod-
ies and cold surroundings. Classical image processing techniques
can be used for detection like thresholding is used in [16]. They
have formulated the threshold value based on a model which con-
siders different thermal images’ characteristics. The Histogram
of oriented gradient (HOG) features and local binary patterns
(LBP) are used to extract features from thermal images and the
features are used to train the Support Vector Machine (SVM)
classifiers in [17]. [18] have used HOG features combined with
geometric features such as mean and contrast to compute a set
of features that are then used to train the SVM classifier. The
classical methods lack robust features and accuracy in detecting
thermal object detection compared to deep neural networks and
are not suitable for the dynamic situation of autonomous drivings.
Deep neural networks have gained a reputation in object detec-
tion tasks for RGB images and are used for object detection in
thermal images[19]. In [20], first, they have trained two separate
convolution networks on thermal and RGB images separately.
Then, they have proposed four fusion architectures that inte-
grate two convolution networks at different convolution stages.
They discover that convolution neural networks train on thermal
images and RGB images provide complementary information on
discriminating objects in thermal images, thus yielding better
performance. Similar work is conducted in [21] where they have
proposed fusion architecture to study the benefit of using mul-
tispectral data for thermal object detection. [22] have proposed
a real-time multispectral pedestrian detector by training You
Only Look Once (YOLO) object detector with the input of 3 RGB
channels in addition to thermal as to the fourth channel. [23] has
proposed a method based on the fusion of thermal and visible
domain using target enhanced multi-scale decomposition model.
The Laplacian pyramid is used to compute low-frequency features
in thermal images and then fuse the information with the visible
spectrum to improve the features of the target object, improving
the reliability of target recognition and detection.
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.2. Domain adaptation

Typically, neural networks encounter performance degrada-
ion when tested upon different datasets due to environmental
hanges. Furthermore, the dataset is not large enough to train
nd optimize a network in some cases. Therefore techniques
ike domain adaptation provide a crucial tool to the research
ommunity[24].
The domain adaptation for object detection includes tech-

iques like generating synthetic data or augmentation to real
ata to train the network. [25] have used publicly available ob-
ect detection labeled datasets coming from various domains
nd multiple classes and merged them. For example, the fash-
on dataset Modanet is merged with the MS-COCO dataset by
everaging Faster-RCNN using domain adaptation. In [26], Faster-
CNN is used to make image and instance-level adaptation. [27]
as introduced a two-step method, where they have optimized
detector to low-level features, and then it is developed as a

obust classifier for high-level features by enforcing distance min-
mization between content and style image. [28] has proposed a
ross-domain semi-supervised learning structure that takes ad-
antage of pseudo-annotations to learn optimal representations
f the target domain. They have utilized the fine-grained domain
ransfer, progressive confidence-based annotation augmentation,
nd annotation sampling strategy.

.3. Transfer learning

In real-world applications, the train and test data do not
elong to the same feature space or have similar data distri-
utions, although most machine learning algorithms hold this
ssumption. In light of the violation of this assumption, most
achine learning models need to be rebuilt using new labeled

raining data [29]. For such task transfer learning helps transfer
he knowledge between task domains[30]. [31] has exhibited the
ransfer learning-based framework for object detection datasets
ith very few training examples. They have augmented the ex-
mples from each class by importing the examples from other
lasses and transforming them to be more similar to the target
lass. [32] presents a boosting framework to transfer learning
rom multiple sources. The brute force transfer of knowledge
ight transfer weak relationships, which reduces the classifier’s
erformance. The knowledge is borrowed from multiple sources
o evade negative transfer. [33] performs a study to examine the
fficacy of transfer learning affected by choice of dataset. They
ave proposed adaptive transfer learning, a simple and effective
re-training technique based on weights computed on the target
ataset. [34] solves the fine-grained visual categorization prob-
em using domain adaptive transfer learning. They have fed the
eural network additional data by augmenting it through a visual
ttention mechanism and fine-tuning it on the base network. [35]
ropose a new technique based on transfer learning to relegate
he knowledge from the source task to the target task containing
ncertain labels.

.4. Style transfer

Image Style transfer is a process that renders the image’s
ontent from one domain with the style of another image from
nother domain. [36] has demonstrated the use of feature repre-
entation from the convolution neural network for style transfer
etween two images. They have shown that features obtained
rom CNN are separable. They manipulate the feature represen-
ation between style and content images to generate new and
isually meaningful images. [37] have proposed style transfer
ased on a single object. They have used patch permutation to
3

train a GAN to learn the style and apply it to the content image.
[38] has introduced XGAN, consisting of an auto-encoder, which
captures the shared features from style and content images in
an unsupervised way and along which it learns the translation
of style onto the content image. [39] has proposed the CoMatch
layer, which learns the second-order statistics of features and
then matches them with the style image. Using the CoMatch
layer, they have developed the Multi-style Generative Network
giving a real-time performance.

There is still a need for improvement in thermal object de-
tection in the context of the aforementioned related literature
extending from object detection, transfer learning, style trans-
fer, and domain adaptation. The resurgence of feature extraction
without human supervision has greatly improved by the deep
neural networks in the visible spectrum RGB domain for the
classification, detection, and prediction problems. In addition,
the leverage of the proposed approach is to perform domain
adaptation for other datasets, like introducing foggy weather in
the KITTI dataset [40] or converting day images to night images.

3. Proposed method

This section presents the proposed domain adaptive frame-
work for thermal object detection from visible RGB domain to
thermal domain.

3.1. Object detection in thermal images through style consistency
(ODSC)

The recent advances in deep learning have revolutionized ob-
ject detection in the visible RGB image domain. However, there is
still room for improvement in the thermal image domain. Object
detection focuses on locating and identifying objects of different
classes in an image. There could be a single instance of the
object from one class or multiple objects from different classes,
making the problem of object detection challenging. Deep neural
networks as function approximators perform low-level and high-
level feature extraction for the classification/prediction problem
[13,41], which provides superior features in comparison to hand-
crafted features. Hence the reason for improved object detection
in the visible RGB image. Here, we argue that transferring the
low-level features from the source domain (RGB) using domain
adaption increases the target domain’s (thermal) object detection
performance.

The knowledge transfer using the domain adaptation between
the thermal image (content images xc) and visible spectrum (RGB)
images (style images xs), we have adopted the multi-style gen-
erative network (MSGNet) for style transfer [39]. Style transfer
is considered a technique to reconstruct and synthesize texture
based upon the image’s semantic content. It provides consistency
in content-style interpolation, color preservation, and spatial con-
trol. The leverage of translating the specific style from the source
to the target domain through the multi-style generative network
provides an extra edge over the CycleGAN [5]. The CycleGAN
generates one translated image from the source image of a spe-
cific style. MSGNet provides the capability to translate multi-style
from the source domain to the target domain while closing the
gap between the two domains. The network extracts low-level
features such as texture and edges from the source domain while
keeping the high-level features like location and shape consistent
in the target domain. Fig. 2(a) shows the framework for transfer-
ring the style from the visible spectrum (RGB) images to thermal
images.

The architecture of the MSGNet is shown in Fig. 2(a). MSGNet
network takes both the content image xc and style image xs as

input, while the previously known architectures, like, Neural Style
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37] that takes only the content image and then generates the
ransferred image. The Generator network (G) is composed of an
ncoder consisting of the siamese network [42], which shares
ts network weights with the transformation network through
he CoMatch layer. The CoMatch layer matches the second-order
eature statistics of content image xc to the style images xs. For
given content image and a style image, the activation of the
escriptive network at the jth scale F j(x) ∈ RCj×Hj×Wj represents
he content image xc where Cj, Hj, Wj are the number of feature
ap channels, the height of feature map and width respectively.
he distribution of features in style image xs is represented using
he Gram Matrix G(F j(x)) ∈ RCj×Cj given by Eq.(1)

G(F j(x)) = Φ(F j(x))Φ(F j(x))T , (1)

where Φ is a reshaping function in Gram Matrix G for zero-
centered data.

In order to find the desired solution in the CoMatch layer that
preserves the semantic content of the source image as well as
matches the feature statics of the target style, an iterative approx-
imation approach is adopted by incorporating the computational
cost in the training stage, as shown in the Eq.(2)

ŷj = Φ−1 [
Φ(F j(xc)T )WG(F j(xs))

]T
, (2)

where W is a learnable matrix.
The minimization of a weighted combination of the content

and style difference between the generator network output and
targets for a given pre-trained loss network F . The generator
network is given by G(xc, xs) and parameterized by WG, (weights).
The learning is done by sampling the content image xc ∼ Xc
and style image xs ∼ Xs, and estimating the weights, WG of the
generator G(xc, xs) to minimize the loss, as shown in Eq.(6)

A = λc
Fxc (G(xc, xs)) − Fxc (xc)

2
F , (3)

B = λs

K∑
j=1

G(F j((G(xc, xs)))) − G(F j(xs))
2
F , (4)

C = λTV lTV (G(xc, xs)) , (5)

ŴG = argminExc ,xs {A + B + C} , (6)

where λc and λs are the regularization parameters for content and
style losses. The content image is considered at scale c and style
image is considered at scales i ∈ 1, ..., K . The total variational
regularization is lTV , which is used for the smoothness of the
generated image [43].

The proposed framework for object detection through style
consistency is presented in Fig. 2. It illustrates that the network
consists of two modules; the first part consists of a multi-style
network. It generates the style images by adapting low-level
features transformation between the content image consisting of
thermal image and style image consisting of the RGB image. As
compared to the thermal images, the transferred style images
contain low-level features, but the semantic shapes are preserved
in these generated images keeping the high-level semantic fea-
tures consistent. The second module is comprised of the object
detector, which inputs styled images from the first module, con-
sequently bridging the domain gap between visible spectrum RGB
images and thermal images. We have chosen a notable single-
stage Single-shot Multi-box object detector (SSD) for detection
architectures.
4

The single-shot detector (SSD) is a single-stage object detector
based on a feed-forward convolutional neural network [4]. SSD
architecture consists of a backbone network pre-trained on im-
ageNet data. SSD computes a fixed set of defaults collection of
bounding boxes at different scales of each location of the feature
map, and for every instance, a probability score to determine the
presence of the object contained by the bounding box is defined.
A non-maximum suppression step is applied to produce the final
detections. SSD during the training matches these default bound-
ing boxes to the ground-truth boxes, the boxes that are matched
are called positive examples, and the rest as negative examples.
The negative mining is performed to calculate the confidence
loss with a ratio of 3:1. The SSD-300 and 512 [4] with backbone
VGG16 [14], MobileNet [44] and EfficientNet [45]. are trained
on the styled images, which bridge the gap between the visible
spectrum RGB images and thermal images. Moreover, Faster-
RCNN is also used as an object detector to make a fair comparison.
The trained detection network is evaluated on thermal images.
The accuracy of testing on thermal images shows the efficacy of
object detection.

4. Experimentation and results

4.1. Datasets

In this study, we have used two thermal image datasets. The
first is the FLIR-ADAS dataset, and the second one is the KAIST
Multi-Spectral dataset [9]. FLIR-ADAS dataset consists of 10228
images with objects annotated using a bounding box as an eval-
uation measure. The objects are classified into four categories,
i.e., car, person, bicycle, and dog. However, the dog category has
very few annotations, so it is not considered in this study. The
images have a resolution of 640 × 512 and were obtained from
FLIR Tau2 Camera. The dataset consists of day and night im-
ages, approximately 60% (6136) images are captured during the
daytime, and 40% (4092) images are captured during nighttime.
The dataset consists of both visible spectrum (RGB images) and
thermal images, but annotations are only available for thermal
images. The visible spectrum (RGB images) and thermal images
are not paired, so the thermal annotations cannot be used with a
visible spectrum (RGB images). Thermal images with annotations
are only considered in this study. A standard split 4 of the dataset
into training and validation data is considered during experi-
mentation. The training dataset consists of 8862 images, and the
validation contains 1366 images, as shown in Table 1.

The KAIST Multi-Spectral dataset contains 95000 images from
both the visible spectrum (RGB images) and the thermal spec-
trum, and for each category, the dataset has both daytime and
nighttime images. Annotations are only provided for the person
class with a given bounding box. The visible spectrum (RGB
images) and thermal images are paired, which means annota-
tions for the thermal and the visible spectrum (RGB images) are
the same. Images are captured using a FLIR A35 camera with a
resolution of 320 × 256. We have applied a standard split 5 of
the dataset, using 76000 of the images in the dataset in training
and 19000 of the images in the dataset for validation as shown
in Table 1.

4 As given by FLIR ADAS repository
5 As given by the KIAST repository.
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Table 1
FLIR-ADAS and KAIST multi-spectral datasets partition topology for training and
testing the proposed network.
Dataset Total images Train images Test images

FLIR-ADAS 10228 8862 1366
KAIST multi-spectral 95000 76000 19000

4.2. Evaluation metric

The efficacy of the proposed method is determined by using
he mean average precision (mAP) as an evaluation metric. In
omputer vision research, object detection is usually classified
s a combination of localization and classification problems. The
ocalization deals with the determination of the bounding box
oordinates, whereas the classification corresponds to identifying
he object labels. The notable object detectors such as Faster-
CNN, SSD, and YOLO have utilized the mAP as an evaluation
etric to analyze object detection performance. The concept of
ean average precision relies on computing the precision, recall,
nd intersection over union (IoU) for object detection. Precision
or object detection measures the number of correct predictions,
hereas the recall corresponds to how well these positive predic-
ions are found. Intersection over Union (IoU) is a measure based
n Jaccard Index that evaluates the overlap between two bound-
ng boxes. Precision, recall and IoU are defined as illustrated in
q.(7), Eq.(8), and Eq.(9), respectively,

recision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

IoU =
area(Bp ∩ Bgt )
area(Bp ∪ Bgt )

, (9)

where TP, FN, and FP are true-positive, false negative, and false-
positive, respectively. Bp and Bgt represent the prediction and
ground-truth bounding box, respectively. In object detection, pre-
cision and recall are calculated using the IoU value for a given
IoU threshold. In our experimentation, we have used the Pascal
VOC evaluation metric with 50% of IoU threshold (IoU0.5). The
average precision is evaluated by finding the area under the
precision-recall curve as shown in Eq.(10)

AP =

∫ 1

0
p(r)dr. (10)

The mean average precision (mAP) is calculated by evaluating the
mean AP over all classes and overall IoU thresholds. As we have
utilized the Pascal VOC evaluation metric in our proposed work,
the AP is calculated for the IoU threshold of 0.5; the mAP score
is averaged over all the object classes.

4.3. Object detection in thermal images through style consistency
(ODSC)

In contrast to traditional detection methods, deep neural net-
work utilization for the object detection task has enhanced object
detectors’ performance. Deep learning-based object detectors are
classified into two genres: ‘‘two-staged detection’’ and "one-stage
detection’’, where the former focuses on coarse to fine process for
object detection while the latter frames the object detection as a
complete one-step process.

This work aims to bridge the gap between thermal and RGB
domains by incorporating the useful features representation from
the RGB domain that helps in the thermal object detection for

the autonomous vehicle perception application. To this end, we n

5

have utilized the state-of-the-art object detectors from both
two-staged and one-staged detectors to evaluate the proposed
method.

In the context of a two-stage object detector, Faster-RCNN
is the state-of-the-art detector constitutes of a deep convolu-
tional region proposal network and Fast-RCNN detector [3]. The
Faster-RCNN object detector includes a feature extractor network,
usually composed of deep neural network-based backbone like
VGG [14], ResNet [15] pre-trained on imageNet, is used to ex-
tract features from the input image. The backbone network is
then followed by the region proposal network (RPN), consisting
of 3 convolutional layers that generate several bounding boxes
known as the region of interest (ROIs). These ROIs are gener-
ated by sliding a window at each location of the feature map
and simultaneously predicting multiple regions’ proposals. The
maximum number of possible regions proposals called anchors
at each location are pre-determined. These regions proposals are
bounding boxes with a higher probability of containing an object.
Finally, the Fast-RCNN detection network takes features from
the backbone and ROIs from the RPN module and predicts the
bounding box and class of objects present in an image. Although
the Faster-RCNN breaks the speed bottleneck of Fast-RCNN, it
needs improvement in computation to reduce the redundancy at
the detection stage.

The Single Shot Multibox Detector (SSD) is the one-stage de-
tector in which the localization and classification are performed
in a single forward pass of the network. The SSD object detector
is composed feature extractor that serves as a backbone and a
multi-box detector for detection. VGG-16 architecture (discarding
the fully connected layers) is adopted as a backbone network
in SSD for feature extraction. The reason for using the VGG-16
network as a backbone network is its robust performance with
simple architecture for image classification tasks and also its
useability in transfer learning problems for improving the results.
Besides the VGG network, in literature, ResNet and DenseNet are
employed as the backbone network for feature extraction yet
developing new object detectors on the basis of SSD architecture.
Since the focus of this paper is to develop a framework to bridge
the gap between thermal and RGB domains for object detection
in thermal images, we explicitly follow the original architectural
designs of the object detector to determine their usability in the
proposed work.

The evaluation of the proposed method is demonstrated us-
ing state-of-the-art object detection networks. The object de-
tection networks include Faster-RCNN, SSD-300, and SSD-512.
These object detection networks are implemented with differ-
ent backbone architecture; for instance, ResNet-101 is used as
a backbone network in Faster-RCNN; VGG16, MobileNet, and
EfficientNet are used with SSD-300; SSD-512 uses VGG16 as
backbone architecture. The dataset comprises of FLIR-ADAS and
KAIST Multi-Spectral dataset. The FLIR-ADAS dataset is parti-
tioned into training and testing using a standard split, while the
KAIST Multi-Spectral dataset is only used in testing the object
detection networks. All the networks are implemented in Pytorch,
having formulated the data in PASCAL-VOC format. The standard
PASCAL-VOC evaluation criteria are used in this study [7].

4.3.1. Baseline
A baseline approach is experimented first for the compar-

ative analysis with the proposed methodology, which involves
training and testing of object detection network using thermal
images only. In training the Faster-RCNN, ResNet-101 backbone is
adapted and trained on the thermal image dataset. The network
is trained using Adam optimizer with a learning rate of 10−4 and
momentum of 0.9 for total of 15 epochs.
The experimental evaluation with the SSD object detection
etwork constitutes two different architectures, i-e SSD-300 and
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Fig. 1. (a) Object detection in thermal images through style consistency (ODSC). Visible spectrum (RGB image) is treated as a style image whereas, the thermal
image is considered as content image. The output shows the enhanced image having low-level features adapt from the visible spectrum. (b) Cross-domain model
transfer with style transfer. Style from the thermal image is transferred to the visible spectrum (RGB content image).
Fig. 2. The proposed model framework for object detection in thermal images through style consistency. (a) Multi-style generative network architecture for generating
the style images. Visible spectrum (RGB images) and thermal images are given as style and content image respectively to the network. The siamese network captures
the low-level features of style image, which is transferred to the transformation network through the CoMatch layer. A pre-trained loss network is used for MSGNet
learning by computing the difference between content and style image with the targets. (b) The detection networks which includes (Faster-RCNN backbone with
ResNet-101, SSD-300 with backbone VGG16, MobileNet, and EfficientNet, SSD-512 with VGG16 backbone) are trained on the style images and then tested in the
target domain (thermal images) for the object detection.
s

SSD-512. In the case of training the SSD-300, the backbone net-
works are trained on the training data. The learning rate for
VGG16, MobileNet, and EfficientNet used as the backbone net-
work for SSD-300 are 10−4, 10−3, and 10−3, respectively. For
the SSD-512 experimentation, only VGG-16 is used as a backend
for training with a learning rate of 10−3. All the networks have
used a batch size of 4 on the Nvidia-TITAN-X having 12GB of
computational memory.

4.3.2. Experimental configuration of ODSC
In the proposed methodology, the MSGNet is trained with

thermal images to serve as a content image, whereas the RGB
images correspond to style images, as shown in Fig. 1(a). In
training the MSGNet, VGG16 is used as a loss network. The pre-
trained weights of the loss network on the ImageNet dataset are
employed for training the MSGNet. In a loss network, the balanc-
ing weights as referred to in the Eq. (6) are λ = 1 and λ = 5
c s

6

respectively while the total variational regularization for content
and style is λTV = 10−6. In the experimental configuration, the
size of the style image xs is iteratively updated, having a size
of 256, 512, 768, respectively. The size of the content images is
resized to 256 × 256. The Adam optimizer is used with a learning
rate of 10−3 in the training configuration. The MSGNet is trained
for a total of 100 epochs with a batch of 4 on the Nvidia-TITAN-X.

The trained model of MSGNet results in the generation of style
images, as shown in Fig. 1(a). These style images are used in
training the object detection networks. The detection networks
trained on style images are evaluated on the test data comprise
of thermal images. The training configuration of these object
detection networks is kept similar as the baseline configuration
to make a comparative analysis.

4.3.3. Experimental results
For the evaluation of our experimental configuration, we have

tested the baseline and proposed method, on both thermal dataset
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Table 2
Quantitative analysis using Baseline configuration for object detection networks.
FLIR ADAS dataset KAIST multi-spectral dataset

Network architecture Backbone car bicycle person Average mAP person
Faster-RCNN ResNet-101 0.6799 0.4276 0.548 0.5518 0.5583
SSD-300 VGG-16 0.7561 0.4502 0.6197 0.6087 0.6687
SSD-300 MobileNet-v2 0.4774 0.1943 0.3163 0.3284 0.5998
SSD-300 EfficientNet 0.6809 0.2747 0.4992 0.4849 0.6162
SSD-512 VGG-16 0.8055 0.5399 0.702 0.6825 0.6409
Table 3
Quantitative analysis using Proposed Method (ODSC) configuration.
FLIR ADAS dataset KAIST multi-spectral dataset

Network architecture Backbone car bicycle person Average mAP person
Faster-RCNN ResNet-101 0.7190 0.4394 0.6201 0.5928 0.5745
SSD-300 VGG-16 0.7991 0.4691 0.6253 0.6312 0.7536
SSD-300 MobileNet-v2 0.5434 0.2798 0.3638 0.3957 0.7465
SSD-300 EfficientNet 0.7405 0.3512 0.5169 0.5362 0.6770
SSD-512 VGG-16 0.8233 0.5553 0.7101 0.6962 0.7725
Table 4
Quantitative analysis of testing object detection networks trained on thermal images and tested on style images.
FLIR ADAS dataset KAIST multi-spectral dataset

Network architecture Backbone car bicycle person Average mAP person
Faster-RCNN ResNet-101 0.3030 0.1985 0.2115 0.2377 0.1410
SSD-300 VGG-16 0.6824 0.3286 0.5260 0.5123 0.6137
SSD-300 MobileNet-v2 0.4551 0.1363 0.2899 0.2937 0.4773
SSD-300 EfficientNet 0.3637 0.1193 0.2289 0.2373 0.4449
SSD-512 VGG-16 0.6779 0.3736 0.5538 0.5351 0.4961
(FLIR ADAS and KAIST Multi-Spectral). Table 2 shows the mean
average precision (mAP) scores of the baseline configuration for
each detection network, i.e., the networks are trained on thermal
images and evaluated on thermal images. Table 3 shows that
the quantitative results of the proposed method. The best model
configuration for the proposed method is (SSD512+VGG16) as
shown in experimental results. The mAP score of the best model
configuration of the proposed method has a better evaluation
score compared to the baseline configuration. The MobileNet-v2
is designed for edge computing devices having a fewer number of
parameters in comparison to the VGG network. MobileNet-v2 is
small, having low latency and low-power models parameterized
to meet the computation constraints of the edge computing de-
vices. The MobileNet-v2, when used as a backbone network with
the SSD-VGG object detector, produces low performance on the
FLIR dataset due to the fact that MobileNet-v2 has a lower num-
ber of parameters in contrast to the SSD-VGG, thus resulting in
lower performance. Furthermore, compared to the KAIST Multi-
Spectral dataset, the SSD with MobileNet-v2 backbone is only
tested on the one class (person) that gives a relatively high mAP
score in contrast to the FLIR dataset where it is tested for multi-
class. The high mAP score in the case of the KAIST Multi-Spectral
dataset is because the mAP score is evaluated on the overall
classes present in the dataset. We perform a sanity check by con-
ducting experiment by training network on thermal images and
testing them on style images. The detection networks trained on
the thermal images tested on the style images show the marginal
efficacy, as shown by Table 4. Figs. 4–5 illustrate the qualitative
result of object detection in thermal images through style consis-
tency on FLIR ADAS and KAIST Multi-Spectral respectively for all
the detection networks.

4.4. Corollary to proposed method: Cross domain model transfer for
object detection in thermal images (CDMT)

For the further investigation of the proposed method, a cross-
omain model for thermal object detection is designed. The pur-
ose of this study is to analyze the effect of trained RGB detection
7

models on styled and without styled images. It is to be noted that
for cross-domain model transfer, the source and target domain
are swapped compared to the first part of the proposed work.
The reason of this configuration is to analyze the performance
of object detectors that are trained on the RGB domain, when
applied to thermal domain produce unsatisfactory results because
of the fact of domain invariance.

However, if the style from the thermal domain is being em-
ployed on the content image of RGB domain, the trained RGB
domain object detection networks performance improved since
the style transfer bridge the gap between the two domains.
Fig. 3 shows the overall framework for cross-domain model trans-
fer object detection in thermal images. The detection networks
(Faster-RCNN backbone with ResNet-101, SSD-300 with back-
bone VGG16, MobileNet, and EfficientNet, SSD-512 with VGG16
backbone) are trained on the visible spectrum (RGB images) and
then the trained model is tested on the thermal images. As the
detection networks are trained on a different domain, in this
case, visible spectrum (RGB) images, the performance of these
networks on thermal images will be marginal as can be seen in
results. The efficacy of thermal object detection can be increased
by using the style consistency. The MSGNet is trained with RGB
images as the content image, and the style is borrowed from the
thermal images. The style transferred images are then passed to
the same detection networks that are trained earlier on the visible
spectrum (RGB) images, which improves the object detection in
thermal style images. This cross-domain model transfer can be
applied as a weak object detection module for the unlabeled
dataset, as in our case for thermal images.

4.4.1. Experimental configuration of CDMT
The cross-domain model evaluation employs the training of

object detectors on the visible spectrum (RGB images). The KAIST
Multi-Spectral dataset is used in this experiment, considering that
the labels are available for both domains. The object detection
networks incorporated in this study include Faster-RCNN, SSD-
300, and SSD-512. The network model configuration is similar to
ODSC. The Faster-RCNN is backend with ResNet-101 backbone.
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Fig. 3. An overview of the cross-domain model transfer method. The detection networks are trained using the visible spectrum (RGB images). Afterward, these
trained models are tested by implying the cross-model transfer with style transfer using MSGNet and also without style transfer. (Detection Network*) implies that
the same detection networks are used for testing in the target domain.
Table 5
Quantitative analysis of Cross Domain Model Transfer (CDMT).
KAIST multi-spectral dataset

Domain CDMT without style transfer CDMT with style transfer

Network architecture Backbone person person
Faster-RCNN ResNet-101 0.5354 0.7254
SSD-300 VGG-16 0.6098 0.7598
SSD-300 MobileNet-v2 0.2512 0.7012
SSD-300 EfficientNet 0.1995 0.5495
SSD-512 VGG-16 0.6202 0.7702
The SSD-300 network is experimented with VGG16, MobileNet,
and EfficientNet backbone. Furthermore, SSD-512 is backend with
VGG16 architecture. The learning rate for training all detection
networks is 10−3 except for the SSD-300 with EfficientNet back-
one, which is tested with 10−4. The batch size is 4 for all the

aforementioned detection networks.
Similar to the ODSC, MSGNet is used to generate styled images,

as shown by Fig. 1(b). In this case, the content images consist of
the visible domain (RGB images), and the style is transferred from
thermal images, which signifies that the style transfer between
the content image (RGB images) and style image (thermal images)
increase the object detection efficacy. The hyper-parameters for
the MSGNet are kept the same as described in the experimental
configuration of object detection in thermal images through style
consistency. The detection networks are then tested on these
generated styled images.

4.4.2. Experimental results
The method’s assessment is investigated by evaluating the

trained network on the styled images and non-styled images
(thermal images). Table 5 shows the quantitative results of cross-
domain model transfer. The quantitative results show that using
the cross-domain model transfer with style transfer increases
the object detection efficacy compared to cross-domain model
transfer without style transfer. In addition to that, the method
of using cross-domain model transfer will overcome the gap of
annotating the unlabeled dataset and assists as a weak detector
for the unlabeled dataset. The qualitative evaluation of using
style transfer for CDMT is shown in Fig. 7 for all the detection
networks.
8

5. Comparison with other state-of-the-art methods

For the efficacy of the proposed methodology, an extensive
analysis is conducted using state-of-the-art methods. ACF+T+THOG
[9] conducted a study to analyze the effect of thermal channels
on aggregated channel features. They used an ensemble of classi-
cal techniques to extract features from thermal and RGB color
channels, including fast feature pyramids, HOG features, nor-
malized gradients, and histograms of oriented gradients. These
hand-crafted features are utilized for pedestrians detection in
multi-spectral images. Our proposed method relies upon a deep
neural network to obtain features and style transfer to bridge
the RGB domain and thermal gap. Moreover, tY model [49] have
used a deep neural network to perform person detection using
thermal images. However, it uses YOLOv3 architecture and only
thermal image as the input for person detection, and they did
not perform any fusion or domain transfer during training of
the YOLOv3 network. Nevertheless, PiCA-Net [47] and R3Net[47]
utilizes a fusion network that uses saliency maps acquired from
thermal images fused with RGB images to extract better features.
In addition, they have trained the Faster-RCNN for pedestrians
detection and fine-tuned it on extracted feature maps.

Furthermore, for object detection in the thermal domain, Intel
[48] uses Faster-RCNN as an object detector to perform transfer
learning and concludes from the experiments that a network
trained on RGB images and tested on thermal images fail to
transfer knowledge, which is a similar conclusion obtained in this
paper. MMTOD−UNIT [46] has used CycleGAN to generate the
thermal images from RGB images, to remove the dependency of
pairing the RGB and thermal images in the dataset. They have
used a variant of Faster-RCNN, which used both the thermal and
RGB images to detect objects. Using CycleGAN to generate images
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Fig. 4. Illustrates the qualitative results of object detection in thermal images through style consistency. The object detection results of all the detection networks
re illustrated along with ground-truth and predictions on FLIR ADAS dataset. The second last row shows the qualitative results of best model configuration
SSD512+VGG16).
ntroduce negative artifacts in images and distorts the actual
eatures of the image in comparison to style transfer which keeps
igher-level feature consistent.
In this work, we have designed a framework to cater to the

roblem of thermal object detection by transferring the knowl-
dge in the form of low features from the visible-spectrum RGB
omain to the thermal infrared domain by utilizing style con-
istency. For this purpose, the knowledge transfer is done at
he image level, and the detection in the thermal domain is
arried out by training the deep neural networks object detec-
ion networks. In contrast to the state-of-the-art methods, the
roposed method’s efficacy is quantified by utilizing the mean
verage precision (mAP) as the evaluation metric. In the computer
ision literature, the mAP is extensively used as an evaluation
etric to illustrate the efficacy of the object detection network.
o this end, in the proposed work, the mAP score is evaluated to
ake a fair comparison with the state-of-the-art methods. Table 6
hows a comparison between the proposed methods (ODSC and
9

CDMT) and state-of-the-art methods in terms of mAP scores. In
our comparison with the state-of-the-art methods, only those
methods are considered that incorporate the standard PASCAL-
VOC evaluation criteria for both FLIR and KAIST Multi-Spectral
datasets.

In evaluating the proposed method (ODSC) in contrast to
the state-of-the-art methods, we have incorporated both fusion-
based and single modality-based methods dealing with thermal
object detection. Since Table 6 illustrates the mAP score between
the proposed (ODSC) and state-of-the-art methods, the proposed
method (ODSC) achieved the overall mAP score of 0.6962 in
comparison to 0.5856 of MMTOD-UNIT [46] in terms of the fusion
of visible spectrum RGB and thermal infrared domain for FLIR
ADAS dataset. The corresponding mAP score for MMTOD-UNIT
[46] on the KAIST Multi-Spectral dataset is unavailable. Further-
more, MMTOD-CG [46] model is evaluated on both FLIR ADAS
and KAIST Multi-Spectral datasets achieving 0.5711 and 0.5226
mAP score, respectively. In contrast, the proposed method (ODSC)
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Fig. 5. Illustrates the qualitative results of object detection in thermal images through style consistency. The object detection results of all the detection networks are
illustrated along with ground-truth and predictions on KAIST Multi-Spectral dataset. The second last row shows the qualitative results of best model configuration
(SSD512+VGG16).
has achieved the mAP score of 0.6962 and 0.7725, respectively,
for both FLIR ADAS and KAIST Multi-Spectral datasets. Similarly,
the models PiCA-Net [47], R3Net[47] and ACF+T+THOG [9] are
nly evaluated on the KAIST Multi-Spectral dataset. They have
chieved the mAP score of 0.658, 0.7085 and 0.7139 respectively,
n contrast to the proposed method (ODSC) mAP score on the
AIST Multi-Spectral dataset of 0.7725. The quantitative com-
arison between the proposed method (ODSC) is not limited to
he fusion methods only; we have also evaluated the proposed
ethod (ODSC) with the deep neural networks method that
tilizes thermal images as a single modality. In this context, Intel
48] Faster-RCNN model and tY model [49] are evaluated on the
LIR ADAS and KAIST Multi-Spectral datasets respectively. The
ormer gives the mAP score of 0.3157 in contrast to 0.6962 of the
roposed method (ODSC) for the FLIR ADAS dataset. The latter
odel has achieved the mAP score of 0.630 compared to 0.7725
f the proposed method (ODSC) for the KAIST Multi-Spectral
ataset.
10
For the proposed method corollary (CDMT) efficacy, only the
KAIST Multi-Spectral dataset is utilized to compare the proposed
method (CDMT) with the state-of-the-art methods quantitatively.
In this context, the proposed method has achieved the mAP score
of 0.7702 in comparison to the best state-of-the-art method that
is 0.7139 of ACF+T+THOG [9]. It is to be noted that the evaluation
for the KAIST Multi-Spectral dataset is only performed for the
person class because no other class data is available for this
dataset. In addition, the proposed method corollary (CDMT) is
further evaluated in the context of performing as a weak labeler
for the unlabeled dataset. For this purpose, we have utilized
the i3 systems TE-EQ1 / TE-EV16 thermal camera for collect-
ing the unlabeled dataset. The weak label annotations using the
cross-domain model transfer (CDMT) are illustrated in Fig. 6. To
evaluate the efficacy of the proposed CDMT, we have presented

6 http://i3system.com/uncooled-detector/te-eq1/?lang=en

http://i3system.com/uncooled-detector/te-eq1/?lang=en
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Table 6
Comparison of our proposed methods (ODSC and CDMT) with state-of-the-art methods. (*) represent average (day+night) mean Average Precision
score. (-) indicates that the respective algorithm is not tested on the specified dataset.

Dataset FLIR ADAS KAIST multi-spectral

Method car bicycle person mAP person (mAP)

MMTOD-UNIT [46] 0.7042 0.4581 0.5945 0.5856 –
MMTOD-CG [46] 0.6985 0.4396 0.5751 0.5711 0.5226
PiCA-Net [47] – – – - 0.658*
R3Net [47] – – – - 0.7085*
Intel [48] 0.571 0.1312 0.245 0.3157 –
tY model [49] – – – – 0.630
ACF+T+THOG [9] – – – – 0.7139

Ours (ODSC)

Faster-RCNN+ResNet101 0.7190 0.4394 0.6201 0.5928 0.5345
SSD300 +VGG16 0.7991 0.4691 0.6253 0.6312 0.7536
SSD300+ Mobilenet V2 0.5434 0.2798 0.3638 0.3957 0.7465
SSD300+ EfficientNet 0.7405 0.3512 0.5169 0.5362 0.6770
SSD512+VGG16 0.8233 0.5553 0.7101 0.6962 0.7725

Ours (CDMT)

Faster-RCNN+ResNet101 – – – – 0.7254
SSD300 +VGG16 – – – – 0.7598
SSD300+ Mobilenet V2 – – – – 0.7012
SSD300+ EfficientNet – – – – 0.5495
SSD512+VGG16 – – – – 0.7702
Fig. 6. The illustration of weak label annotation using the cross-domain model
ransfer performed on our collected unlabeled dataset.

he true positive (TP), false positive (FP), and false-negative (FN)
etections. The proposed CDMT experimental analysis shows the
ccuracy of 67.36% on the whole unlabeled dataset. Furthermore,
he inference frame rate for the detection neural network used
n the proposed method is illustrated in Table 7. The number of
rames per second is calculated on the Nvidia-TITAN-X having
2GB of memory.

. Conclusion

This study proposes a domain adaptation framework for ob-
ect detection in underexposure regions for autonomous driving.
he framework uses domain adaptation from visible domain to
hermal domain through style consistency and utilizes MSGNet
o transfer low-level features from the source domain to the
arget domain, keeping high-level semantic features intact. The
roposed method outperforms the existing benchmark for object
etection in thermal images. Moreover, the effectiveness of style
11
Table 7
The inference frame per second evaluation of deep neural networks models used
in the proposed work.
Network architecture Frame per second

Faster-RCNN -ResNet101 backbone 9
SSD300 -VGG16 backbone 31
SSD300 -MobileNetv2 backbone 23
SSD300 -EffecientNet backbone 16
SSD512 -VGG16 backbone 11

transfer is strengthened by using a cross-domain model transfer
between visible and thermal domains.

The application of the proposed framework is found in au-
tonomous driving under low lighting conditions. Object detection
is integral to the core of perception, and failure to detect an
object compromises the safety of autonomous driving. Thermal
images provide additional meaningful data from the surround-
ings, and the proposed framework improves object detection
results in thermal images, consequently improving the safety
of autonomous driving. We aim to integrate lane detection and
segmentation into the proposed framework using thermal images
in future work.
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Fig. 7. Object detection results using cross domain model transfer is illustrated. The ground-truth and predictions results of all the detection network are shown.
The second last row shows the qualitative results of best model configuration (SSD512+VGG16).
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